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Tumour microenvironment
landscape and immunotherapy
response in bladder cancer
decoded by stromal MOXD1
based on copper-related
genes signature

Wenhao Wang †, Shan Hua †, Jianying Li †, Jing Zhao, Yu Zhang,
Juntao Jiang* and Bangmin Han*

Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
Introduction: We aimed to develop a copper-related gene (CRG) signature

that can be used to evaluate prognosis and guide therapeutic management in

bladder cancer patients.

Methods: The raw transcriptome profiles and clinical data of 405 bladder samples

were downloaded from The Cancer Genome Atlas (TCGA) database, and

differentially expressed copper-related genes were identifified using the

Molecular Signatures Database (MSigDB) database and univariate and multivariate

Cox regression analysis. A multigene prognostic signature based on 14 CRGs was

developed by least absolute shrinkage and selection operation (LASSO) analysis in

the TCGA cohort and validated in the Gene Expression Omnibus (GEO) cohort.

Multiple analyses were then conducted in which the nomograms,

clinicopathological features, immune-related cell infifiltration characteristics, and

therapy responses of the high- and low-risk score groups were compared.

Results: A 14 CRGs signature was constructed and used to classify patients into

high-risk and low-risk groups. Compared to patients classifified as high-risk, low-

risk patients in both the TCGA cohort and the GEO cohort had better overall

survival. Patients in high-risk groups had more aggressive clinical features,

immunologically “cold” infifiltrating characteristics, and experienced lower

therapeutic effificacy. We identifified a CRG signature of bladder cancer and

validated it using unsupervised clustering analysis. Monooxygenase DBH-like 1

(MOXD1)was further identifified,and itspotential forevaluatingthe tumor immune

microenvironment and predicting the immunotherapy response was explored.
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Discussion: These results suggest a novel research direction for precision

therapy of bladder cancer and demonstrate that copper-related genes can play

a promising role in predicting prognosis and may serve as therapeutic targets

for bladder cancer.
KEYWORDS

bladdercancer,copper,signature,tumor-infiltratingimmunecell,immunotherapy,fibroblast
1 Introduction

Bladder urothelial carcinoma (BLCA) is the most common

malignant tumor of the urinary system. It is estimated that 500,000

new cases of BLCA and 200,000 resulting deaths occur annually

worldwide, and the disease is responsible for over 80,000 new cases

and 17,000deathsper year in theUnited States alone (1, 2). BLCA is

characterized by a high recurrence rate and a proneness to

metastasis, and the 5-year survival rate is generally <50% (3).

Chemotherapy, surgery, and immunotherapy are currently the

most effective approaches to the treatment of BLCA, but these

approaches have limitations. Molecularly targeted therapies have

emerged as revolutionary cancer treatments that can increase the

survival time of patients (4). Nevertheless, widely accepted

prognostic biomarkers for BLCA still do not exist, and there is a

serious unmet need for the identificationof reliable biomarkers that

can be used to determine risk and devise personalized treatment

regimens for individual BLCA patients.

Cuproptosis was first identified in March 2022 as a form of cell

death characterized by mitochondrial respiration regulated in a

copper-dependent manner. Cells with higher mitochondrial

respiration activity display increased sensitivity to copper

ionophores, which are copper-binding small molecules that

transfer copper from extracellular to intracellular sites (5, 6).

Generally, intracellular copper concentrations are maintained at

very low levels by active homeostatic mechanisms. However,

copper imbalance affects inflammation, organ development, lipid

metabolism and even sensitivity to chemotherapeutics (7). The

accumulated intracellular copper can induce cell death, and this

process can be reversed in hundreds of cell lines by binding of copper

to molecules present in the cells (8, 9). Cancer-related metabolic

reprogramming, including altered fatty acidmetabolism and glucose

metabolism, has profound effects on tumorigenesis, and copper has

been reported to play essential regulatory roles in many metabolic

processes (10–12). Indeed, before the identification of cuproptosis,

disordered copper metabolism was shown to play a role in cancer

occurrence and progression. A recent study of triple-negative breast

cancer reported that copper-enriched SOX2/OCT4+ cells showed

much higher sensitivity than other cells to copper depletion and

suggested that metabolic reprogramming of a select population of

SOX2/OCT4+metastatic cells in away that leads to copper depletion

couldbeanovel antimetastatic therapy (13).Another studysuggested
02
that inhibition of the copper-trafficking proteins Atox1 and CCS

could disrupt cellular copper transport and thereby inhibit the

proliferation of cancer cells as well as attenuate tumor growth (14).

Growing tumors employ ATP7A/B, a Golgi-localized copper-

transporting ATPase that functions in the maintenance of copper

homeostasis, tomaintain the concentration of copper needed for the

activity of oncogenic enzymes such as LOX and LOX-like proteins

(15). Many prior studies have suggested that copper-related small

molecules that regulate copper transport and metabolism play a

critical role in tumor initiation, progression,metastasis, and therapy.

In this study, genomic data obtained from 405 BLCA samples

were comprehensively analyzed, the copper metabolism pattern

reflected by the data was evaluated, and a copper prognostic risk

score signature was developed. The prognostic risk signature, which

is based on the patients’ clinical information, can not only

independently predict survival outcome but also effectively identify

and distinguish groups of patients who are resistant to

chemotherapeutic drugs and targeted drugs. The relationship

between the prognostic risk signature and tumor immune

infiltration characteristics was also explored, and the bladder

cancer patients were grouped according to their immune subtypes.

Fourteen prognostic genes were identified, andMOXD1was further

investigated to explore its correlation with the immune landscape.

The prognostic risk signature developed in this study confirms the

important role of copper in shaping the individual tumor immune

microenvironment and distinguishes populations of patients who

have different responses to immune checkpoint inhibitors (ICIs).

These conclusions provide novel perspectives for combining ionic

therapy with immunotherapy for patients with bladder cancer.
2 Results

2.1 Difference analysis and construction
of a prognostic risk score signature in
the training set

Transcriptome profiling data for bladder tissue, based on the

BLCA project reported in the TCGA database, which includes

normal and cancer tissue samples, was conducted to analyze gene
frontiersin.org
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expression levels. The CRGs downloaded from MigSDB (https://

www.gsea-msigdb.org/gsea/msigdb) were extracted (Table S1), and

the differences were analyzed. In this cohort, 64 genes expressed in

cancer tissuewere selected according to a false discovery rate (FDR)<

0.05; 44 of these were upregulated, and 20 were downregulated. The

differentially expressed CRGs are shown in Figures 1A, B. The

expression profile data of differentially expressed CRGs obtained

from the TCGA cohort in GSE13507 were extracted for validation
Frontiers in Oncology 03
(Table S2). Univariate Cox regression analysis was conducted on 64

differentially expressed CRGs comprising the training set in the

TCGAcohort. Finally, 17prognosis-relatedgeneswithpvalues<0.05

were identified (Figure 1C). Combined with the raw somatic

mutation data obtained from the TCGA database, the mutation

characteristics of these 17CRGswere also analyzed and summarized.

Figure 1D shows that somatic mutations in these 17 CRGs occurred

in 62 of 412 bladder cancer patients, a frequency of 15.05%. Among
A B

D E

F G IH

C

FIGURE 1

Construction of prognostic risk score signature (A) The volcano plot of 64 copper-related genes with significant difference (upregulated genes
are marked in red; downregulated genes are marked in green). (B) The heatmap of differentially expressed copper-related gens in the normal
and cancer tissue samples. (C) Forrest plot of 17 copper-related genes associated with prognosis. (D) The somatic mutation of 17 copper-
related genes in 412 BLCA patients in TCGA cohort. (E) The analysis of mutation cooccurrence and exclusion for 17 prognostic copper-related
genes. Cooccurrence, green; exclusion, brown. (F) The coefficients in LASSO Cox regression analysis of the 17 prognostic copper-related genes.
(G) Identification of genes for construction of prognostic risk score signature. (H) Principal component analysis based on all copper-related
genes in TCGA cohort. (I) Principal component analysis based on 14 prognostic signature copper-related genes in TCGA cohort. High-risk
patients are represented by red group, and low-risk patients are represented by blue group.
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these genes, HEPH had the highest mutation frequency, while

STEAP4 was relatively stable with no somatic mutations.

According to comutation analysis, HEPH and SNCB, HEPH and

MTIA, andMOXD1 andHEPH exhibited amutation cooccurrence

relationship (Figure 1E). To construct a prognostic risk score

signature, the candidate genes were narrowed to 14 genes (HEPH,

LOXL2, MOXD1, S100A5, SNAI3, SNCB, ACLY, GCLM, GPX1,

OXSM, MT1A, TFRC, NDOR1, and STEAP4) by LASSO Cox

regression analysis (Figures 1F, G). The risk scores associated with

the bladder cancer samples were calculated using the following

formula: risk score = (0.0649294946722208)×HEPH + (0.001128

44967059073)×LOXL2 + (0.0442203686581324)×MOXD1 +

(-0.0793932777256413)×S100A5 + (-0.233746730976349)×

SNAI3 + (0.3680400891395)×SNCB + (0.21480248315269)×

ACLY + (0.123239938118587)×GCLM + (-0.0771053814

083238)×GPX1 + (-0 .133608314765734)×OXSM +

(0.124543005735702)×MT1A + (0.0715649943387494)×TFRC +

(-0.372743923494837) ×NDOR1 + (0.125154125013336) ×

STEAP4, as shown in Table S2.

Principal component analysis (PCA) demonstrated that the

BLCA samples can be distinguished by the prognostic risk score

signature (Figures 1H, I).
2.2 Correlation between risk score and
clinical characteristics

Taking the median value of the risk score in the training set

above as the cutoff value, a total of 405 ranked samples were

divided into low-risk (n = 203) and high-risk (n = 202) groups.

In univariate and multivariate Cox analyses, the indicators

related to overall survival (OS) included not only risk score

but also age and pathological stage, indicating that they can be

used as independent prognostic indicators (Figures 2A, B).

Furthermore, after redistributing the above samples according

to the risk score, it was found that there was a significant

correlation between risk score and changes in clinical

indicators other than sex and age (Figures 2C, D), including

stage, grade and American Joint Committee on Cancer (AJCC-

TNM) criteria. Higher risk scores were associated with high-

grade tumors (p < 0.001; Figure 2E). The risk score also had a

positive correlation with AJCC-M (distal metastasis) (p = 0.026;

Figure 2F) and AJCC-N (lymphoid metastasis) (p <0.01;

Figure 2G). Among Stage II, Stage III and Stage IV patients,

higher risk scores were associated with more advanced stage (p <

0.05; Figure 2H). Higher risk scores also correlated with higher

AJCC-T (tumor invasion) stage in T2, T3, and T4 (Figure 2I).

Compared to samples with high risk in the TCGA cohort,

samples with low risk in the TCGA cohort had better OS

(p <0.001; Figure 2J) and longer progression-free survival

(PFS) (p = 0.004; Figure 2K). Among the samples in the test

dataset from the Gene Expression Omnibus (GEO), GSE13507

was divided into low-risk (n = 82) and high-risk (n = 83) groups
Frontiers in Oncology 04
using the above-determined cutoff value, and the survival curves

of these two groups were plotted (p = 0.008; Figure 2L). The risk

scores and risk statuses of each sample are listed in Table S2. The

prognostic factor-associated receiver operating characteristic

(ROC) curves were plotted, and the area under the ROC

curves (AUC) showed that the risk score was highly predictive

of survival at 1 (AUC = 0.673), 3 (AUC = 0.681), and 5 (AUC =

0.697) years (Figure 2M). Overall, the low-risk samples had

superior prognoses compared to those of the high-risk samples,

suggesting that the prognostic risk score signature has a robust

ability to predict OS in BLCA patients.
2.3 Construction of a nomogram for
predicting prognosis

A nomogram for predicting OS in BLCA samples was

constructed by integrating age, sex, stage, AJCC TNM and risk

score (Figure 3A). As shown by the calibration curves for

survival at 1, 3, and 5 years (Figure 3B), the nomogram

accurately predicted OS in BCLA patients. As the AUC

illustrates, compared with other indicators such as age

(AUC = 0.676) and prognostic risk score signature (AUC =

0.667), the nomogram (AUC = 0.784; Figure 3C) had more

promising prognostic value. Decision curve analysis showed that

the nomogram had good prediction performance at 1, 3 and 5

years, especially at 3 and 5 years (Figure 3D). Although age and

stage, which were related to overall survival in the univariate Cox

analysis, had no correlation with overall survival in the

multivariate Cox analysis, the nomogram always maintained

good utility in predicting overall survival (Figures 3E, F).
2.4 Validation of the copper-related
prognosis signature for bladder cancer
by clustering analysis

First, we analyzed the differences in expression of 14 candidate

genes in tumor and normal tissues based on the data in the

TCGA-BLCA dataset. The data were screened using the

prognostic model of copper-related genes (Figure 4A). qPCR

was performed to validate the results in normal urothelial cells

and bladder cancer cells in vitro (Figure 4B). Unsupervised

clustering was then used to analyze the TCGA-BLCA

expression profile based on the prognosis-related CRGs and on

all the prognosis-related genes for two CRG clusters (A, B)

(Figure 4C) and three gene clusters (A-C) (Figure 4F). Survival

analysis showed that two types of clustering methods effectively

predicted the OS of patients with bladder cancer (p value < 0.001)

(Figures 4D, G). Principal component analysis showed that CRG

clusters effectively distinguished bladder cancer samples

(Figure 4E). The heatmap obtained after clustering is shown in

Figure 4I. The alluvial diagram (Figure 4H) shows the distribution
frontiersin.org
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FIGURE 2

The predictive power of prognostic risk score signature in clinical characteristics among BLCA patients (A, B) The forest plot of the univariate
and multivariate Cox regression analysis in TCGA cohort. (C-I) The relationship of risk score and clinical characteristics, including age (C), sex
(D), tumour grade (E), distal metastasis (F), lymphoid metastasis (G), TNM stage (H), and tumor invasion (I). (J–L) The comparison of overall
survival (OS) between low- and high-risk score groups in the training set (J) and the test set (L), and the progression-free survival (PFS) in
training set (K). (M) The prediction accuracy of the risk score measured by ROC curves at 1, 3, 5 years in the training set. The area under the
curve (AUC) is 0.673, 0.681, 0.697 respectively.
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of the risk scores in the above copper-related prognostic models

among different clusters and their correlation with clinical

outcomes. The risk scores for the CRG clusters and gene

clusters are also shown in boxplots (Figures 4J, K). In CRG

clusters, Cluster B had a higher risk score than Cluster A, while

in gene clusters, Cluster B had the highest risk score.
2.5 Immune-related features and
response to immunotherapy in the low-
and high-risk score groups

A total of 411 BLCA samples were divided according to

recently defined immune subtype categories; the samples were

grouped into the wound-healing C1 immune subtype, the IFN-g
dominant C2 immune subtype, the inflammatory C3 immune

subtype, and the lymphocyte-depleted C4 immune subtype. The

relationship between subtype group and risk score calculated

based on the prognostic signature described above is plotted in

Figure 5A. The plot shows that the risk scores of bladder cancer

patients with the C1 immune subtype are higher than those of

patients with other immune subtypes. An analysis of the

immune microenvironment and immune cell infiltration in

patients with bladder cancer is shown in Table S3. The high-

risk group showed remarkably poor immune-promoting cell

population infiltration, including poor infiltration by CD8 T
Frontiers in Oncology 06
cells and activated dendritic cells (aDCs). Consistent with the OS

advantage observed in the low-risk group compared to the high-

risk group, M2 macrophages were inhibited in the low-risk

group. CD8 T cells and T helper (Th) 17 cells were associated

with poor survival outcomes in the high-risk group (Figure 5B).

Correlation analysis of the expression of 14 prognostic genes and

the numbers of various immune cells was also performed in the

TCGA-BLCA cohort; the results are shown in Figure 5E. The

analysis of immune function indicated that APC costimulation

function, checkpoint function, and T-cell coinhibitory function

were elevated in the high-risk group, demonstrating that

immune-suppressed patients can respond to immunotherapy

(Figure 5C). Although immunotherapy through administration

of immune checkpoint inhibitors brings hope to cancer therapy,

many cancer patients respond poorly to immune checkpoint

inhibitors. Our investigation of the use of the prognostic risk

score signature to distinguish BLCA patients with different

responses to ICIs demonstrated that the expression levels of

several significant immune checkpoint target molecules were

higher in the high-risk group (Figure 5D) and that patients in the

high-risk group displayed poorer therapeutic responses to ICIs,

suggesting that quantification of the copper-related prognostic

risk score signature is a promising predictor for indicating the

therapeutic response to immunotherapy (Figure 5F). In

addition, based on the treatment status and therapeutic

response characteristics of bladder cancer patients receiving
A B

D E F

C

FIGURE 3

The predictive power of a nomogram incorporated with risk score and clinical features in overall survival of patients (A) Nomogram predicting
overall survival of patients in training set. (B) The calibration plots of the nomogram at 1, 3, 5 years. The x coordinate value represents the
nomogram-predicted survival, and the y coordinate value represents observed overall survival. (C) ROC curves for risk score, nomogram and
clinical characteristics. (D) Decision analysis curve of the nomogram in the 1-year, 3-year, and 5-year. (E, F) The forest plot of the nomogram in
univariate Cox and multivariate Cox regression analysis.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1081091
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1081091
immunotherapy in the Tumor Immune Dysfunction and

Exclusion (TIDE) database, we further found that bladder

cancer patients in the high-risk group had higher scores for

immune exclusion (Figure S3C), CD274 expression level, and

MDSC grade than those in the low-risk group.
Frontiers in Oncology 07
In addition to the above-described exploration of the

relationship between risk scores and tumor immune

characteristics, the differences between the high- and low-risk

groups in tumor microenvironment were further investigated.

This included confirming that the risk score of the CRG
A B

D E

F G

I

H

J

K

C

FIGURE 4

Validation of the copper-related prognosis signature for BLCA by clustering analysis (A) The expression level of 17 copper-related genes
between the normal and tumour samples in the TCGA-BLCA dataset. (B) The mRNA level of 17 copper-related genes between the SVHUC-1
and UMUC3 cells. The results are presented as the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001). (C, F) The
unsupervised clustering plots of TCGA-BLCA expression profile based on the prognosis related CRGs and all the prognosis related genes,
respectively for two CRGclusters and three geneclusters. (D, G) Kaplan–Meier analysis of the OS in CRGclusters and geneclusters. (E) Principal
component analysis of TCGA-BLCA samples through CRGclusters. (H) The alluvial diagram of copper-related prognosis signature risk scores,
CRGclusters, geneclusters and clinical outcomes. (I) The heatmap of clinical features of the CRGclusters and geneclusters in BLCA samples. (J,
K) The boxplot plots demonstrated the risk scores of CRGclusters and geneclusters.
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prognostic model was negatively correlated with the presence of

tumor stem cells (Figure 5G); this demonstrated that the

carcinogenic mechanism of CRGs in BLCA was not associated

with mRNA expression-based stemness scores (RNAss). It was

also confirmed that the high-risk group had higher scores in the

tumor microenvironment score categories StromalScore,

ImmuneScore, and EstimateScore (Figure 5H).
2.6 Gene set variation analysis and
response to chemotherapy and to
targeted therapy

The gene sets represented in “c2.cp.kegg.v7.4” retrieved from

MSigDB were used to conduct GSVA enrichment analysis. The

results indicated different biological behaviors in the low-risk and

high-risk groups, and several crucial metabolic pathways, including

linoleic acid metabolism, alpha-linoleic acid metabolism and the

citrate cycle, were enriched in the low-risk group (Figure 6J).

Moreover, some pathways associated with immune biological

processes, including the T-cell receptor, B-cell receptor and

chemokine signaling pathways (Figure 6J), were enriched in the

high-risk group, consistent with the analysis of immune infiltration.

In addition to immunotherapy, chemotherapy and targeted therapy

are also important treatments for bladder cancer patients and can

significantly improve patient prognosis. Therefore, the relationship

between risk score and resistance to therapy was explored.
Frontiers in Oncology 08
Sensitivity to multiple drugs was calculated using the

“oncoPredict” R package to predict the therapeutic response. As

shown in Figure 6, patients with high risk scores were relatively

insensitive to the chemotherapeutic agents gemcitabine and

vincristine and to the targeted therapy agent sorafenib, all of

which are widely used in the treatment of patients with advanced

BLCA. To screen for potential therapeutic agents for BLCA based

on the CRG prognostic signature, we further analyzed the

expression of drug target genes in the low-risk and high-risk

groups. The results demonstrated that the response rates to

cetuximab (C1R, C1S, C1QA, C1QB, C1QC, FCGR2A, FCGR2B

and FCGR3A), cisplatin (MPG), trastuzumab (ERBB2) and

sunitinib (CSF1R) were significantly higher in the high-risk group

than in the low-risk group (Figure 6I).
2.7 Validation of the expression of
prognosis-related CRGs in bladder
tissues

To verify the differential expression and the prognostic value

of the 14 CRGs, we next compared the protein expression of the

above 14 CRGs in the high-risk and low-risk groups as reported

in the HPA database. The results of immunohistochemical

staining indicated that, compared to the samples in the low-

risk group, the protein expression of HEPH, ACLY, MT1A,

LOXL2, MOXD1, TFRC and GCLM was obviously elevated in
A B D

E F G H

C

FIGURE 5

The description of immune-related characteristics in the BLCA samples based on copper prognostic signature (A) The relationship between risk
score and immune subtype in the BLCA samples. (B) The immune cell infiltration difference between high- and low- risk score groups. (C) The
difference of biological immune-related functions in high- and low- risk score groups. (D) The difference of ICIs-related molecules expressions
in high- and low- risk score groups. (E) The correlation results of the expression of 14 prognostic genes and the numbers of various immune
cells in the TCGA-BLCA cohort. (F) The prediction of different therapeutic responses to ICIs in BLCA cohort under the prognostic risk score
signature. (G) The correlation between risk score of the CRG prognostic model and the presence of tumor stem cells. (H) The correlation
between risk score of the CRG prognostic model and the tumor microenvironment score categories StromalScore, ImmuneScore, and
EstimateScore.
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the samples in the high-risk group. Furthermore, the protein

expression of GPX1, NDOR1, and OXSM was elevated in the

tissue samples from the low-risk group. The HPA database did

not report the protein expression of S100A5, SNCB, SNAI5, or

STEAP4 (Figure 7).
2.8 Identification and exploration of
MOXD1 in depicting the tumor
immune landscape

First, the interactive relationships, regulation bonds and the

significance of the correlations in the 14 CRGs in BLCA patients

were depicted in a network plot (Figure 8A). To further identify

genes that are closely associated with immune characteristics for

subsequent study, we analyzed the survival and clinical

outcomes associated with expression of the above 14 genes
Frontiers in Oncology 09
based on the expression profiles found in samples from

bladder cancer patients in the IMvigor210 dataset who had

been treated with immunotherapy. The results showed that

only one gene, MOXD1, was significantly associated with

differential survival in the IMvigor210 cohort, and its

expression was correlated with the patients’ clinical response

(Figure 8B). MOXD1 was therefore used to explore the

association between gene expression and clinical outcome

(Figure 8C) as well as clinical characteristics (Figures 8D-H) in

the TCGA-BLCA cohort. In addition, to further explore the

predictive value of MOXD1 regarding the response to

immunotherapy in bladder cancer patients, we utilized the

Comprehensive Analysis on Multi-Omics of Immunotherapy

in Pan-cancer (CAMOIP) database to analyze the immune

characteristics of the patients in the groups with high and low

expression of MOXD1. The results indicated that the MOXD1

expression level of samples in the Rose cohort increased as the
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FIGURE 6

Prognostic risk score signature in the role of prediction in sensitiveness of chemotherapy and targeted therapy The response differences
between low- and high-risk score groups to Cisplatin (A), Gemcitabine (C), Vincristine (E), Sorafenib (G). The association between risk scores of
patients and drug sensitivity of Cisplatin (B), Gemcitabine (D), Vincristine (F), Sorafenib (H). (I) The boxplot of potential target genes in low- and
hgh-risk score groups. *p < 0.05; **p < 0.01; ***p < 0.001. (J) The heatmap of GSVA enrichment between low- and high-risk score groups.
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risk of death from bladder tumors decreased (Figure 8I),

consistent with the results obtained using the IMvigor210

cohort. An analysis of immune cell infiltration in patients with

bladder cancer in the Mariathasan cohort is shown in Figure 8J.

The group with high expression of MOXD1 showed remarkably

poor cell population infiltration by activated dendritic cells and

activated mast cells. Although there was no significant difference

in CD8 T cells between the two groups, CD4 T cells were

activated in all populations of samples with high MOXD1
Frontiers in Oncology 10
expression (Figure 8J). A GSEA comparison of the groups

with high and low expression of MOXD1 was also conducted;

the resulting top 15 significant pathways are depicted in a ridge

plot (Figure 8K). The significant pathways include the primary

immunodeficiency and chemokine signaling pathways. The

GSEA enrichment analysis also showed that the group with

high expression of MOXD1 had greater enrichment of cell-

related pathways that differed significantly with respect to

immune cell infiltration (Figure 8L). Correlations between the
FIGURE 7

Validation of the 14 prognostic CRGs in protein level The immunohistochemistry staining results of HEPH, ACLY, MT1A, LOXL2, MOXD1, TFRC,
GCLM, GPX1, OXSM, NDOR1 between low-grade and high-grade BLCA tissues from the HPA database.
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FIGURE 8

Identification and exploration of the MOXD1 in depicting tumour immune landscape (A) The network plot of interactive relationships, regulation
bonds and their correlation significance between the 14 CRGs in BLCA patients. (B) The comparison of overall survival (OS) and clinical response
between low- and high-expression of MOXD1 in the IMvigor210 cohort. (C–H) The comparison of overall survival and clinical characteristics in
the TCGA-BLCA cohort. (I) Kaplan-Meier analysis with the log-rank test of high and low expression group of MOXD1. (J) Analysis of immune cell
infiltration in bladder cancer samples with high- and low- expression in Mariathasan cohort. ns p>0.05; *p < 0.05; **p < 0.01; ***p < 0.001. (K,
L) Gene Set Enrichment Analysis (GSEA) of the high and low expression level of MOXD1 groups. (M, N) The correlation analysis between MOXD1
and immune checkpoint inhibitor genes, and the differences of expression levels of surface markers (CD4 T cells, mast cells, macrophages,
antigen presenting cells) between the high and low MOXD1 expression group in the IMvigor210 cohort.
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expression of MOXD1 and the expression of immune

checkpoint inhibitor genes (Figure 8M) and differences in the

expression levels of surface markers for CD4 T cells, mast cells,

macrophages, and antigen-presenting cells between the high and

low MOXD1 expression groups were analyzed and validated in

the IMvigor210 cohort (Figure 8N). It was confirmed that the

group with high expression of MOXD1 had a promising

immune response to immunotherapy.
2.9 High expression of MOXD1 in
fibroblasts promoted an active tumor
immune microenvironment according to
scRNA analysis

We then attempted to explore the localization of MOXD1 in

the tumor microenvironment and its specific impact on the

tumor immune microenvironment (TIM) by analyzing

the single-cell analysis expression profiles of bladder cancer in

the GSE135337 dataset. Seven primary tumor tissue samples and

one normal tissue sample were clustered and annotated into

seven clusters, including epithelial (precancerous) cells,

epithelial (tumor) cells, endothelial cells, T cells, B cells,

myeloid cells, and fibroblasts (Figure 9A). After dimensionality

reduction, 14 candidate copper-related genes were found to be

predominantly highly expressed in fibroblasts and endothelial

cells; moreover, MOXD1 was significantly highly expressed in

fibroblasts (Figures 9B, C). To further verify the localization of

MOXD1 in fibroblasts in bladder cancer tissue, we explored the

correlation of MOXD1 expression with fibroblasts in the TIMER

2.0 database. The results demonstrated that under the TIDE,

XCELL, EPIC, and MCPCOUNTER algorithms, MOXD1

expression was positively correlated with tumor infiltration by

fibroblasts (Figure 9D). Furthermore, we explored pathways

associated with ligand−receptor signaling among various cell

populations by cell−cell communication analysis. The results

demonstrated that the CXCL signaling pathway and the

complement signaling pathway in fibroblasts were closely

related to T cells, B cells, and myeloid cells (Figure 9E),

suggesting that fibroblasts are a crucial cellular component in

the progression of bladder cancer. Through analysis of the

signaling pathway, we found increased ligand−receptor

signaling between fibroblasts and T and B cells through the

CXCL12-CXCR4 and CXCL2-CXCR2 axis in bladder cancer

tissues as well as enhanced signaling from fibroblasts to myeloid

cells, including signaling involving C3-CR2, C3-(ITGAX

+ITGB2), C3-(ITGAM+ITGB2), and C3-C3AR1. The

interactions indicated that fibroblasts might recruit T cells and

B cells and regulate the proliferation and activation of

macrophages (Figure S3). In addition, we found that

interactions between fibroblasts and immune cells through the

IL-10 signaling pathway were significantly increased in the

tumor microenvironment in patients with high MOXD1
Frontiers in Oncology 12
expression (Figure 9F) compared with patients with low

MOXD1 expression (Figure 9G).
2.10 Knockdown of MOXD1 in fibroblasts
significantly inhibited the proliferation
and migration of BLCA cells

The role of MOXD1 was validated in in vitro experiments.

MOXD1expression infibroblastswasknockeddownusing siRNA-

MOXD1; the results are shown in Figure 10A. siRNA 2 yielded the

best knockdownefficiency, and itwas selected for use in subsequent

experiments. CCK8 cell growth experiments showed that

conditioned medium from MOXD1 knockdown fibroblasts

inhibited the proliferation of BLCA cells (Figures 10B, S4A). The

docetaxel resistance of UMUC3 cells was then measured using an

IC50 assay; the results showed that exposure to conditioned

medium from si-MOXD1 fibroblasts decreased the IC50 of

UMUC3 cells for docetaxel compared that of to negative control

UMUC3 cells (Figure 10C). A scratch wound assay was used to

determine the effect of MOXD1 on the migratory ability of BLCA

cells. MOXD1 expression in fibroblasts increased the migratory

abilityofUMUC3and5637 cells (Figures 10D, S4B). Themigratory

ability of UMUC3 cells was also determined using a Transwell

assay, and the results were consistent with those obtained using the

scratch wound assay (Figure 10E).
3 Discussion

Because copper participates in many cancer-associated

biological processes, including mitochondrial respiration,

antioxidant defense, mitogenic signaling and autophagy,

abnormalities in copper metabolism are crucial in tumorigenesis,

cancer progression and cancer therapy (16). Serumcopper and zinc

levels are closely related to the expression of HIF1-a and VEGF in

bladder cancer tissue, indicating that copper plays an important

role in angiogenesis. Logistic regression analysis suggests that

increased plasma copper is a risk factor for the development of

bladder cancer (17). It has been reported that copper transporter

receptor 1 (CTR1) influences sensitivity to platinum-based

neoadjuvant chemotherapy for bladder muscle-invasive bladder

cancer (18). However, almost all studies conducted to date have

been limited to individual genes, and few comprehensive studies

have focused on the relationship between copper and bladder

cancer. Our study provides a robust risk prediction signature for

bladder cancer and may help investigators understand the role of

coppermetabolism in bladder cancer progression and lead tomore

in-depth studies.

We constructed a prognostic risk signature for predicting the

OS of bladder cancer patients in the TCGA cohort through Cox

regression analysis and LASSO Cox regression analysis and

validated it in the GEO database; thus, this signature can be used
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to screen patients for low survival. Our signature is also an

independent prognostic factor for bladder cancer. A nomogram

that integrates several specific clinical features was constructed to

enhance the predictive power of the model. In addition, using gene

cluster analysis, we further evaluated the value of the genes

identified using the prognostic model in predicting prognosis and

risk in bladder cancer patients and confirmed the predictive

advantage of establishing a prognostic model based on copper-
Frontiers in Oncology 13
related genes. In addition, using unsupervised cluster analysis, we

confirmed that the 14 genes that constitute the prognostic model

effectively distinguish bladder cancer patients with different

prognostic outcomes.

Among the 14 identified candidate genes, HEPH, TFRC, and

LOXL2 were the genes with the most frequent mutations.

HEPH, a multicopper ferroxidase, is a membrane-bound

homolog of ceruloplasmin; it contains copper-binding sites
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FIGURE 9

Stromal MOXD1 interacts with immune cells in bladder cancer (A) UMAP plot displaying the composition of 7 main cell clusters derived from
bladder cancer samples. (B) UMAP plot displaying the expression level of MOXD1 in the whole cell clusters. (C) Bubble diagram showing the
expression distribution of MOXD1 in the whole cell clusters. (D) Graph of correlation between MOXD1 and fibroblast fractions in bladder cancer
from TIMER database. (E) Circos plots showing putative ligand-receptor interactions between fibroblasts and other cell clusters. (F, G) Circos
plots showing individual ligand-receptor pairs between fibroblasts and immune cell clusters of tumour microenvironment with high-MOXD1 (F)
and low-MOXD1.
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FIGURE 10

In vitro experiments (A) Relative protein level of MOXD1 in fibroblasts following siRNA knockdown. GAPDH served as loading control. Statistical
graphs are presented as bar plot. (B) The CCK8 cell growth experiment was used to analyze the influence of stromal MOXD1 on the
proliferation ability of UMUC3 cells. The results are presented as the mean optical density (OD) at 450 nm for triplicate wells two hours after the
incubation. The results are presented as the mean ± SD of three independent experiments (*p < 0.05, **p < 0.01, ***p < 0.001). (C) The
Docetaxel resistance of stromal MOXD1 for UMUC3 cells was then measured by the IC50 assay, and the result showed that si-MOXD1
fibroblasts decreased the IC50 value of UMUC3, comparing to negative control group (Figure 10C). (D) The scratch wound assay determined
that knock-down of MOXD1 in fibroblasts attenuated the migration ability of UMUC3 cells. The quantifications of cell migration were presented
by the histogram. (E) Transwell assay indicated that knock-down of MOXD1 in fibroblasts weakened UMUC3 cells invasion. The quantifications
of cell migration were presented by the column chart.
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that are involved in the transport of iron from enterocytes. Low

expression of HEPH results in dysregulation of iron homeostasis

and is associated with the occurrence of colorectal carcinoma

(18, 19). Additionally, aberrant expression of HEPH has been

observed in BT-474 and T-47D breast cancer cells (19). TFRC, a

cofactor for oxygen-carrying proteins, is crucial for cell

proliferation, and a study of TFRC in brain tissue has shown

that it regulates the transformation of ferrous iron to the ferric

form, a process that is related to copper and zinc SOD levels (20).

Aberrant iron ions may then result in the production of ROS,

iron deposition, abnormal lipid peroxidation, and finally

abnormal cell growth, apoptosis, and other biological events.

In glutathione-S-transferase placental form-positive liver

neoplastic lesions, the expression of TFRC is upregulated, and

its increased expression may be a hallmark of enhanced ROS

production (21). LOXL2, a copper-containing enzyme, is closely

related to reduced survival time and poor prognosis since it

promotes the proliferation, migration, invasion, and metastasis

of numerous types of cancers, including breast cancer, lung

cancer, colon cancer, and liver cancer. Increased expression of

LOXL2 also results in reduced chemosensitivity in triple-

negative breast cancer. A possible mechanism through which

this may occur is the creation by LOXL2 of a collagen scaffold

that helps disseminate cancer cells; copper depletion decreases

collagen cross-linking, as measured by LOXL2 levels, thus

preventing breast carcinoma metastasis. In certain types of

cancer, this process is more copper-dependent (22–24).

Another significant candidate gene is the gene that encodes

six-transmembrane epithelial antigen of the prostate 4

(STEAP4). STEAP4 is a transmembrane protein that acts as a

metalloreductase during the transport of copper, and it prevents

cell oxidative stress by importing copper to the cytosol.

Overexpression of STEAP4 is thought to increase ROS, and

this may increase gene mutation frequency and the progression

of prostate cancer (25).

We also used clinicopathological characterization in this

study. As we expected, the cases in the TCGA cohort with

higher risk scores had worse outcomes, including more

metastatic lesions, more regional lymph node involvement,

higher-grade tumors, more advanced tumor stage, and larger

primary lesions and involved areas. This indicates that our

signature is powerful in predicting the extent of tumor

progression. Our results also show that the tumor

microenvironment in patients with lower risk scores is more

likely to contain CD8 T cells and activated dendritic cells and

less likely to contain M2 macrophages. CD8+ T cells play a

crucial role in the regulation of immune functions such as

immune surveillance of tumor cells (26), and dendritic cells

are needed for generation of antitumor immunity (27). The

macrophage immune mechanism involves activated M1 and M2

macrophages and angiogenic and immunosuppressive molecules

that inhibit the immune response to tumor cells (28). To

evaluate whether our signature shows promise in predicting
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patient response to ICIs, we calculated TIDE scores for the high-

risk and low-risk groups. The TIDE score reflects tumor

immune escape in the context of different cytotoxic T

lymphocyte levels and has been widely used to predict disease

outcome in patients who have been treated with ICIs (29, 30).

Patients with higher risk scores generally have higher TIDE

scores, indicating that they are more vulnerable to immune

dysfunction and escape. A number of recently published articles

focusing on pyroptosis in bladder cancer also noted that OS,

clinical outcome, and response to immunotherapy in bladder

cancer patients with high cuproptosis risk were significantly

worse than those in the low-risk group. These results are

consistent with our results and suggest that copper

metabolism, and even pyroptosis, should be considered when

devising personalized treatment for patients with bladder cancer

(1, 31).

To our surprise, the results of our study revealed that

chemotherapy and target drug sensitivity differed in the high-

and low-risk groups. Patients with lower risk scores tend to be

more sensitive to most chemotherapeutic and targeted agents,

such as gemcitabine, vincristine, and sorafenib. In contrast,

patients in the high-risk group were more sensitive to

cisplatin. Cisplatin can be used as a first-line agent in the

treatment of bladder cancer, and its use considerably reduces

the risk of bladder cancer-induced death (32). Gemcitabine, a

commonly used intravesical chemotherapeutic drug, has

significant efficacy and value in reducing the recurrence of

non-muscle-invasive bladder cancer (33). Sorafenib is a

multikinase inhibitor that inhibits tumor growth mainly

through its anti-angiogenic effect, and a previous study

showed that it has an inhibitory effect on the proliferation of

human bladder cancer cell lines (34, 35). “OncoPredict” is a

widely accepted R package that is used to predict drug responses

based on gene expression levels. The drug sensitivities of the

patients in our study were consistent with the patients’ risk

scores after analysis of the 17 gene expression levels using

“oncoPredict”, suggesting that the signature may help predict

drug responses in the clinic.

We identified MOXD1 among 14 candidate genes analyzed

by network construction and external validation. MOXD1 was

the only candidate gene found to be significantly associated with

overall survival in the IMvigor210 cohort. A monooxygenase,

MOXD1 is primarily located in the endoplasmic reticulum,

where it binds copper ions. In the TCGA cohort, high

MOXD1 expression was associated with poorer overall

survival; however, validation in immunotherapy cohorts

showed that patients with high MOXD1 expression had longer

overall survival. The results suggested that high expression of

MOXD1 in the patients in the TCGA cohort who were treated

with methods other than immunotherapy, such as surgery alone

or chemotherapy, is indicative of poor response and survival and

that these individuals may be better candidates for treatment

with immunotherapeutic agents such as immune checkpoint
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inhibitors. Based on further exploration through single-cell

analysis, we also found that MOXD1 is mainly overexpressed

in fibroblasts, suggesting that fibroblasts may play an important

role in shaping the immune microenvironment in bladder

cancer by changing the transport and activity of copper ions.

This study has some shortcomings. First, the data used in

our analysis were retrieved from public databases and are

therefore likely to have selection bias that may influence the

accuracy of the analysis to some extent. In addition, the effect of

MOXD1 expression in stromal cells on immune cells is

unknown. Therefore, to increase the clinical significance of our

findings, in the future we will conduct an in-depth study of the

influence of copper-related gene expression in stromal cells on

immune cells and combine it with a study of clinical phenomena.
4 Materials and methods

4.1 Data preparation and processing

The original transcriptome sequencing (RNA-seq) data

profiles of BLCA and normal bladder tissue samples were

obtained from TCGA database (https://www.cancer.gov/about-

nci/organization/ccg/research/structural-genomics/tcga) in the

format of fragments per kilobase of transcript per million

mapped reads (FPKM). The 10 copper-related gene sets with

the largest number of genes were downloaded from MigSDB

(https://www.gsea-msigdb.org/gsea/msigdb) and were

incorporated into CRGs gene sets. The clinical information of

405 BLCA samples, including age, sex, pathological stage, grade,

AJCC TNM stage, and survival outcome, was also downloaded

from the TCGA database. The microarray data profiles and

clinical information of GEO: GSE13507 with complete clinical

outcomes were downloaded from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). Annotated by platform GPL6102,

the Entrez Gene IDs were correspondingly transformed into

gene symbols. If multiple probes were targeted to identical

Entrez gene IDs, the average value was adopted. The copper-

related gene sets with the top ten largest gene numbers were

retrieved from MigDSB database. After merging these gene sets,

duplicate genes were deleted to develop a target gene set

containing 180 genes (Table S1), and the expression levels of

these genes were extracted from the TCGA training set and GEO

validation set.
4.2 Difference analysis of the copper-
related genes in the normal and tumour
tissue samples

The “limma” package in R was used to determine the

copper-related DEGs in the normal bladder and BLCA tissue

samples. Statistically significant genes were considered by FDR <
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0.05. The conversion of the gene symbols into Entrez Gene IDs

was conducted by “org.Hs.e.g.db” package in R. The “pheatmap”

package in R was further used to depict the volcano plot and

heatmap of DEGs.
4.3 Construction and validation of a
copper-related prognostic risk
score signature

TCGA cohort samples were included in the training set, and

the test set was constructed by GEO: GSE13507 cohort samples.

First, the differentially expressed copper-related gene expression

data were combined with the corresponding prognostic

information based on the ID of the samples. Through

univariate Cox regression analysis in the training set, the genes

related to prognosis with a p value <0.05 were screened from

copper-related DEGs. The mutation and comutation in the

prognosis-related genes of the TCGA cohort were analysed by

the “maftools” R package. Furthermore, LASSO Cox regression

analysis was utilized to develop a prognostic risk signature

including the prognosis-related genes for predicting the OS of

BLCA samples by the “glmnet” R package. Tenfold cross

verifications were performed to determine the penalty

parameter (l) of the signature. The formula below was used to

calculate the risk score for the corresponding sample.

Risk Score = (Gene 1 expression × coefficient) + (Gene 2

expression × coefficient) +… + (Gene n expression × coefficient)

In the LASSO Cox regression analysis, “coefficient” refers to

the nonzero regression coefficients, in addition, “Gene n

expression” represents the prognosis-related gene expression

values. According to the median risk score, the samples were

classified into low- and high-risk groups. Kaplan-Meier analysis

with the log-rank test was used to compare the difference in OS

and PFS between the low- and high-risk score groups in the

training set, which was further validated by the OS of the low-

and high-risk score groups in the test set. The predictive

accuracy of the prediction signature was proven by plotting

the time-dependent ROC curve with the “survivalROC” R

package. In the samples of the TCGA cohort, the risk score

and clinical information were combined by the sample ID. The

limma package in R was used to analyse the correlation between

the risk score and clinical characteristics, including sex, age,

grade, tumor stage, and AJCC TNM stage. Significant differences

were confirmed with a p value < 0.05.
4.4 The analysis of principal-component
with or without prognostic risk
score signature

The “limma” R package was comprehensively used to

perform PCA on expression profiles in the TCGA cohort with
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all differentially expressed copper-related genes and genes

obtained from the signature to demonstrate the significant

discrimination of all samples by the prognostic risk score

signature. Conculsively, using the ggplot2 R package, the PCA

results presented a prominent two-dimensional distinction with

from the first two principal components.
4.5 Consensus clustering analysis of 14
prognosis related CRGs

Based on the expression profiles of 14 CRGs, the

“ConsensusCluster Plus 1.60.0” package in R was used to

estimate the unsupervised classes of TCGA-BLCA dataset

using the consensus clustering method, and two clusters A and

B were obtained respectively (36). Kaplan-Meier analysis with

the log-rank test was used to compare the difference in OS

between the different clusters. The “pheatmap” package in R was

further used to depict the heatmap of gene based on different

clusters. The “ggalluvial” package in R was performed to depict

the alluvial diagram of clinical outcomes, risk scores,

CRGclusters and geneclusters.
4.6 GSVA

GSVA, a nonparametric and unsupervised method, was

performed by the “gsva” R package on the sample expression

matrix to compare the variations in functional pathways

between the low- and high-risk groups (37). The reference

gene lists, “c2.cp.kegg.v7.4.symbols” gene sets, were obtained

from the molecular signatures database (https://www.gsea-

msigdb.org/gsea/msigdb). Enrichment pathways with

significant differences are indicated by FDR <0.05.
4.7 Features comparison of the low- and
high-risk score groups

The sensitivity of chemotherapy drugs and target drugs in

each sample were predicted using the oncoPredict R package

(38). The “GSEABase” and GSVA R packages were used for

performing ssGSEA to depict the immune-infiltrated status of

samples in the training set, which incorporated immune cell

groups and corresponding activities in the TME, such as

activated dendritic cells, M2 macrophage, parainflammation

(Table S3) (39, 40). The definition of C1-C4 immune subtype

was deriveded from previous study (30). The distinction of

immune-infiltrated status in the groups with low- and high-

risk scores was compared according to the enrichment scores

calculated by the ssGSEA algorithm. Conclusively, the TIDE

(http://tide.dfci.harvard.edu/) algorithm was used to predict and

compare the different responses to ICIs in low- and high-risk
Frontiers in Oncology 17
groups. A response with a significant difference was indicated by

a p value < 0.05. The “ESTIMATE” package in R was used to

calculate the ImmuneScore, StromalScore, and EstimateScore.

Cancer stemness was computed by RNAss.
4.8 Validation of MOXD1 gene in
immune checkpoint inhibitor
treatment cohorts

Expression profile of 195 ICI-treated bladder urothelial

carcinoma samples in IMvigor cohort was downloaded from

(http://research-pub.gene.com/IMvigor210CoreBiologies/.

RNA-seq) along with the relevant clinical data. Kaplan-Meier

analysis with the log-rank test was used to compare the

difference in OS between the low- and high-risk score groups

with a best cutoff value in the IMvigor cohort. Using the

CAMOIP online database (version: 1.1; http://www.camoip.

net/) (41), groups with different expression level of MOXD1

were analysed in Rose cohort and Mariathasan cohort (42, 43).
4.9 Construction of a nomogram for
overall survival prediction

The “rms” R package was used to develop a nomogram

incorporating by age, sex, tumour stage, grade, and a prognostic

risk score signature for predicting OS in the TCGA cohort. The

accuracy of the nomogram was represented by a time-dependent

calibration curve. In addition, multivariate Cox regression

analysis was performed to verify whether the prognostic risk

score signature can be independently used as a predictor of OS in

bladder cancer. Then, the AUC was calculated by an online ROC

curve to represent the prognostic value of the nomogram.
4.10 Validation of protein expressions of
14 prognostic CRGs

The Human Protein Atlas (HPA) (https://www.proteinatlas.

org/) database was used to validate the protein expression of 14

prognostic CRGs between low-grade and high-grade samples

using immunohistochemistry (IHC).
4.11 Single cell RNA sequencing analysis

The scRNA-seq dataset (GSE135337) of bladder cancer was

obtained fromGEO database. The “DropletUtils” package (v 3.13)

in R was performed to conduct quality control. The data

normalization was performed using the NormalizeData function

of the “Seurat”package. Then, cell populationswere clustered using

the FindNeighbors and FindClusters function of the “Seurat”
frontiersin.org

https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
http://tide.dfci.harvard.edu/
http://research-pub.gene.com/IMvigor210CoreBiologies/.RNA-seq
http://research-pub.gene.com/IMvigor210CoreBiologies/.RNA-seq
http://www.camoip.net/
http://www.camoip.net/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://doi.org/10.3389/fonc.2022.1081091
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.1081091
package. A dimension reduction method-Uniform Manifold

Approximation and Projection (UMAP), was performed to

depict cell clusters. We analyzed intercellular communication

networks from scRNA-seq data with “CellChat”, a package in R

(44). TIMER 2.0 database (timer.cistrome.org) was used to

analyzed the correlation of fibroblasts and MOXD1.
4.12 Cell culture

Human urothelial cell SVHUC-1 and bladder cancer cells

UMUC3, 5637 were obtained from American Type Culture

Collection Cell Biology Collection (ATCC, Manassas, VA,

USA) and maintained in Department of Urology, Shanghai

General Hospital (Shanghai, China). Cells were cultured in

DMEM medium supplemented with 10% fetal bovine serum

(FBS) at 37°C in a humidified incubator containing 5% CO2.
4.13 RNA extraction and real-time
quantitative PCR

Total RNA was extracted from SVHUC-1 (normal urothelial

cell line) and UMUC3 (bladder cancer cell line). RT-qPCR

experiments were performed as previously described. The

mRNA expression level of the 14 CRGs was calculated by the

2–DDCt method and the results were plotted by using ACTB as

the reference gene. The primers used in this study were shown in

Supplementary Table S4.
4.14. Transfection, RNA interference and
Western blot

SiRNA against human MOXD1 and control siRNA was

purchased from GENE (Genechem, Shanghai, China). 2× 106

fibroblast cells were plated in 6 wells dishes and infected with

50nM of siRNA using Lipofectamine™ 3000 (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s

instructions. 36h after transfection, cells were lysed in RIPA

for Western blot. Total cellular proteins were lysed by RIPA

buffer containing protease inhibitor. Protein concentration were

estimated by the BCA (Thermo Scientific), 40mg were loaded per
lane on 10% SDS-PAGE and transferred onto polyvinylidene

fluoride (PVDF) membranes (Millipore, USA). After blocked

with 5% fat-free milk, the membranes were incubated with anti-

MOXD1 antibody (1:1000, Abcam, USA) or anti-GAPDH

antibody (1:1000, Abcam, USA) at 4 °C overnight. The

membranes were then incubated with peroxidase (HRP)-

conjugated secondary antibody (1:1000, Cell Signaling

Technology, USA). Signals were visualized with Immobilon™

western chemiluminescent HRP substrate (Millipore) and

analyzed by Image Lab Software.
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4.15 Isolation and culture of fibroblasts

The fibroblasts were isolated from a human bladder biopsy.

Briefly, after incubation in 500 mg/mL thermolysin at 4 °C

overnight, the stroma was separated from the urothelium, then

the stromawas treated by0.125U/mLcollagenaseH for 30minutes

at 37°C. The fibroblasts were enzymatically dissociated from the

stroma and then, cultured in the DMEM (Gibco) supplemented

with 10% FBS (Gibco) and 1% penicillin streptomycin (Gibco).
4.15 Conditioned medium preparation

First, 5 × 106 bladder fibroblasts were plated on 10-cm dishes

in regular growth media and allowed to adhere overnight. After

the knockdown with siRNA, the supernatant was collected after

culturing in fresh medium supplemented with 10% FBS for 48 h;

then the supernatant was collected and centrifuged at 5000 g for

10 min, filtered with 0.22 mm filters and kept at −80°C until use.
4.16 CCK-8 assay and IC50 assay

Cell survival rates were assessed by CCK-8 assay (HY-

K0301, MCE) following the manufacturer’s instructions.

Briefly, approximately 2000-10000 cells were seeded into 96-

well plates with 100mL medium, after 24h, a 10mL CCK-8

solution was added to each well. The absorbance at 450 nm of

each well were measured in a microplate reader after the plates

incubated for an additional 1h away from light. For IC50 assay,

UMUC3 cells were seeded in to 96-well plates at a density of

2000-5000 cells per well for 24h, then different concentration of

0, 1, 10, 50, 100, 200 nM Docetaxel contained in 100 mL si-

MOXD1 fibroblast conditioned medium or si-NC fibroblast

conditioned medium were incubated for a further 48h, cell

viability was tested by CCK-8 assay.
4.17 Transwell migration assay

Cell migration was determined by Transwell (Costar) migration

assay. UMUC3 cells and 5637 cells were precultured in serum-free

medium for 24 h. 1 × 104 cells suspended in 100ml were seeded in

serum-free medium in the upper chamber, and 900 ml si-MOXD1

fibroblast conditioned medium or si-NC fibroblast conditioned

medium with 10%FBS was added to the lower chamber. After

24 h, the non-migrating cells on the upper chambers were carefully

removed, andmigrated cells underside of the filter were stained with

0.1% crystal violet and counted in six different fields.
4.18 Cell scratch test

UMUC3 and 5637 cells were seeded in 6-well plate, cultured

with si-MOXD1 fibroblast conditioned medium or si-NC
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fibroblast conditioned medium for 48-72 hours, when the cells

reached a confluent state, a single scratch was made using a

sterile 200 ml tip. The floating cells were washed three times with

PBS, and serum-free DMEMwas added in the well. The image of

the scratch was captured before and after incubation in a 37°C

and 5% CO2 incubator.
4.19 Statistical analysis

Comparisons between two groups were calculated by the

Wilcoxon rank sum test, and comparisons among three or more

groups were performed by the K-W test (P < 0.05). Kaplan-Meier

analysis was conducted in the low- and the high-risk score groups

to assess the difference in prognosis. Moreover, the independent

predictors of OS in bladder cancer were identified by multivariate

Cox regression analysis. ROC curves were used to assess the

accuracy of the prediction ability of the prognostic risk score

signature and nomogram. R 4.0.5 for all statistical analyses.
5 Conclusions

In summary, this study depicted the landscape of crucial

copper-related genes in BLCA. We identified two molecular

subtypes of copper-related genes and constructed a copper-

related genes signature. The prognosis of BLCA patients was

predicted by the copper-related gene prognostic scoring system.

There were significant differences in TIM and drug sensitivities

between high and low score patients. In addition, we further

screened the MOXD1 gene as a key node affecting the relationship

between copper related genes and immune characteristics in

tumor tissues of BLCA patients. The MOXD1 and copper-

related gene prognostic scoring system could be helpful to

understand the tumor characteristics of BLCA and develop

personalized immunotherapy strategies.
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SUPPLEMENTARY FIGURE 1

The relationship between risk scores and survival status of samples in the

training set and validation set (A) In the training set, the distribution of risk
scores ranked from low to high; (B) the comparison of survival status

between low- and high- risk score groups. (C) In the validation set, the

distribution of risk scores ranked from low to high; (D) the comparison of
survival status between low- and high- risk score groups.

SUPPLEMENTARY FIGURE 2

Correlation analysis of risk score and tumour characteristics (A)
Correlation analysis of risk score and immune cell infiltration in TCGA-

BLCA cohort. (B)Correlation analysis of risk score and 14 prognostic CRGs

in TCGA-BLCA cohort. (C) Comparisons of immune landscape between
low- and high- risk group from ICIs-treated patients based on

TIDE algorithms.

SUPPLEMENTARY FIGURE 3

Cell-cell communication analysis of the tumour microenvironment.

Interactions between cell clusters in CXCL signaling pathway and

Complement signaling pathway.

SUPPLEMENTARY FIGURE 4

Cellular function experiments in 5637 cell line (A) The CCK8 cell growth

experiment was used to analyze the influence of stromal MOXD1 on the
proliferation ability of 5637 cells. The results are presented as the mean

optical density (OD) at 450 nm for triplicate wells two hours after the
incubation. The results are presented as the mean ± SD of three

independent experiments (* p < 0.05, * * p < 0.01, * * * p < 0.001). (B)
The scratch wound assay determined that knock-down of MOXD1 in
fibroblasts attenuated the migration ability of 5637 cells. The

quantifications of cell migration were presented by the histogram.
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