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Identifying diagnostic markers
and constructing a prognostic
model for small-cell lung
cancer based on blood
exosome-related genes and
machine-learning methods

Kun Zhang, Chaoguo Zhang, Ke Wang, Xiuli Teng
and Mingwei Chen*

Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi’an Jiaotong
University, Xi’an, Shaanxi, China
Background: Small-cell lung cancer (SCLC) usually presents as an extensive

disease with a poor prognosis at the time of diagnosis. Exosomes are rich in

biological information and have a powerful impact on tumor progression and

metastasis. Therefore, this study aimed to screen for diagnostic markers of

blood exosomes in SCLC patients and to build a prognostic model.

Methods: We identified blood exosome differentially expressed (DE) RNAs in

the exoRBase cohort and identified feature RNAs by the LASSO, Random

Forest, and SVM-REF three algorithms. Then, we identified DE genes (DEGs)

between SCLC tissues and normal lung tissues in the GEO cohort and obtained

exosome-associated DEGs (EDEGs) by intersection with exosomal DEmRNAs.

Finally, we performed univariate Cox, LASSO, and multivariate Cox regression

analyses on EDEGs to construct the model. We then compared the patients’

overall survival (OS) between the two risk groups and assessed the independent

prognostic value of the model using receiver operating characteristic (ROC)

curve analysis.

Results: We identified 952 DEmRNAs, 210 DElncRNAs, and 190 DEcircRNAs in

exosomes and identified 13 feature RNAs with good diagnostic value. Then, we

obtained 274 EDEGs and constructed a risk model containing 7 genes (TBX21,

ZFHX2, HIST2H2BE, LTBP1, SIAE, HIST1H2AL, and TSPAN9). Low-risk patients

had a longer OS time than high-risk patients. The risk model can independently

predict the prognosis of SCLC patients with the areas under the ROC curve

(AUCs) of 0.820 at 1 year, 0.952 at 3 years, and 0.989 at 5 years.

Conclusions: We identified 13 valuable diagnostic markers in the exosomes of

SCLC patients and constructed a new promising prognostic model for SCLC.

KEYWORDS

small-cell lung cancer, exosome, machine learning, diagnostic markers,
prognostic model
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1 Introduction

Small-cell lung cancer (SCLC) constitutes approximately

15% of lung cancers and is characterized by a very high

proliferation rate, susceptibility to early metastasis, and poor

prognosis (1). Unlike non-small cell lung cancer (NSCLC), the

survival rate of which has gradually increased, SCLC remains

stable at a low survival rate of 14% to 15%, with a median

survival of< 2 years for early stage SCLC patients and 1 year for

metastatic patients (2). The prognosis of SCLC is worse because

SCLC usually presents as an extensive disease at the time of

diagnosis and lacks effective long-term treatment. Therefore,

searching for convenient and sensitive diagnostic markers and

new prognostic markers for SCLC are essential avenues to

improve the outcome of SCLC patients.

Exosomes are broadly defined as secretory vesicles that “may

have a physiological function” (3). Some researchers describe

exosomes as extracellularly secreted organelles with a diameter

of 30 to 200 nm (4). Exosomes have abundant proteins, lipids,

and nucleic acids (5). Almost all mammalian cells can secrete

exosomes (6), such as adipocytes (7) and immune cells (8, 9).

The role of exosomes during tumor development has been

extensively studied, and exosomal RNAs, proteins, and

metabolites can influence cellular outcomes through signal

transduction (10). In some recent studies on NSCLC,

exosomes have shown good diagnostic and therapeutic value.

For example, tumor-derived exosomal proteins can be used as

diagnostic biomarkers for NSCLC (11), and membrane-bound

proteins are also promising prognostic biomarkers (12). In

addition, exosomes from distinct cells in NSCLC patients

exhibit different functions. NSCLC cell-secreted exosomal

circUSP7 was found to promote immunosuppression in

NSCLC (13), whereas circulating NK cell-derived exosomes
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showed antitumor activity (14). However, only a few studies

have found that exosomes secreted by SCLC contribute to cancer

growth, metastasis, and angiogenesis (15), and some circulating

exosomal miRNAs also enhance angiogenesis in SCLC tumors

(16). The diagnostic and prognostic role of circulating exosome-

related genes in SCLC remains poorly explained.

Thus, this study aimed to screen valuable diagnostic markers

from differentially expressed (DE) RNAs in blood exosomes of

SCLC by machine-learning methods and to develop a prognostic

model associated with exosome-associated differentially

expressed genes (EDEGs). Figure 1 shows the study’s flow.
2 Materials and methods

2.1 Data collection

We downloaded RNA sequencing (RNAseq) data (mRNA,

lncRNA, and circRNA) of extracellular vesicles (mainly

exosomes) in blood from 118 healthy individuals and 36 SCLC

patients from the exoRBase 2.0 database (http://www.exorbase.org/)

(17). The RNAseq and clinical data of tumor tissues from SCLC

patients were extracted from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/theGEO/, GSE60052). The

GEO cohort included 7 control and 79 SCLC samples, while only 48

SCLC patients had complete follow-up data (Table S1). The

baseline information of these two datasets is shown in Table S2.
2.2 Identification of exosomal DERNAs

In the RNAseq samples from SCLC and healthy individuals,

duplicate gene data were averaged using the R package “limma”
FIGURE 1

The research flow chart.
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(18), and the difference analysis was performed using the Wilcox

test (19). The DEG filtering criteria were |log2FC| > 1 and false

discovery rate (FDR)< 0.05. All analyses were performed with R

software (version 4.2.1).
2.3 Machine learning to identify
exosomal feature DERNAs

The least absolute shrinkage and selection operator (LASSO)

(20), Random Forest (21), and support vector machine-recursive

feature elimination (SVM-RFE) (22) were used to identify

feature DEmRNAs, DElncRNAs, and DEcircRNAs of

exosomes in blood, respectively. In LASSO, we calculate

lambda.min and obtain the feature genes corresponding to the

minimum point of cross-validation error. In Random Forest,

the genes with MeanDecreaseGini values greater than 1 are the

feature genes. In SVM-RFE, the genes corresponding to the

minimum point of cross-validation error are the feature genes.

The intersection of these three algorithms’ results is considered

the feature DERNAs. We used the R package “pROC” to

evaluate the diagnostic values of the feature DERNAs.
2.4 Constructing a competitive
endogenous RNA (ceRNA) network

The miRNAs interacting with exosomal DERNAs were

predicted by the ENCORI (23) and miRcode databases (http://

www.mircode.org/). Then, we built the lncRNA-miRNA-

mRNA-circRNA network (ceRNA network) (24). The

Cytoscape software (v3.7.2) was utilized to visualize the

ceRNA network (25). Then, we conducted functional

enrichment analysis on DEmRNAs in the ceRNA network.
2.5 Construction of the SCLC prognostic
model based on EDEGs

DEGs between 79 SCLC samples and 7 normal tissue

samples were intersected with exosomal DEmRNAs to obtain

the EDEGs. We initially used univariate Cox (uniCox)

regression to assess the correlation of each EDEG with the

SCLC patient survival. The p-value<0.15 was the prognosis-

related EDEG, which was then included in the LASSO Cox

regression analysis. Finally, we conducted a multivariate Cox

(multiCox) regression of the EDEGs obtained from LASSO

Cox and built a risk model (Risk Score =o
N

i=1
Gi*Ci  (G: gene

expression, C: coefficients)). We divided the SCLC patients into

two risk groups based on the median risk score. Survival curves

were generated using the Kaplan-Meier method for the low-risk

and high-risk groups. The “prcomp” function was applied to
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conduct the principal component analysis (PCA). In addition,

we utilized the “survival”, “timeROC”, and “survminer” R

packages to conduct the ROC curve analysis.
2.6 Independent prognostic analysis

We combined clinical features and risk score data of SCLC

patients and used uniCox and multiCox regression to analyze

the independent prognosis of the risk model. In addition, we

assessed the differences in risk scores between patients with

different clinical characteristics, including age, sex, smoking

status, Stage, T stage, and N stage.
2.7 Functional enrichment analysis

We performed a differential expression analysis of RNAseq

between the two risk groups. The DEG screening criteria were |

log2FC| > 1 and p value< 0.05. Then, GO and KEGG analyses

and visualization of the DEGs were performed using the R

package “ClusterProfiler”.
3 Results

3.1 Identification of exosomal DERNAs
and feature DERNAs

We first identified 952 DEmRNAs (Figure 2A), 210

DElncRNAs (Figure 2B), and 190 DEcircRNAs (Figure 2C) of

blood exosome RNAseq between 36 SCLC patients and 118 healthy

individuals from the exoRBase database. The top 30 DEmRNAs,

DElncRNAs, and DEcircRNAs are shown as heatmaps

(Figures 2D–F). Three machine learning algorithms, including

LASSO, Random Forest, and SVM-REF, were further applied to

identify the most valuable 2 DEmRNAs (HIST1H1E, ID2,

Figure 2G), 3 DElncRNAs (AP000547.3, AC092069.1,

AC022150.4, Figure 2H) and 8 DEcircRNAs (hsa_circ_0001953,

hsa_circ_0002360, hsa_circ_0007443, hsa_circ_0007637,

hsa_circ_0005615, hsa_circ_0005455, hsa_circ_0001258,

hsa_circ_0000437, Figure 2I) from the DERNAs obtained above

(Table 1, Figure S1, Table S3).
3.2 Diagnostic value of the
feature DERNAs

To assess the diagnostic value of exosomal feature

DEmRNAs, DElncRNAs, and DEcircRNAs, we conducted the

ROC curve analysis. The areas under the ROC curve (AUCs) of

ID2 and HIST1H1E in DEmRNA were 0.909 (Figure 3A) and
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0.970 (Figure 3B), respectively. The AUCs of AC022150.4,

AC092069.1, and AP000547.3 in DElncRNA were 0.915

(Figure 3C), 0.928 (Figure 3D), and 0.925 (Figure 3E),

respectively. The AUC of hsa_circ_0000437 in DEcircRNA

was the maximum (0.885, Figure 3F), and the AUCs of the

remaining feature DEcircRNAs are shown in Figure S2.
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3.3 Constructing a ceRNA Network

Meanwhile, we predicted miRNAs that may bind to

DEmRNAs, DElncRNAs, and DEcircRNAs and constructed a

ceRNA network (Figure 4A). The ceRNA network included 198

mRNAs, 21 lncRNAs, 134 miRNAs, and 32 circRNAs (Table S4).
A B

D E F

G IH

C

FIGURE 2

Identification of exosomal DERNAs. (A–C) Volcano plots of exosomal DEmRNAs, DElncRNAs, and DEcircRNAs. (D–F) Heatmaps of DEmRNAs,
DElncRNAs, and DEcircRNAs. (G–I) Venn diagrams of machine-learning results for DEmRNAs, DElncRNAs, and DEcircRNAs.
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There were 2 miRNAs interacting with ID2, 19 miRNAs interacting

with hsa_circ_0005455, 2 miRNAs interacting with

hsa_circ_0001258, and 14 miRNAs interacting with

hsa_circ_0000437 (Table S5). Then, we performed the functional

enrichment analysis of the DEmRNAs in the ceRNA network. The

top terms in the biological process (BP) category were growth factor

binding and extracellular matrix structural constituent. The top
Frontiers in Oncology 05
terms in the cell component (CC) category were endoplasmic

reticulum lumen and cell-cell junction. In molecular function

(MF), these genes were primarily abundant in mitotic cell cycle

phase transition and embryonic organ development (Figure 4B).

The KEGG analysis showed that these DEmRNAs were associated

with the PI3K-Akt signaling pathway, ECM-receptor interaction,

and TGF-beta signaling pathway (Figure 4C).
3.4 Construction of SCLC prognostic
model based on EDEGs

We performed the differential expression analysis on samples

from the GSE60052 cohort, yielding 4350 DEGs (Figures 5A, B).

These DEGs intersected with 952 exosomal DEmRNAs to obtain

274 EDEGs (Figure 5C). We then merged these EDEGs expression

data with the clinical follow-up data of 48 SCLC patients. Table 2

presents the clinical data of 48 SCLC patients. Based on the uniCox
TABLE 1 Feature DERNAs screened by machine learning.

RNA LASSO, Random Forest and SVM-RFE

mRNA HIST1H1E, ID2

lncRNA AP000547.3, AC092069.1, AC022150.4

circRNA hsa_circ_0001953, hsa_circ_0002360, hsa_circ_0007443,
hsa_circ_0007637, hsa_circ_0005615, hsa_circ_0005455,
hsa_circ_0001258, hsa_circ_0000437

DE, differentially expressed.
A B

D E F

C

FIGURE 3

The diagnostic values of the feature DERNAs. (A) ROC curve of ID2. (B) ROC curve of HIST1H1E. (C) ROC curve of AC022150.4. (D) ROC curve
of AC092069.1. (E) ROC curve of AP000547.3 (F) ROC curve of hsa_circ_0000437.
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regression, we obtained 28 prognosis-associated EDEGs

(Figure 5D). The 28 prognosis-associated EDEGs were then

included in the LASSO Cox regression analysis, and 13

representative genes were further screened (TBX21, ZFHX2,

MT1E, HIST1H2AB, HIST2H2BE, FAM83F, MMRN1, LTBP1,

CCND1, SIAE HIST1H2AL, DPY19L2, and TSPAN9) (Figures 5E,

F). Finally, we conducted the multiCox regression analysis on the

above 13 genes to establish a prognostic model consisting of 7 genes

(TBX21, ZFHX2, HIST2H2BE, LTBP1, SIAE, HIST1H2AL, and
Frontiers in Oncology 06
TSPAN9) (Figure 5G, Table 3). Here is the formula: risk score =

(exp. TBX21* -0.56) + (exp. ZFHX2* 1.05) +(exp.

E2F7*0.340957721) + (exp. HIST2H2BE* -0.58) + (exp. LTBP1*

-0.54) + (exp. SIAE* 0.69) + (exp. HIST1H2AL* -0.61) + (exp.

TSPAN9* 0.86). The median risk score assigned these 48 SCLC

patients well into two different risk groups, as confirmed by the

PCA analysis (Figure 5H). Patients with high-risk scores had higher

mortality and shorter survival times than those with low-risk scores

(Figures 5I–K). Additionally, we utilized the ROC curve analysis to
A

B C

FIGURE 4

Constructing a ceRNA network. (A) The ceRNA network. Left circle: circRNA, middle circle: miRNA and mRNA, right circle: lncRNA. Purple line:
circRNA-miRNA, red line: mRNA-miRNA, green line: lncRNA-miRNA. (B). GO analysis of DEmRNAs in the ceRNA network. (C) KEGG analysis of
DEmRNAs in the ceRNA network.
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FIGURE 5

Construction of the SCLC prognostic model based on EDEGs. (A) Heatmap of the top 30 DEGs in the GEO cohort. (B) Volcano plot of DEGs in
the GEO cohort. (C) The intersection of exosomal DEmRNAs with DEGs of the GEO cohort. (D). Univariate Cox regression analysis. (E) LASSO
regression of survival-associated EDEGs (F) Cross-validation for LASSO regression. (G) Multivariate Cox regression analysis. (H) PCA plot. (I, J)
The median risk score and the distribution of survival time. (K) Kaplan-Meier analysis. The numbers in the table represent the numbers of
surviving patients. (L) ROC curve of the model.
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TABLE 2 Baseline characteristics of SCLC patients in GSE60052.

ALL (N=48) Alive (N=23) Dead (N=25)

Age, years

>65 11 (22.9%) 3 (13.0%) 8 (32.0%)

<=65 37 (77.1%) 20 (87.0%) 17 (68.0%)

Sex

Female 5 (10.4%) 3 (13.0%) 2 (8.00%)

Male 43 (89.6%) 20 (87.0%) 23 (92.0%)

Smoke

Smoker 33 (68.8%) 17 (73.9%) 16 (64.0%)

No-smoker 15 (31.2%) 6 (26.1%) 9 (36.0%)

Stage

I-II 16 (33.3%) 4 (17.4%) 12 (48.0%)

III-IV 32 (66.7%) 19 (82.6%) 13 (52.0%)

T

T1-T2 36 (75.0%) 14 (60.9%) 22 (88.0%)

T3-T4 11 (22.9%) 8 (34.8%) 3 (12.0%)

Unknow 1 (2.08%) 1 (4.35%) 0 (0.00%)

N

N0 11 (22.9%) 3 (13.0%) 8 (32.0%)

N1-N3 36 (75.0%) 19 (82.6%) 17 (68.0%)

Unknow 1 (2.08%) 1 (4.35%) 0 (0.00%)

M

M0 46 (95.8%) 22 (95.7%) 24 (96.0%)

M1 1 (2.08%) 0 (0.00%) 1 (4.00%)

Unknow 1 (2.08%) 1 (4.35%) 0 (0.00%)

SCLC, small cell lung cancer.
TABLE 3 Multivariate Cox proportional hazards regression analysis.

Gene coef HR HR.95L HR.95H pValue

TBX21 -0.56022 0.571084 0.385641 0.8457 0.005165

ZFHX2 1.048958 2.854674 1.369668 5.949737 0.005118

HIST2H2BE -0.58483 0.557201 0.260182 1.19329 0.132283

LTBP1 -0.54064 0.582376 0.319466 1.061652 0.077617

SIAE 0.691107 1.995924 1.038662 3.835425 0.038099

HIST1H2AL -0.60605 0.545503 0.32045 0.928612 0.02556

TSPAN9 0.858402 2.359387 1.127123 4.938864 0.022759
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assess the specificity and sensitivity of the risk model, which showed

that the AUC was 0.820 at 1 year, 0.952 at 3 years, and 0.989 at 5

years (Figure 5L).
3.5 Clinical prognostic analysis

We evaluated the independent prognostic value of this risk

model using uniCox and multCox regression analyses. The uniCox

regression indicated that a higher risk score was related to a lower

survival rate (HR=1.116, 95% CI=1.059-1.176, Figure 6A). The

multiCox regression revealed that this risk model was an

independent prognostic indicator for SCLC patients after
Frontiers in Oncology 09
adjusting for other confounding variables (HR=1.131, 95%

CI=1.068-1.199, Figure 6B). Moreover, we evaluated the

correlation between risk models and clinical features (Figures 6C–

I). The results showed that N1-N3 stage patients scored higher risk

than N0 stage patients, suggesting that this risk model was mainly

associated with lymph node metastasis (Figure 6H).
3.6 Functional enrichment analysis of
DEGs between the two risk groups

Subsequently, we performed the differential expression

analysis of RNAseq in SCLC patients between the two risk
A B

D E F

G IH

C

FIGURE 6

Clinical prognostic analysis. (A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) Heatmap of clinicopathological
characteristics between the high and low-risk groups. (D–I) Correlation of risk scores with clinical features.
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groups and the functional enrichment analysis of the DEGs. A

total of 89 upregulated DEGs and 226 downregulated DEGs

were obtained (Figures 7A, B). The GO analysis showed that the

top BP terms were receptor ligand activity and kinase activator

activity, and the top CC terms were spindle and transmembrane
Frontiers in Oncology 10
transporter complex. In addition, the top MF terms were

organelle fission and nuclear division (Figure 7C). Meanwhile,

the KEGG analysis revealed that these DEGs were associated

with the cell cycle, nucleotide metabolism, pyrimidine

metabolism, and DNA replication (Figure 7D).
A B

DC

FIGURE 7

The differential expression analysis between the two risk groups. (A) Heatmap of the top 30 DEGs. (B) Volcano plot of DEGs. (C) GO analysis of
DEGs. (D) KEGG analysis of DEGs.
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4 Discussion

As the most aggressive lung cancer type, SCLC has a poor

prognosis, and most patients develop metastases at diagnosis (26).

Exosomes are a class of secretory vesicles rich in proteins and

nucleic acids. Exosomes have a crucial role in immunity, tissue

homeostasis, and cancer (4, 27, 28). Several studies have found that

exosomes are associated with growth, metastatic angiogenesis, and

drug resistance in SCLC (15, 29, 30). However, more research on

the role of exosomes in SCLC is needed.

In this study, we initially identified 952 DEmRNAs, 210

DElncRNAs, and 190 DEcircRNAs from blood exosomes and

constructed a ceRNA network. Then, we identified the blood

exosomal feature DERNAs from SCLC patients by machine

learning, and these feature DERNAs showed good diagnostic

value. Meanwhile, we extracted EDEGs of SCLC lung tissues by

exosomal DEmRNAs. We used EDEGs to construct a prognostic

model consisting of 7 genes. The model was mainly associated

with lymph node metastasis, and the death risk of SCLC patients

increased as the risk score increased. In addition, the model-based

prognosis prediction of SCLC exhibited satisfactory efficiency.

Machine-learning algorithms have been increasingly used for

automated diagnosis and prognosis prediction in precision

medicine (31, 32). Based on 3 machine-learning methods, we

identified blood exosomal feature DERNAs of diagnostic value in

SCLC patients, including HIST1H1E, ID2, AP000547.3,

AC092069.1, AC022150.4, hsa_circ_0001953, hsa_circ_0002360,

hsa_circ_ 0007443, hsa_circ_0007637, hsa_circ_0005615,

hsa_circ_0005455, hsa_circ_0001258, and hsa_circ_0000437.

These RNAs can distinguish SCLC well from healthy individuals

with AUC values from 0.781 to 0.970. HIST1H1E is a tumor

suppressor whose overexpression inhibits lung cancer cell viability,

migration, and invasion (33). ID2 is a transcription factor that is

overexpressed in many cancers, such as prostate, breast, and gastric

cancers (34, 35). We found that HIST1H1E and ID2 are

overexpressed in the SCLC patient blood exosomes. However, the

diagnostic value of HIST1H1E and ID2 in SCLC has not been

reported. Of the three lncRNAs, only one study reported that

AC022150.4 was associated with breast cancer prognosis, but

their biological functions in cancer have not been investigated

(36). The high abundance, stability, and conservation of

circRNAs make them advantageous as diagnostic markers (37). It

has been reported that hsa_circ_0002360 is highly expressed in

NSCLC tissues and contributes to the malignant behavior of

NSCLC (38–40). Circulating hsa_circ_0001953 can be used as a

marker for proliferative diabetic retinopathy and active tuberculosis,

which have not been investigated in cancer (41, 42). In addition,

hsa_circ_0007637, hsa_circ_0005615, hsa_circ_0001258, and

hsa_circ_0000437 are associated with the diagnosis and

development of nasopharyngeal carcinoma, colorectal cancer,

osteosarcoma, and hepatocellular carcinoma (43–46). However,

hsa_circ_0005455 and hsa_circ_0007443 have not been reported.

Our study provides blood exosomal RNAs with diagnostic value for
Frontiers in Oncology 11
SCLC patients, which deserves further in-depth study. In addition,

we constructed a ceRNA network of exosomal DERNAs, in which

ID2 is the target gene of hsa-miR-19a-3p and hsa-miR-19b-3p.

Reportedly, hsa-miR-19a-3p can predict the prognosis of lung

adenocarcinoma (47), while hsa-miR-19b-3p can be used as a

diagnostic and prognostic biomarker for prostate cancer (48).

Unfortunately, there are few studies on the role of exosome-

derived miRNAs in SCLC.

Our study constructed a model containing 7 prognosis-related

genes (TBX21, ZFHX2, HIST2H2BE, LTBP1, SIAE, HIST1H2AL,

and TSPAN9) and found it to be a good predictor of OS in SCLC

patients. TBX21 is a protein-coding gene specifically expressed in

immune cells and highly expressed in tissues such as blood and lung

(49). In lung adenocarcinoma, TBX21 expression enhances tumor

cell recognition and clearance by the immune system (50, 51), while

increased TBX21 expression in cutaneous melanoma is associated

with a better prognosis (49). In addition, TBX21 expression in T

cells was demonstrated in mouse experiments to control tumor

progression and antimetastasis (52). In our study, TBX21 was a

protective factor in SCLC, which is supported by previous studies.

ZFHX2 encodes a transcription factor with an unknown function

that has not been studied in tumors, and we found that its

overexpression predicts a poor prognosis for SCLC patients. One

study found that high HIST2H2BE levels predicted low survival in

NSCLC patients (53). However, we found the opposite result in

SCLC patients, with the possible explanation that HIST2H2BE may

be tumor-dependent in its molecular status and role. LTBP1

promotes the proliferation of lung adenocarcinoma cells (54),

while its high expression in hepatocellular carcinoma inhibits

cancer progression (55). The present study identified LTBP1 as a

possible suppressor of SCLC. SIAE encodes an enzyme that

removes the 9-O-acetylation modification from sialic acid. The

SIAE gene regulates Siglec binding in lung cell lines, and NK-

mediated cytotoxicity is increased in lung adenocarcinoma cells

without SIAE. In other words, high expression of SIAE promotes

lung adenocarcinoma progression. Our study found that SIAE is a

risk factor for SCLC (56). HIST1H2AL encodes a core histone

protein, which was identified in this study with a better prognosis of

SCLC (57). However, its specific role in tumors remains unclear and

needs further investigation. TSPANs are a family of four

transmembrane segments of proteins that may promote tumor

growth by affecting angiogenesis and immune function (58, 59).

Among them, TSPAN9 has been shown to promote osteosarcoma

metastasis (60) and affect the prognosis of breast cancer patients

(61). Moreover, we found that high expression of TSPAN9

increases the risk of death in SCLC patients. Overall, the seven

genes in our model have yet to be well studied in SCLC and are new

prognostic markers for SCLC.

Our study has several advantages. First, multiple machine-

learning approaches were used to identify valuable diagnostic

markers in the blood exosomes of SCLC patients. Second, we

utilized differential genes in blood exosomes to construct a new

prognostic model for SCLC with satisfactory predictive effects. This
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study also has some limitations. The sample size of our SCLC

patients was small, and the model’s accuracy needs to be validated

in prospective studies with large samples. In addition, in vitro and in

vivo experiments are needed to validate our results.
5 Conclusion

In summary, we identified valuable diagnostic markers in the

exosomes of SCLC patients by machine-learning methods and

constructed a novel promising prognostic model for SCLC using

exosome-related genes.
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