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Development and validation of a
radiogenomics model to predict
axillary lymph node metastasis
in breast cancer integrating MRI
with transcriptome data:
A multicohort study

Huifang Chen †, Xiaosong Lan †, Tao Yu, Lan Li, Sun Tang,
Shuling Liu, Fujie Jiang, Lu Wang, Yao Huang, Ying Cao,
Wei Wang, Xiaoxia Wang* and Jiuquan Zhang*

Department of Radiology, Chongqing University Cancer Hospital, Chongqing, China
Introduction: To develop and validate a radiogenomics model for predicting

axillary lymph node metastasis (ALNM) in breast cancer compared to a

genomics and radiomics model.

Methods: This retrospective study integrated transcriptomic data from The

Cancer Genome Atlas with matched MRI data from The Cancer Imaging

Archive for the same set of 111 patients with breast cancer, which were used

as the training and testing groups. Fifteen patients from one hospital were

enrolled as the external validation group. Radiomics features were extracted

from dynamic contrast-enhanced (DCE)-MRI of breast cancer, and genomics

features were derived from differentially expressed gene analysis of

transcriptome data. Boruta was used for genomics and radiomics data

dimension reduction and feature selection. Logistic regression was applied to

develop genomics, radiomics, and radiogenomics models to predict ALNM.

The performance of the three models was assessed by receiver operating

characteristic curves and compared by the Delong test.

Results: The genomics model was established by nine genomics features, and

the radiomics model was established by three radiomics features. The two

models showed good discrimination performance in predicting ALNM in breast

cancer, with areas under the curves (AUCs) of 0.80, 0.67, and 0.52 for the

genomics model and 0.72, 0.68, and 0.71 for the radiomics model in the

training, testing and external validation groups, respectively. The

radiogenomics model integrated with five genomics features and three
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radiomics features had a better performance, with AUCs of 0.84, 0.75, and 0.82

in the three groups, respectively, which was higher than the AUC of the

radiomics model in the training group and the genomics model in the

external validation group (both P < 0.05).

Conclusion: The radiogenomics model combining radiomics features and

genomics features improved the performance to predict ALNM in breast

cancer.
KEYWORDS

radiogenomics, lymph node metastasis, breast cancer, genomics, radiomics
Introduction
Breast cancer is the most commonly diagnosed cancer

among women worldwide and is the second leading cause of

cancer-related death (1). Axillary lymph nodes (ALNs) are an

important path for lymph node metastasis (LNM) in breast

cancer. Axillary lymph node metastasis (ALNM) is an important

factor affecting the treatment and prognosis of breast cancer

patients. Thus, accurate identification of ALN involvement in

patients with breast cancer is essential for prognosis and

therapeutic decision-making (2). Sentinel lymph node (SLN)

biopsy is now considered as the reference standard for ALN

status staging in patients with clinically negative lymph nodes

(3). Compared with ALN dissection, it significantly reduces

complications such as arm numbness, upper extremity edema,

nerve damage, etc. (4, 5). However, the procedure is still invasive.

Therefore, a noninvasive and reliable assessment of ALN status

pretreatment is critical for clinical decision-making.

Magnetic resonance imaging (MRI) is one of the important

auxiliary examination methods widely used for breast cancer

patients before surgery due to its high sensitivity for evaluating

tumor extension, intraductal spread, and the presence of

multicentric or multifocal lesions (6). Radiomics based on

MRI as a noninvasive technology has emerged as a potential

method in precision medicine for breast cancer (7, 8). Recently,

radiomics has been widely used to predict LNM in breast cancer

and has demonstrated excellent predictive performance (9–11).

Radiomics focuses on the systematic characterization of the

aggressiveness of breast cancer by effectively extracting and

analyzing massive image data. However, radiomics may lack

the ability of tumor characterization in microstructural features.

Previous efforts have been made to explore the identified

genomics features, which provide a powerful tool for identifying

breast cancer patients with distant recurrence and might provide

a better method for individual risk assessment in patients with

lymph node-negative breast cancer (12). Other studies revealed
02
that a miRNA-dependent model could predict LNM in cervical

cancer patients (13), and an epigenetic model could predict

axillary staging with ER-positive early-stage breast cancer

patients (14). The greatest limitation to deploying genome

sequencing for clinical application is that tumor spatial

heterogeneity limits genomics tissues, and genomics only

reflect a microcosm of the genetic code.

Radiogenomics is a rapidly developing method to integrate

genomics data with radiomics data (15). Radiogenomics can

provide voxel-by-voxel information from genomics to tumor

imaging and thereby guide tailored therapy and help to improve

our understanding of tumor biology (15). In the earliest

radiogenomics study of breast cancer, Yamamoto et al.

explored the relationship between MRI features and gene

expression (16). A follow-up study that included preoperative

DCE-MRI explored the multiscale relationships between DCE-

MRI phenotypes, metastasis, and long noncoding RNA

expression (17). These results mainly explored the

relationships between imaging and genomics. Furthermore,

studies have reported that radiogenomics models have a

higher prediction performance than genomics-only models in

predicting LNM or radiomics-only models in predicting

pathologic complete response in triple-negative breast cancer

(18, 19). One possible reason is that radiogenomics can

simultaneously provide information regarding macroscopic

and microscopic features of the tumor tissue.

Hence, the purpose of this study was to develop and validate

a radiogenomics model for the prediction of ALNM in breast

cancer compared to a genomics model and a radiomics model.
Materials and methods

Participant characteristics

This study was conducted with patients retrospectively

enrolled from a public database and our hospital. The public
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database was originally submitted to The Cancer Genome Atlas

(TCGA) and the Cancer Imaging Archive (TCIA) by the

contributing institutions under an Institutional Review Board-

approved protocol. The second part of the study was approved

by the ethics committee of our hospital, and the requirement for

individual consent for this retrospective analysis was waived

between January 2021 and December 2021. Clinical, breast MRI,

and transcriptome data for all patients from TCGA and TCIA,

and our hospital were integrated and analyzed. A general

overview of the analysis protocol is shown in Figure 1.

The inclusion criteria were as follows: (i) patients had

histologically confirmed unilateral primary breast cancer; (ii)

patients who underwent breast surgery without neoadjuvant

chemotherapy, and sentinel lymph node biopsy or ALN

dissection with curative intent; (iii) patients with suspected

positive ALN by clinical and/or imaging examinations and

plan to receive neoadjuvant therapy, lymph node status was

determined by ultrasound-guided core needle biopsy before

neoadjuvant therapy (20, 21); (iv) availability of clinical data

(age), T staging, complete pathological data for ALN and

molecular subtype; (v) breast DCE-MRI was conducted before

anti-tumor treatment and core needle biopsy for evaluating

tumor extension, intraductal spread, and the presence of

multicentric or multifocal lesions; and (vi) availability of

transcriptome data. The exclusion criteria were as follows: (i)
Frontiers in Oncology 03
insufficient MRI quality to obtain measurements and (ii)

patients with multifocal lesions. (iii) patients with negative

ALN by clinical and/or imaging examinations and plan to

receive neoadjuvant therapy. Details are provided in Figure 2.
Genomics data analysis

Fifteen patients with breast cancer from our hospital were

used for the external validation group. Postoperative tumor

samples were extracted from the primary tumor sites, and

snap-frozen breast cancer samples were collected by the

Tumor Samples and Genetic Information Resource Library.

Next, the sample from the hospital was processed using RNA

extraction and sequencing. Total RNA was extracted from tissue

samples with TRIzol reagent (Invitrogen, Carlsbad, CA, USA).

RNA purity was monitored on 1% agarose gel. Then, cDNA was

synthesized from total RNA using the PrimeScript RT reagent

Kit with gDNA Eraser (TaKaRa, RR047A). Then, all patients’

transcriptomic data were analyzed for differentially expressed

genes (DEGs). The DEGs between the groups with and without

ALNM were screened using DESeq (http://bioconductor.org/

packages/release/bioc/html/DESeq.html) to detect DEGs with

gene symbol annotation with thresholds of P < 0.05 and |fold

change| > 2.
FIGURE 1

Framework overview.
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DCE-MRI data acquisition

The public MRI data of breast cancer were downloaded from

TCIA. The breast cancer MRI was performed at our hospital

using a commercially available 1.5-T system (Philips Ingenia, the

Netherlands) with an eight-channel breast array coil. Routine

precontrast MRI included T1-weighted imaging, fat-suppressed

T2-weighted imaging, and diffusion-weighted imaging. The

gadolinium contrast agent (Hengrui, Jiangsu, China) was

injected at a rate of 2 mL/s for a dose of 0.1 mmol/kg,

followed by a 20 mL saline flush at a rate of 2 mL/s. One

precontrast phase image and seven postcontrast phase images

were acquired using the axial e-THRIVE polyphase sequence

with the following parameters: TR/TE = 5.1/2.5 ms; matrix = 252

× 348; flip angle = 10°; pixel size = 1 × 1 mm; and slice thickness

= 2 mm.
Radiomics feature extraction

The regions of interest (ROIs) were delineated manually in

each slice of the T1+C data (the peak-enhanced phase of the

multiphase contrast-enhanced MRI selected according to the

time-intensity curve) by excluding the air, necrosis, and

calcification areas via the Dr. Wise Multimodal Research

Platform (https://keyan.deepwise.com,V1.6.3) (Beijing

Deepwise & League of PHD Technology Co., Ltd., Beijing,

China). Each DCE-MRI case was reviewed by two experienced

radiologists (XXW and LL with 9 and 8 years of experience,

respectively). After manual segmentation, consistency intraclass
Frontiers in Oncology 04
correlation coefficient (ICC) (22) analysis was performed to

measure the features’ observer repeatability. ICC scores greater

than 0.8 are generally considered to indicate good repeatability.

We standardized the image processing procedure according to

the image biomarker standardization initiative reference manual

(23). Next, 1651 radiomics features were extracted from the

normalized image using Pyradiomics (http://www.radiomics.io/

pyradiomics.html). Then, they were normalized with Z scores to

obtain a standard normal distribution of image intensities. The

radiomics features were composed of the following eight types of

features: first-order statistics, shape-based (3D), shape-based

(2D), gray level cooccurrence matrix (GLCM), gray level run

length matrix (GLRLM), gray level size zone matrix (GLSZM),

neighboring gray-tone difference matrix (NGTDM), gray level

dependence matrix (GLDM). All of these features have generally

been used in previous radiomics studies (24, 25).
Genomics and radiomics
feature selection

We used the Boruta method (R3.6.1 with Boruta version

5.2.0) from a coarse to fine feature reduction strategy to reduce

both genomics and radiomics features (24). It was divided into

the two steps described below. (i) Univariate analysis was

performed using Student’s t test or the Mann–Whitney U test

to compare genomics and radiomics features between the groups

with and without LNM. All features were ranked in ascending

order according to the P value, and the top 5% of features were

retained for further analysis. (ii) Spearman correlation analysis

was used to eliminate redundant features. All genomics and
FIGURE 2

Patient recruitment workflow. DCE, dynamic contrast enhanced; TCGA, The Cancer Genome Atlas; TCIA, The Cancer Imaging Archive; ALN,
axillary lymph node.
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radiomics features with correlation coefficients > 0.85 were

detected, and the features with lower P values were retained.

Then, the selected features were used for further model

construction and validation.
Model construction and validation

Patients from the TCIA-TCGA were randomly divided into

training and testing group at a ratio of 3:1, and 15 patients from

our hospital were enrolled as the external validation group.

Logistic regression analysis (Python3.7 with sklearn version

1.1.2) was used to construct radiomics, genomics and

radiogenomics models for predicting ALN status. The

radiogenomics model was conducted through dimensionality

reduction by integrating the features of the radiomics model and

the features of the genomics model. All models were trained

based on TCGA datasets, and fivefold cross validation was used

to determine the parameters of the logistic regression models.

We evaluated the prediction performance of the radiomics,

genomics and radiogenomics models in the training, testing
Frontiers in Oncology 05
and external validation groups by constructing receiver

operating characteristic (ROC) curves and calculating areas

under the curves (AUCs). Decision curve analysis was applied

to estimate the clinical utility of the three models. In addition, a

calibration curve was generated to evaluate the consistency

between the predicted value and the true value.
Statistical analysis

Statistical analyses were performed by commercially

available statistical software (SPSS software, version 25.0;

Armonk, US). Descriptive statistics were summarized as the

means ± standard deviations. Categorical variables were

expressed as numbers. Continuous clinical variables were

compared using Student’s t test or the Mann–Whitney U test.

For categorical variables, chi-square tests were used to test

differences between groups. The performances of the

radiomics model, genomics model and radiogenomics model

were compared using the Delong test. For all tests, P < 0.05 was

considered as statistically significant.
TABLE 1 The clinical characteristics of patients in the training, testing and external validation groups.

Characteristics Training group (n=84) Testing group (n=27) External validation group (n=15) P value

Age, mean ± SD, years (range)
53.39 ± 11.44 years
(range, 29~80 years)

55.96± 10.56 years
(range, 31~82 years)

50.53 ± 7.24 years
(range, 42~65years)

0.91

Clinical stage 0.00

I 16 7 3

II 57 17 7

III 11 3 5

T stage 0.00

T1 33 12 4

T2 45 14 10

T3 6 1 1

Axillary lymph node status 0.92

Positive 40 13 8

Negative 44 14 7

Molecular subtype 0.00

Luminal A 52 20 3

Luminal B 11 3 8

HER2-enriched 6 1 4

Basel-like 15 3 0

SD, standard deviation; HER2, human epidermal growth factor receptor 2.
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Results

Baseline characteristics

The baseline characteristics in the training, testing, and

external validation group are presented in Table 1. A total of

126 patients with breast cancer from one hospital and public

database were enrolled in the study. The training group (53.39 ±

11.44 years) included 84 patients, and the testing group (55.96 ±

10.56 years) included 27 patients from the TCGA and TCIA

datasets. The external validation group (50.53 ± 7.24 years)

included 15 patients who were from our hospital. There were no

significant differences in age or LNM among the three groups

(P = 0.91 and 0.92).
Development and validation of the
genomics model

For differential gene expression analysis, 136 DEGs were

found between patients with and without ALNM (Figure S1). As

shown in Figure S1A, expression levels of 94 genes were

increased and 42 genes were decreased between patients with

and without ALNM. Heatmap representation of DEGs revealed

a similarity between patients with and without ALNM (Figure

S1B). Then, 9 genomics features were selected through Boruta

analysis (Figure 3A). The 9 genomics features were used to

develop the genomics model for predicting ALNM in breast

cancer. The AUCs of the training, testing, and external

validation group were 0.80, 0.67 and 0.52, respectively

(Figure 4A). The AUC and corresponding sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV) values of the genomics model are

displayed in detail in Table 2. The calibration curves for the
Frontiers in Oncology 06
probability of the genomics model for ALNM in the training

group, testing group and external validation group are shown in

Figures S2A–C.
Development and validation of the
radiomics model

A total of 1651 features were extracted from DCE-MRI from

every patient. After the reduction by Boruta (Figure 3B), 3

radiomics features were used to construct and validate the

radiomics model. The AUCs of the prediction performance of

ALNM in breast cancer of the radiomics in the training and

testing group were 0.72 and 0.68, respectively (Figure 4B). In

addition, the performance of the radiomics model was validated

in an independent external validation group, and the AUC of the

validation group was 0.71. The AUC and corresponding

sensitivity, specificity, PPV and NPV values of the radiomics

model are displayed in detail in Table 2. The calibration curves

for the probability of the radiomics model for ALNM in the

training group, testing group and external validation group are

shown in Figures S2D–F.
Development and validation of the
radiogenomics model

After stepwise logistic regression with both direction, 5

genomics features and 3 radiomics features were finally

selected to develop a radiogenomics model. We performed

correlation analysis between the 3 radiomics and 5 genomics

features, as shown in Table S1. The results showed that the

correlations between the genomics and radiomics features were

slightly weaker. The AUCs of predicting ALNM for the
BA

FIGURE 3

Strategy for feature selection using the Boruta method. (A) Genomics feature selection; (B) Radiomics feature selection.
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TABLE 2 The performance of three models in the training, testing and external validation groups.

Characteristics Training group Testing group External validation group

Genomics model

AUC 0.80 0.67 0.52

Sensitivity (%) 70.00 71.43 37.50

Specificity (%) 84.09 46.15 57.14

Accuracy (%) 77.38 59.26 46.67

PPV (%) 80.00 58.83 50.00

NPV (%) 75.51 60.00 44.44

Radiomics model

AUC 0.72 0.68 0.71

Sensitivity 75.00 78.57 50.00

Specificity 65.91 53.85 57.14

Accuracy 70.24 66.67 53.33

PPV (%) 66.67 64.71 57.14

NPV (%) 74.36 70.00 50.00

Radiogenomics model

AUC 0.84 0.75 0.82

Sensitivity 67.50 71.43 62.50

Specificity 90.91 61.54 100.00

Accuracy 79.76 66.67 80.00

PPV (%) 87.10 66.67 100.00

NPV (%) 75.47 66.67 70.00

PPV, positive predictive value; NPV, negative predictive value.
F
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FIGURE 4

Prediction performance of the three models in the training, testing and external validation groups. (A) Receiver operating characteristic (ROC)
curve of the genomics model; (B) ROC curve of the radiomics model; (C) ROC curve of the radiogenomics model.
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radiogenomics model in the training group, testing group and

external validation group were 0.84, 0.75 and 0.82, respectively

(Figure 4C). The AUC and corresponding sensitivity, specificity,

accuracy, PPV, and NPV values of the three groups are detailed

in Table 2. Good agreement of the radiogenomics model

between the observation and prediction was assessed by the

calibration curve, which showed that the bias-corrected line lay

close to the ideal curve in the training, testing, and validation

group (Figures S2G–I). In addition, the decision curve showed

that the radiogenomics model could add more benefit to the

prediction of ALNM than the genomics model and radiomics

model in the three groups (Figure 5).

The prediction profiles of the radiogenomics model

compared with the genomics model and radiomics model by

the DeLong test in the training group, testing group and external

validation group are shown in Figure 6. The results showed that

the radiogenomics model significantly improved the

AUC compared with the radiomics model in the training

group (P = 0.01) and showed superior performance compared

with the genomics model in the external validation group

(P = 0.02) (Table 3).
Discussion

In this study, we established three models for the assessment

of ALNM in patients with breast cancer. The radiogenomics

model incorporating quantitative radiomics and genomics

features could accurately predict LNM with favorable AUC,

high specificity, and PPV, which were superior to those of the

radiomics and genomics model. The robustness and

generalizability of the radiogenomics model were further tested

in a multicohort and validated in one hospital.

Preoperative LNM prediction could be beneficial for breast

cancer patients. Previous studies have identified that genomics

and epigenomic markers unraveled significant epigenetic
Frontiers in Oncology 08
changes during the progression from primary breast tumor to

LNM, which may contribute to improved prognosis and

prediction in breast cancer (26). The gene expression data

could predict LNM, and the value of such patterns resulted in

a predictive accuracy of approximately 90% (27). In this study,

we developed a genomics model consisting of 9 features with

good performance in predicting LNM. These genes included

PTPN21 (28), ST6GALNAC3 (29), FAM13A (30), and

CHRNA7 (31), which were correlated with metastasis. These

genes were also enriched in the PI3K/Akt, Notch1/Hes1 or Akt1/

mTOR signaling pathways and were reported to be correlated

with LNM in breast cancer (32–35). The NMRK2 gene was

identified as an important target for mitochondrial respiration,

and mitochondrial respiration is frequently dependent on

metastatic cells (36, 37). A study showed that the recurrence-

free survival of patients with loss of function of ZFP36L2 was

significantly shorter than that of patients with no loss of

ZFP36L2 function in colorectal cancer (38).

The results of our study confirmed that the radiomics model

could noninvasively predict ALNM in breast cancer. Previous

research has shown that the radiomics model alone predicted

LNM with AUCs of 0.76 (39) and 0.806 (40) in breast cancer

patients, and their prediction ability was moderate. When the

above radiomics features were combined with clinical features or

clinicopathologic characteristics, the AUC improved

significantly. However, our present study enrolled patients

from TCIA, which is a multiagency mixed data, and the

radiomics features were not combined with clinical features;

therefore, the AUC values of the radiomics model were lower

than those of previous studies.

Radiogenomics is an emerging field of cancer research. The

first study on radiogenomics in breast cancer was published in

2012 (16), which revealed that radiogenomics analysis of breast

cancer with MRI is a novel method that can be used to

understand the underlying molecular biology of breast cancers.

Then, an increasing number of studies have mainly focused on

exploring the correlation between the morphological and
B CA

FIGURE 5

Decision curve analysis for the genomics, radiomics and radiogenomics models of LNM prediction in breast cancer. (A) Training group; (B)
Testing group; (C) External validation group. The y-axis measures the standardized net benefit.
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enhancement features of DCE-MRI and the genomics features of

molecular subtypes (41, 42). In our results, the radiogenomics

model had a higher predictive performance than the radiomics-

only model or the genomics-only model to predict ALNM in

breast cancer because it incorporated macroscopic genomics

features and high-throughput radiological features to enhance

the predictive value and discover novel biomarkers. Our results

showed that genomics features have few associations with MRI-

derived radiomics features, which suggests that genes provide

additional information for structural imaging. Radiogenomics

can effectively predict LNM by bridging the limitations of

genomics and radiomics and assisting clinicians in making

more precise clinical decisions.

The 2022 NCCN Clinical Practice Guidelines in Oncology

recommend that ultrasound-guided fine-needle aspiration

cytology or core needle biopsy can be performed for patients

with lymph nodes suspected to be positive by clinical and/or

imaging examinations or patients considering systemic therapy

before surgery (43). Previous study (44) confirmed that

ultrasound-guided core needle biopsy was superior to

ultrasound-guided fine-needle aspiration cytology in

diagnosing axillary nodal metastases: sensitivity 88% (95

confidence interval: 84% to 91%) versus 74% (95 confidence
Frontiers in Oncology 09
interval: 70% to 78%) respectively, and they both a high

specificity of 100%. In our study, we used US guided core

needle biopsy in diagnosing ALN metastasis in patients who

received neoadjuvant chemotherapy. Therefore, this ensures the

reliability and accuracy of this study.

Our study had some limitations. First, this was a

retrospective study, and a larger sample size would be

desirable. Given the lack of multicenter data, we compiled the

training and testing groups from the TCIA-TCGA and a

verification group from our hospital database, thereby

extending the generalizability of the model. Second, we only

focused our prediction on DCE without considering other MRI

techniques, such as T2-weighted imaging and DWI. Finally, only

logistic regression analysis was used to construct the prediction

model, and future studies should consider deep learning or more

machine learning algorithms.

By integrating radiomics and genomics features, we built a

radiogenomics prediction model that can significantly improve

the performance to predict ALNM in breast cancer. The

radiogenomics prediction model might reduce unnecessary

ALN dissection and improve the quality of life of cancer

patients, which could contribute to the realization of precision

medicine in breast cancer.
B CA

FIGURE 6

Prediction profiles of the three models. All individual participants were identified as “LNM” or “non-LNM”, and recognized as true positive (blue),
false negative (red), true negative (orange) and false positive (green) according to their true labels of LNM in all groups. (A) Prediction profiles of
the training group; (B) Prediction profiles of the testing group; (C) Prediction profiles of the external validation groups.
TABLE 3 Delong test for prediction improvements of radiogenomics model in the training, testing and external validation groups.

Characteristics Training group P value Testing group P value External validation group P value

Radiomics model vs. Genomics model

DeLong test -0.08 0.27 0.01 0.97 0.19 0.41

radiogenomics model vs. Radiomics model

DeLong test 0.12 0.01 0.07 0.43 0.11 0.50

radiogenomics model vs. Genomics model

DeLong test 0.04 0.28 0.08 0.35 0.30 0.02

The bold values represent a p-value less than 0.05, indicating a significant improvement in prediction.
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