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Incidence rates of chronic myeloid leukemia (CML) and Philadelphia

chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) are lower

but more aggressive in children than in adults due to different biological and

host factors. After the clinical application of tyrosine kinase inhibitor (TKI)

blocking BCR/ABL kinase activity, the prognosis of children with CML and Ph

+ ALL has improved dramatically. Yet, off-target effects and drug tolerance will

occur during the TKI treatments, contributing to treatment failure. In addition,

compared to adults, children may need a longer course of TKIs therapy,

causing detrimental effects on growth and development. In recent years,

accumulating evidence indicates that drug resistance and side effects during

TKI treatment may result from the cellular metabolism alterations. In this

review, we provide a detailed summary of the current knowledge on

alterations in metabolic pathways including glucose metabolism, lipid

metabolism, amino acid metabolism, and other metabolic processes. In

order to obtain better TKI treatment outcomes and avoid side effects, it is

essential to understand how the TKIs affect cellular metabolism. Hence, we also

discuss the relevance of cellular metabolism in TKIs therapy to provide ideas for

better use of TKIs in clinical practice.
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Introduction

Protein kinases (PKs), a class of enzymes, are able to transfer

phosphate groups from ATP to the hydroxyl side chain of

certain amino acid residues (1). PKs can be classified into

tyrosine kinases (TKs) and serine/threonine kinases (STKs)

based on the origin of the phosphorylated hydroxyl groups

(2). TKs are essential cellular signaling enzymes regulating

signal transduction pathways for metabolism, transcription,

differentiation, proliferation, development, migration and

apoptosis (3). TKs may be divided into two major classes:

transmembrane receptors linked receptor tyrosine kinases

(RTKs), like the PDGF receptors, and non-receptor tyrosine

kinases (NRTKs), like c-SRC and BCR-ABL (4). Oncogenic

mutations or overexpression of TK are a hallmark of cell cycle

dysregulation often related to tumorigenesis (5) in hematological

malignancies (6, 7), breast cancer (8), and non-small-cell lung

cancer (9). Hence, TK inhibition (TKI) is regarded as a targeted

treatment for cancer as it can selectively inhibit TK proteins and

halt the proliferation and growth of tumor cells (3). At present, a

variety of structurally different TKIs acting at singular or

multiple targets like BCR-ABL, EGFR, VEGFR, PDGFR, KIT,

and ALK, have been developed with minimal toxicities and good

pharmacokinetics (10, 11).

A myeloproliferative tumor known as chronic myelogenous

leukemia (CML) is characterized by unchecked proliferation of

bone marrow myeloid progenitor cells resulted from the

translocation of t (9:22) producing the hallmark BCR-ABL1, a

constitutively active tyrosine kinase (12). Pediatric CML

accounts for about 9% of leukemia in teenagers between the

ages of 15 and 19 and around 2% of leukemia in children under

the age of 15 (13, 14). However, previous studies showed that

owing to the underlying biology and host characteristics, clinical

presentations in children are often more aggressive than those in

adults (14, 15). Similar to adult, the natural history of pediatric

CML also progresses through three phases (16). The first and

most prevalent stage is the chronic phase (CP), which is

characterized by the absence of any subjective symptoms 3–5

years after diagnosis. The second stage is the accelerated phase

(AP), during which aberrant granulocyte differentiation

increases. The last stage is known as the blast crisis (BC),

which is characterized by an expansion of undifferentiated

blasts. Fortunately, TKIs can be used to treat patients in the

CP effectively, leading to improved survival (17); however, the

majority of AP and BC patients show no response to TKIs (18)

because their growth is no longer influenced by BCR-ABL.

Before the introduction of TKIs, pediatric CML was mainly

treated with hematopoietic stem-cell transplantation (HSCT)

and had an overall survival (OS) of about 64% at a median

follow-up period of 6 years (19). In May 2001, the US Food and

Drug Administration (FDA) approved Imatinib (IM, a small

molecule TKI) for adult CML (20) and this strategy was
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successful in improving disease prognosis. In 2003, the US

FDA authorized IM for pediatric (under 18 years of age) CML

based on its effectiveness in adults (21). Since then, the OS of all

children with CML treated with TKIs has improved to about

90% at the median 3-year follow-up period (19).

Philadelphia chromosome-positive acute lymphoblastic

leukemia (Ph+ ALL) which is characterized by the t(9;22)(q34;

q11) translocation and BCR-ABL1 fusion gene accounts for 3% to

5% of children with ALL (22, 23). Children with Ph+ ALL also

have a more aggressive clinical presentation because of the

secondary cytogenetic abnormalities and cooperative mutations

such as IKZF1 deletions (22, 24). Ph + ALL is an adverse subtype

of ALL with poor prognosis. Historically, less than half of children

with Ph+ ALL survived when treated with chemotherapy with or

without HSCT (25–27), while survival for children with ALL

exceeds 90% in the same period (28). Fortunately, due to the

success of TKI treatment in CML, TKIs was introduced for Ph+

ALL treatment, leading to an improved OS and event-free survival

(EFS) rates in pediatric Ph+ ALL when combined with intensive

chemotherapy (29, 30).

Despite the recent advancement of TKI therapies, drug

resistance remains a problem in clinical anticancer treatment.

In recent years, mechanisms of acquired resistance have been

identified. TKI resistance in the treatment of CML can result

from both BCR-ABL dependent and independent pathways (31).

The majority of the BCR-ABL-dependent resistance (32–36) is

mediated by the T315I “gatekeeper” mutation, BCR-ABL

overexpression, MDR1 upregulation, and ABL kinase domain

mutation, respectively. Currently, it is not so clear about BCR-

ABL-independent resistance. Recent findings indicate that such

TKI resistance may be influenced by the insensitivity of leukemia

stem cells (LSCs) (37) and abnormal activation of the PI3K (38)

and RAS/MAPK (39, 40) signaling pathways. To overcome IM

resistance, second-generation TKIs, such as dasatinib (DAS) and

nilotinib (NIL), were developed and they have activity against

most IM-resistant BCR-ABL1 mutants (41). But, they are not

able to overcome ABL-T315I-induced resistance. Then,

ponatinib, the third-generation TKI, has been developed and is

effective against T315I-mutated Ph+ leukemias (42), but the risk

of life-threatening cardiovascular side effects limits its clinical

application (43). On the other hand, due to the need of growth

and development, the long-term clinical safety of TKIs has to be

considered. In recent years, several long-term side effects have

been reported, including growth deceleration (44), dysregulation

of bone (45, 46), and decreased fertility (47, 48).

To achieve better treatment outcomes while avoiding drug

resistance and side effects, a deeper comprehension of TKIs’

mechanism is necessary. Therefore, this review discusses the

metabolic pathways alterations after TKIs therapy in children,

including the following five aspects: glucose metabolism, lipid

metabolism, amino acid metabolism, nucleotide metabolism,

and immunometabolism.
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Glucose metabolism

Glucose metabolism, which serves as a significant source of

energy for cell development, includes glycolysis pathway,

pentose phosphate pathway (PPP), oxidative phosphorylation

and serine synthesis pathway (SSP) (49). It is known that in

aerobic settings, intracytoplasmic glycolysis provides energy

first, followed by mitochondrial oxidative phosphorylation.

When oxygen is scarce, cells depend on glycolysis instead of

the oxygen-consuming TCA cycle to produce energy (49).

However, Otto Warburg found that even in the presence of

enough oxygen, cancer cells prefer to engage in aerobic

glycolysis, generally referred to as “Warburg effect” or “aerobic

glycolysis”, to produce ATP and metabolic intermediates (50).

Studies showed that although glycolysis produces ATP per

glucose molecule considerably less effectively than oxidative

phosphorylation, the production rate increases significantly

(51). Besides, this reprogramming of glucose metabolism

provides additional macromolecular precursors such as acetyl-

CoA, glycolytic intermediates and ribose which meet the needs

of fast growth and proliferation of cancer cells (52). Like other

malignancies, the aberrant cellular metabolism also occurs in

CML cells. The BCR-ABL oncoprotein can boost glucose uptake

and glycolysis and overexpress glucose transporter-1 (GLUT-1)

to influence metabolism (53). Furthermore, the PI3K/Akt/

mTOR pathway is considered to be responsible (54). Since the

introduction of the first BCR-ABL TKI, IM (Gleevec, previously

STI571), the effects of BCR-ABL TKIs on glucose metabolism in

tumor cells have been explored.

Using [1,2-13C2] glucose as the single tracer with biological

mass spectrometry, J Boren et al. demonstrated that (55) by

lowering hexokinase and glucose-6-phosphate 1-dehydrogenase

activity and changing pathway carbon flux of the pentose cycle

in K562 human myeloid blast cells, IM reduced the use of

glucose carbons for de novo nucleic acid and fatty acid

synthesis. In 2004, Gottschalk S et al. used magnetic resonance

spectroscopy to examine changes in endogenous metabolites,

energy status, and glucose metabolism of human BCR-ABL+

cells (CML-T1 and K562) and BCR-ABL- cells (HC-1) following

IM therapy (56). They found that the “Warburg effect” was

reversed in BCR-ABL+ cells at the appropriate therapeutic doses

of IM (0.1-1.0 mmol/L) by switching glucose metabolism from

anaerobic glycolysis to the mitochondrial Krebs cycle. In this

situation, BCR-ABL+ cells decreased the glucose uptake from

the media but the glucose metabolism in mitochondrial

increased, leading to elevated absolute concentrations of the

high energy phosphate nucleoside triphosphate (NTP).

Subsequently, Barnes K et al. investigated the function of

BCR-ABL-induced glucose transport regulation anomalies in

CML (9). This work showed that by upregulating the GLUT-1

glucose transporter’s expression on the cell surface, BCR-ABL-

expressing cells may accelerate the absorption of hexose.

Interestingly, IM treatment leads to a 90% internalization of
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the cell-surface GLUT-1 transporters, substantially decreasing

hexose uptake in BCR-ABL-expressing cells (57). These findings

suggested that reversing the aerobic glycolysis and inhibiting

glucose transport significantly contributes to IM’s anti-

tumor effects.

Pyruvate-Kinase (PK), as an enzyme, catalyzes the last stage

of glycolysis, converting phosphoenolpyruvate and ADP into

pyruvate and ATP (58). According to previous literature, the

Warburg effect is accomplished by regulating expression of the

embryonic M2 isozyme of PK (PKM2), rather than the M1

isozyme (PKM1) expressed in normal cells, through an

alternative splicing repressor polypyrimidine tract-binding

protein1 (PTBP1) (59, 60). A study suggested that IM inhibits

glycolysis through the inhibition of phosphorylation of BCR-

ABL and the down-regulation of miR-124/PTBP1/PKM2

signaling (61). Through downregulation of PTBP1, IM

changes PK isoforms from PKM2 to PKM1, leading to reversal

of the Warburg effect (61). Apart from this, Damaraju VL et al.

reported how TKIs reduce glucose uptake by evaluating the

interaction of TKIs with GLUT-1 in the human nasopharyngeal

carcinoma cell line (FaDu) and GIST-1 cells. They discovered

that [3H]2-deoxy-d-glucose ([3H]2-DG) and [3H]Fluoro-2-

deoxy-D-glucose (FDG) uptake were competitively suppressed

by IM and NIL, and that IM had reversible [3H] FDG uptake

inhibition whereas NIL did not (62). Additionally, molecular

modeling demonstrated that TKIs impair GLUT-1’s ability to

take up glucose by interacting with the glucose binding site via

hydrogen bonds and van der Waals interactions (62).

Intrinsic metabolic differences between IM sensitive and

resistant cell lines were also previously characterized. A study

showed that IM treatment in sensitive BCR-ABL positive cells

(K562-S, LAMA84-S) leaded to the reduction of glucose

absorption and lactate generation and the enhancement of

oxidative TCA cycling (53). On the other hand, the drug-

induced IM resistant cells (K562-r and LAMA84-r) displayed

a highly glycolytic metabolism with increased glucose absorption

and lactate generation. Additionally, in IM-resistant cells,

oxidative synthesis of RNA ribose from 13 C-glucose using

glucose-6-phosphate dehydrogenase was decreased, while the

non-oxidative transketolase pathway was boosted (53). In line

with the literature mentioned above (57), in IM-treated sensitive

cells, GLUT-1 moved from the plasma membrane to the

intracellular fraction leading to reduced glucose uptake, while

GLUT-1 remained at the plasma membrane in IM-resistant cells

(53). However, different from the finding in the drug-induced

IM resistant cells, Ko BW et al. reported that the KBM5-T315I

cells which acquired drug resistance resulting from the T315I

mutation have metabolically suppressive status compared to

KBM5 cells (IM-sensitive) (63). KBM5-T315I cells showed low

glycolytic activity, decreased fatty acid synthesis and reactive

oxygen species (ROS) generation potentially participating to the

reduced proliferative activity of KBM5-T315I cells. The

researchers came to the conclusion that the decreased
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expression of glycolysis-related genes and ROS levels might be

responsible for reduced growth ability of KBM5-T315I CML

(63). These biological and metabolic characteristics of CML cells

with different resistance mechanisms should be take into

account in future studies overcoming the IM resistance.

As indicated previously, glycolysis was extremely important

for B-ALL cells. T Liu et al. reported that 2-deoxyglucose (2-DG)

suppressed aerobic glycolysis, leading to the inhabitation of B-

ALL cell growth, the increasing of the pro-apoptotic protein Bim

and re-sensitization of B-ALL cells to the tyrosine kinase

inhibitor DAS in vivo (64). Apart from this, deletion of

GLUT-1 partially inhibits glucose uptake (64). Through

metabolic reprogramming, the decreased glucose transport

capacity was sufficient to decrease anabolism and promote

catabolism in B-ALL cells. As a result, GLUT1-deficient B-

ALL cells were unable to accumulate in vivo, and GLUT-1

depletion inhibited leukemia progression. These data suggested

that inhibition of aerobic glycolysis and glucose uptake by

GLUT-1 could be plausible adjuvant approaches for B-ALL

therapies. In another study, researchers found that TKI

treatment creates a new metabolic state in leukemic cells that

is highly sensitive to specific mitochondrial perturbations. As a

result, patients with BCR-ABL+ leukemia may respond better to

TKI when receiving adjuvant therapy with targeting

mitochondrial metabolism (65). Since TKI treatment changed

glucose metabolism in BCR -ABL+ cells from anaerobic

glycolysis to the mitochondrial tricarboxylic acid cycle, they

indicated that oligomycin A, a mitochondrial ATP synthase

inhibitor, greatly promotes TKI sensitivity in leukemia cells at

very low concentrations in vitro. In a mouse model, oligomycin

A enhanced the ability of TKI to eliminate BCR-ABL+ leukemia

cells (65). In spite of strong suppression of glycolysis, Shinohara

H et al . found that by upregulat ing carnit ine O-

palmitoyltransferase 1 (CPT1C), the rate-limiting fatty-acid

oxidation (FAO) enzyme, IM triggers compensatory FAO,

which enabled glucose-independent cell viability. AIC-47

suppresses CPT1C expression and directly inhibits the

metabolism of fatty acids and. Combined with AIC-47, IM

enhanced the attack on cancer energy metabolism, leading to

an increased cytotoxicity (61). Overall, these studies illustrate

that metabolic reprogramming after TKIs treatment could be a

potential therapeutic target.

In addition to BCR-ABL cells, the effects of BCR-ABL TKIs on

other cells were also investigated. Recent studies reported the

influences of IM and DAS on skeletal muscle cell metabolism (66,

67). Damaraju VL et al. showed 2-deoxy-D-glucose absorption

was suppressed by to almost 50% in C2C12 murine skeletal

muscle cells pre-incubated for 15 min with IM. Moreover, in a

skeletal muscle cell model, IM lowered energy generation and

mitochondrial function by inhibiting mitochondrial complex V

activity and nucleoside absorption. This may contribute to

tiredness, one of the most prevalent side effects of TKIs (66). In

addition to inhibiting glucose transport proteins and metabolic
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enzymes, IM also exerts antidiabetic effects by protecting against

b-cell death and ultimately increasing insulin production in a

mouse model (68). In CML patients, Fitter S. et al. found a 3-fold

increase in plasma adiponectin concentrations after three months

of IM treatment; adiponectin elevation enhanced glucolipid

metabolism, which explains why diabetes improved after IM

treatment (69).
Lipid metabolism

There are two mechanisms by which mammals acquire

lipids: de novo synthesis and direct exogenous uptake. The de

novo lipogenesis pathway is restricted to hepatocytes and

adipocytes in normal tissue; however, cancer cells can also

reactivate this pathway even with exogenous lipids (70). An

elevated of lipid uptake, storage and lipogenesis was reported in

a variety of cancers, contributing to rapid tumor growth (71, 72).

Research suggested that lipid metabolism in cancer cells is

regulated by PI3K/Akt/mTOR pathway (24). Sterol regulatory

element-binding protein 1c (SREBP-1c), a transcription factor

that promotes lipid synthesis de novo, is controlled by mTORC1

(70, 73). In spite of lipids being widely used as cancer

biomarkers, little is known about TKIs’ impact on lipid

metabolism and pathways.

Previous studies have suggested that exposure to the first-

generation TKI (IM) may lead to a reduction in cholesterol and

triglycerides in people and animal models, as well as a better

serum lipid profile, while the second-generation TKIs may cause

a worse metabolic profile (74–77). A cohort study researched

how first- and second-generation TKIs affected the patients with

CML’s glucose and lipid metabolism. They discovered that

compared to the IM and DAS groups, the NIL group had

substantially higher fasting plasma glucose, insulin, C-peptide,

insulin resistance, total cholesterol, and low-density lipoprotein

(LDL) cholesterol levels (76). In a translational mouse model,

plasma cholesterol and atherosclerosis areas were reduced by IM

and ponatinib, while they were not affected by NIL. On the other

hand, IM showed a beneficial cardiovascular risk profile

compared to NIL and ponatinib (74).

It is not entirely clear how IM reduces lipid levels. The PDGF

receptor (PDGFR) inhibitory action of IM has been proposed as

a potential reason. The phosphorylation of LDL receptor-related

protein (76) may be facilitated by excessive PDGFR expression,

leading to atherosclerosis brought on by cholesterol. However,

NIL, which also inhibits PDGFR, was found to significantly

increase lipid levels in patients, rendering this explanation

unsatisfactory (76). Ellis M et al. explored the possible

biological mechanisms behind the lipid-lowering effects of IM

in CML. Results indicated that two genes, apobec1 that inhibit

lipid synthesis and LDL-R that promote clearance of circulating

LDL, are significantly induced by IM. In addition, IM induced

HMG-coAR expression, which regulates hepatic cholesterol
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synthesis (78). To elucidate the effects and mechanisms of TKIs

on lipid metabolism, additional studies will be needed.

Studies on BCR-ABL TKIs and lipid metabolism are limited

so far. The aforementioned study by Gottschalk et al. reported

that phosphocholine concentrations, which are known to be

raised in all rapidly proliferating malignant cells, were

significantly reduced in IM-treated BCR-ABL+ cells (56).

Similarly, subsequent study, which assessed a global metabolic

profile including lipid metabolism of human leukemia cell after

incubation with IM, showed that IM-treated K562 cells had a

decreased concentrations of phosphocholine (PC) and

phosphatidylcholine (PtdCho) (79). Following the first week of

IM treatment, this reduction was significant and even increased

after 2 -4 weeks. Polyunsaturated fatty acids (PUFAs) signal

intensity increased after 2 and 4 weeks of treatment with

increasing apoptosis rate. Furthermore, the amount of

methylene/methyl (CH2/CH3) resonances of fatty-acid chains

also enhanced (31). Previous studies have reported the decrease

in PtdCho concentration with advancing apoptosis stages (80).

Additionally, the accumulation of PUFAs as well as increased

CH2 and CH3 resonances of free fatty acids is two other

characteristics associated with cell death (81). Collectively,

these lipid metabolic events following TKI treatment in BCR-

ABL+ cells showed pathways linked to a continuous process of

cell death.
Amino acid metabolism

Amino acids are basic units for protein synthesis in the

organism and can divide into two groups: essential amino acids

and non-essential ones. Essential amino acids cannot be

synthesized by humans and can only be provided by food

sources (82), including phenylalanine, valine, threonine,

tryptophan, methionine, leucine, isoleucine, lysine and histidine

(can be synthesized in adults). Non-essential amino acids include

arginine, cysteine, glycine, glutamine, proline, tyrosine, alanine,

aspartic acid, asparagine, glutamate and serine which can be

synthesized in the body. After malignant transformation, tumor

cells have an increased demand for amino acids, which can be

utilized as intermediates in many metabolic pathways (83).

According to studies in recent years, under genotoxic, oxidative,

and nutritional stress, amino acids can act as metabolic regulators

to promote cancer cell proliferation and survival (84, 85). Among

them, studies on glutamine, serine, glycine and branched-chain

amino acids (BCAAs) have drawn more attention.
Glutamine

As mentioned above, TKIs can efficiently hamper glucose

metabolism in Ph+ leukemia. But, due to compensatory

metabolic pathway activation, glycolysis inhibition alone
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frequently falls short of eliminating cells (86, 87). Glutamine is

the most prevalent amino acid in human plasma and the second

only to glucose in the metabolism of tumor cells (88). This

metabolic alteration is frequently observed in cancer (89).

Glutamine may provide its nitrogen and carbon to a variety of

mechanisms in cancer cells, including energy production,

macromolecular synthesis, and signal transmission (90).

Through the transporters (e.g., SLC1A5 or ASCT2), glutamine

is brought into the cytoplasm where it is converted to glutamate

by the enzyme glutaminase(GLS) (91). An earlier work shown that

human B cell Burkitt lymphoma cell line P493 cells may use

glutamine to carry out glucose-independent mitochondrial

oxidative phosphorylation in the presence of low oxygen levels

(92). Combined transcriptome and metabolome profiling, Pallavi

Sontakke et al. found that (93), despite the prominent glycolysis,

BCR-ABL positive cells also undertake glutaminolysis, which was

demonstrated by elevated intracellular glutamine levels both in

normoxia and hypoxia. In agreement with these findings, they

also discovered that both protein and RNA levels of the glutamine

importer SLC1A5 increased in BCR-ABL-expressing cells. Given

this circumstance, glutamine may play a significant function as an

additional source of carbon in the replenishment of tricarboxylic

acid cycle (TCA) metabolite. Other researches have demonstrated

that this is indeed the case. Anne Trinh et al. found that, after the

treatment of IM, survived CML cells can continue to consume

glutamine to create alphaKetoGlutarate, a TCA intermediate, that

keeps the state of high mitochondrial oxidative metabolism (94).

After that, they found that the combination of Kidrolase (an FDA-

approved drug of L-asparaginase) and IM can deplete extracellular

glutamine and therefore restrict mitochondrial metabolism.

Finally, they discovered that this combination stimulates the

intrinsic apoptotic pathway, effectively killing CML cells.

Furthermore, TKIs are unable to eradicate the leukemia stem

cells (LSCs) and/or progenitor cells that could cause relapses (95).

In order to kill LSCs, Anne Trinh et al. also provided evidence that

both glycolysis and glutamine-dependent mitochondrial

metabolism required to be impaired (94). To prevent recurrence

and achieve a longer OS of children, it may be an interesting

therapeutic approach to eradicate LSCs by combining TKI and

mitochondrial inhibitors.
Serine and glycine metabolism

Serine is well known as the one-carbon source in the

methionine cycle and folate cycle and contributes to nucleotide

synthesis, methylation reactions, and production of NADPH, an

antioxidant defense mechanism (96, 97). Serine and glycine can be

imported from the extracellular environment produced by the de

novo serine synthesis pathway (SSP) (97). The SSP, starting from

the glycolytic metabolite 3-phosphoglycerate (3-PG), is composed

of three steps. First, phosphoglycerate dehydrogenase (PHGDH)

converts 3-PG into 3-phosphohydroxypyruvate; then,
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phosphoserine-amino transferase (PSAT-1) converts 3-

phosphohydroxypyruvate into phosphoserine ; last ,

phosphoserine phosphatase (PSPH) eventually catalyzing the

dephosphorylation of phosphoserine into serine (98). As

mentioned above, as a key metabolite to support cell

proliferation, increasing serine supply is required to sustain

cancer progression (99). In various cancers, to meet the large

serine demand for survival, the three SSP enzymes (PHGDH,

PSAT, and PSPH) are all highly expressed (100). In addition,

recent work on cancer metabolomics has shown that unexpected

increased reliance on glycine metabolism was discovered in rapid

proliferation cancer cells and this phenotype that was not

observed in rapidly proliferating nontransformed cells (101).

Interestingly, an animal experiment found that restriction of

serine and glycine intake can inhibit tumor growth and extend

the survival time of tumor-bearing mice (102). Hilal Taymaz-

Nikerel et al. reported some new multi-omics findings in yeast on

the mechanism of IM, using the model organism Saccharomyces

cerevisiae (103). They performed the whole-genome analysis of

the transcriptional response of yeast cells via flux-balance analysis

(FBA) and modular analysis of protein/protein interaction

network which consist of proteins encoded by differentially

expressed genes (DEGs). FBA indicated that IM alters multiple

metabolic pathways by decreasing and increasing the fluxes of

reactions and the fluxes related to metabolic pathway of glycine

and serine were increased. However, through proteomics and

metabolomics profiling of IM-resistant CML cells (ImaR), a

previous study showed that serine-glycine-one-carbon

metabolism and proline synthesis were enhanced in KU812

ImaR cells (104). In summary, IM can indeed suppress the

proliferation of CML cells and induce the increasing of

metabolic pathway of glycine and serine in parallel. Based on

these, could we then assume that over-represented glycine and

serine might counteract the inhibitory effect of IM and promote

CML cell survival and chemoresistance? If so, suppressing the

metabolism of glycine and serine could possibly serve as a novel

therapeutic target.
BCAAs

For mammals, the BCAAs are necessary amino acids,

including leucine, isoleucine, and valine. In mammalian

proteins, about 63% of the hydrophobic amino acids are

BCAAs (105) and may only be attained from food intake and

recycled scavenged protein (106). After being catabolized by

enzymes, intracellular BCAAs can provide nitrogen and carbon

groups to take part in the synthesis of biomass, energy

production, nutritional signaling, and epigenetic regulation

(107). In humans, branched-chain amino transferases

(BCATs) comprise two compartment-specific BCAA

transaminases (BCAT1 and BCAT2) and can produce

glutamate and the corresponding branched-chain a-ketoacids
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(BCKAs) (108, 109). When the transamination and transfer of

nitrogen to a-ketoglutarate (a-KG) by BCATs initiate,

catabolism of BCAAs begins. BCAAs and BCKAs often coexist

in a balanced state, however this is not the case with

malignancies. By fluorescent markers unique to each amino

acid, Hattori A et al. measured the amino acid contents in

CML-initiating cells isolated from a BC-CML mouse model.

They discovered that BCAA levels were significantly higher in

these cells (110). They later found that increased BCAT1 (or

cBCAT), which may catalyze the conversion of a BCKA plus

glutamic acid (Glu) into a BCAA and a -KG, may be a factor in

this heightened BCAA metabolism. Additionally, they

discovered that BC-CML-initiating cells had higher levels of

BCAT1 mRNA, and that transduction of shRNA targeting

BCAT1 mRNA reduced intracellular BCAA levels, which

impeded the ability to form colonies in vitro. Through multi-

omic investigations in yeast, Hilal Taymaz-Nikerel et al. found

that (103) after IM treatment, the fluxes of the processes

involved in the production of various amino acids, such as

isoleucine, lysine, histidine, threonine, and valine, were

drastically downregulated. In addition, Miriam G. Contreras

Mostazo et al. indicated that KU812 ImaR cells might consume

more BCAAs than parental cells in normoxia (104). According

to these findings, inhibiting BCAA metabolism may be a

promising therapeutic strategy for reducing ImaR cells.
Others

Methionine and homocysteine, two sulfur-containing amino

acids, are the primary precursors of glutathione, a tripeptide that

lowers reactive oxygen species (ROS) and upholds redox

equilibrium (111). Additionally, Hilal Taymaz-Nikerel et al.

discovered that (103) following IM therapy, the reaction fluxes

through the production of methionine and cysteine, as well as the

absorption of sulfate, were determined to be drastically decreased.
Nucleotide metabolism

In all areas of life, nucleotide metabolism is a critical activity.

In order to enable cell proliferation (112), nucleotides, a type of

biological information macromolecule, are primarily used as the

raw materials for the synthesis of nucleic acids. Nucleotides

comprise of both purine (adenine and guanine) and pyrimidine

(cytidine, uridine and thymidine). Therefore, inhibitors of

purine or pyrimidine synthesis have also been applied in

hematological malignancies (113).

Purines and pyrimidines get synthesized separately but they

have one same thing: 5-phosphoribose-1-pyrophosphate

(PRPP), which is a donor of phosphate and ribose sugar and is

an active form of ribose generated from ribose 5-phosphate

(Figure 1). In purine biosynthesis, the primary source of
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nucleotides in vivo is de novo synthesis, and negative feedback

mostly controls the rate of nucleotide synthesis (114). In the

process of making purines, PRPP is transformed into inosine

monophosphate (IMP), which needs 6 ATP, glutamine, glycine,

and aspartate. Then, IMP can be converted into guanosine

monophosphate (GMP) or adenosine monophosphate (AMP)

through different enzymes. The purine nucleotide salvage

mechanism is easier and uses less energy than the de novo

synthesis method (115, 116). However, since the lack of the

enzyme system which can synthesize purine nucleotides from

scratch, the brain and bone marrow can only conduct the salvage

approach to generate purines (117, 118). In addition, previous

studies have shown that the de novo nucleotide synthesis

pathway is also usually found in proliferating cells, including

immune cells and cancer cells (119, 120). An earlier study (121)
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revealed that a higher level of de novo purine synthesis was

identified in the leukocytes and plasma of newly diagnosed CML

patient due to the enhancement of 5-aminoimidazole-4-

carboxilic acid ribonucleoside (CAIR). They discovered that

the majority of the purine levels had stabilized toward the

control values after IM and NIL therapy. However, adenosine

5’-monophosphate, guanine, guanosine, guanosine 5’-

monophosphate, and inosine 5’-monophosphate did not

change toward the control values in the patients receiving DAS.

Pyrimidine synthesis is also split into de novo synthesis and

salvage pathways, just like purine biosynthesis (122). In addition

to PRPP, pyrimidine biosynthesis also needs aspartate,

glutamine, bicarbonate, and 2 ATP (123). Leukocytes from

newly diagnosed patients had elevated levels of pyrimidine

metabolism, particularly cytosine, cytidine 5’-monophosphate,

cytidine 2’,3’-cyclic phosphate, and uridine 5’-monophosphate

(121). Most of these metabolites returned to control levels after

TKI therapy. But, some pyrimidine metabolites (cytidine,

cytidine 5’-triphosphate, and uridine) were still present at

similar levels in the patients receiving DAS.

By multi-omics, Taymaz-Nikerel et al. revealed that, after IM

treatment, the fluxes of the processes involved in the production

of purine and pyrimidine nucleotides were dramatically

downregulated in yeast (103).
Immunometabolism

Historically, abnormal energy metabolism has been known as

a hallmark of cancer (124). Recent research has revealed that

immune cells undergo metabolic reprogramming during the

activation and differentiation processes, giving rise to the notion

of “immunometabolism” (125). The field of immunometabolism

is about how metabolic processes affect immune cell functions in

physiological and pathological situations (126). In cancer cells,

complex and dynamic metabolic reprogramming can make

themselves to accommodate tumor microenvironment (TME),

which can restrict the biosynthetic and bioenergetic demands for

growth (127). Additionally, cancer cell metabolism not only

aggressively competes for essential resources but also produces

metabolic byproducts that affect immune cell activation, fitness,

and effector function in a direct or indirect ways (128–131).

Instead of inhibiting or killing cancer cells, these defective

immune cells even may become tumor-supporting cells to speed

up the spread and invasion of cancer (125).

In recent years, the way to manage tumor patients has

significantly changed as a result of tumor immunotherapy

(132). During the treatment, TKIs do not only target BCR-

ABL1 but also inhibit additional targets such c-KIT, TEC, SRC,

FLT3, Lck, and mitogen-activated kinases (MAPK) (133). This

“off-target” effect can alter immune responses, both harmful and

beneficial. Lisa Christiansson et al. found that (134) IM and DAS

can both lower immune escape mechanisms by reducing the
FIGURE 1

The de novo pyrimidine and purine synthesis pathways. Yellow
background, the de novo pyrimidine synthesis pathway; green
background, the de novo purine synthesis pathway Purines and
pyrimidines get synthesized separately but they have one same
thing. PRPP Gl. Glutamine, CSP2 Carbamoyl-phosphate
synthetase 2: Glu, Glutamate: CP. Carbamoyl phosphate; ATCase,
Aspartate transcarbamylase; CA, N-carbamoyl-L-aspartate
DHOase. Dihydroorotase. DHOA. Ddihydroorotate, DHODH.
Dihydroorotate dehydrogenase; OMP Orotidine 5'-
monophosphate: UMPS. Undine monophosphate synthetase:
UMP. Uridine monophosphate: Rib-5-p. Ribose-5-phosphate:
PRPS. Phosphoribosylpyrophosphate synthetase; PRPP 5-
phosphonbosyl-1-pyrophosphate: PPAT.
Phosphoribosylpyrophosphate amidotransferase; PRA,
Phosphoribosylamine, Gly. Glysine, GART Glycinamide
ribonucleotide formyltransferase; GAR, Glycinamide
ribonucleotide, THF. Tetrahydrofolate; FGAR, N-
fotuvlelycinamide boucleotide, PEAS,
Phosphoribosylformylglycinamidine synthase; FGAMR, N-
formylglycinamidme ribonucleotide, AIR, Annnoimidazole
ribonucleotide: PAICS, Phosphoribosylaminoimidazole
carboxylase, phosphoribosylaminoimidazole succinocarboxamide
synthetase: CAIR. Carboxyaminoimidazole nbonucleotide; Asp.
Aspartate: SAICAR, Nsuccinocarboxamide-5-aminoimidazole
ribonucleotide, ADSL. Adenylosuccinate lyase: AICAR 5-
aminoimidazole-4-carboxamide ribonuckotide ATIC 5-
aminoimidazole-4-carboxamide rbouucleotide transfonuylase
FAICAR 5-formamido-4-imidazolecarboxamide ribonucleotide,
IMP. Inosine-5-monophosphate: PP. Pyrophosphate: ATP.
Adenosine-S-triphosphate: ADP Adenosine 5'-diphosphate; AMP
Adenosine 5'-monophosphate; Pi. Phosphate, HCO−

3 . Hydrogen
carbonic acid, CO., Carbon dioxide.
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number of myeloid suppressor cells and the inhibitory factors

arginase 1 (Arg1), Myeloperoxidase (MPO), and IL-10.

According to researches, the proportion of Myeloid-derived

suppressor cells (MDSC) and the blood concentrations of

Arg1 and inducible nitric oxide synthase (iNOS) were both

considerably higher in CML patients at diagnosis and

significantly lower after TKI therapy (135). ZIYUAN LU et al.

found that (136) following treatment with a TKI (IM, DAS or

NIL), Total T cells, Tregs (whose decline became more

pronounced over time), CD4+ T cells, and CD8+ T cells all

reduced to varying degrees in CML patients. They also revealed

that IM and DAS may be more effective than NIL on decreasing

the number and function of Tregs. Silke Appel et al. (137) reveals

that IM inhibits dendritic cell (DC) differentiation and function

via Akt and nuclear factor-kB signal transduction. After then,

Daniela Dorfel et al. (138) discovered that both IM and NIL

considerably and similarly hampered monocyte differentiation

into DCs, with only a partial recovery after TKI discontinuation.

Taking into account the long-term side effect and the

cumulative cost of TKI therapy in children, it is clear that it is

important to avoid lifelong treatment with TKIs. As mentioned

above, LSCs have high correlations with tumor recurrence and it

is crucial to eliminate LSCs. One potential solution is to stop

after a certain period of deep molecular remission and restore

normal immune functions, especially the NK cells (139–142).

Previous studies indicated that patients with stable NK cell

counts accompanied by higher cytotoxicity and increased

killing capacity are more inclined to get sustained treatment-

free survival (142, 143). Previous study showed that following

TKI treatment, the proportion of effector NK cells were

increased (135). The results indicate that the number and

killing capacity of NK cells may be utilized to further assess

the risk of TKIs discontinuation. Geoffrey D. Clapp et al.

suggested that (144) carefully timed vaccines may stimulate

the patient’s immune system to drive the residue LSCs to

extinction. In recent trials of Ph+ ALL, Schultz KR et al. (145)

used limited duration, more intensive chemotherapy in

combination with TKIs for children and adolescents and had

an initial observation of substantially good outcomes. It may be

another option to eliminate the CML LSCs.
TKI adverse effects in children

Due to off-target effects, IM can cause substantial growth

abnormalities in children with CML (146–148) by a direct effect

on the growth plate (149), acquired growth hormone deficiency

and disturbing the GH : IGF-1 axis (150). Second- and third-

generation TKIs in children have less clinical data, but DAS

appears to have a similar impact on growth (151).

TKIs’ teratogenic potential makes them potentially harmful

to pregnant women as well (152). Associated studies showed that

(153) female partners of male patients are not at risk for
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pregnancy-related complications and TKI should be

continued. For female patients, contraception should be

planned during TKI, so when in major molecular remission

for more than two years, pregnancy can be planned. In addition,

NIL appears to be the safest (153).

As recommendations for monitoring and supportive care in

children with CML receiving TKI therapy, height, weight,

gonadotropins, sex steroids, thyroid function (TSH, free T4),

echocardiogram and electrocardiogram be examined

routinely (14).
Summary

Overall, TKI is obviously regarded to be the most effective

kinase inhibitor for CML treatment nowadays and the role of

TKI in Ph+ ALL treatment has also attracted increased attention.

Recently, an increasing number of studies have demonstrated

that TKIs can affect the normal metabolism of Ph+ leukemia

cells to achieve therapeutic purposes. But in children, there are

still many difficulties to surmount, such as the off-target effects,

drug tolerance, disease recurrence, adverse effects, cumulative

cost. In this study, we perform a more detailed analysis about

cellular metabolism alterations after TKI therapy, but further

research is needed because so many interested targets can be

combined with TKI therapy to provide great benefits to Ph+

leukemia children.
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