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Is CD19-directed chimeric
antigen receptor T cell
therapy a smart strategy
to combat central nervous
system lymphoma?

Kotaro Miyao1, Hirofumi Yokota2 and R. Leo Sakemura3,4*

1Department of Hematology and Oncology, Anjo Kosei Hospital, Anjo, Japan, 2Department of
Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan,
3T Cell Engineering, Mayo Clinic, Rochester, MN, United States, 4Division of Hematology, Mayo
Clinic, Rochester, MN, United States
Primary central nervous system lymphoma (PCNSL) is a rare form and

aggressive type of diffuse large B-cell lymphoma (DLBCL) that occurs in both

immunocompetent and immunocompromised adults. While adding rituximab

to chemotherapeutic regimens resulted in dramatic improvement in both

progression-free survival and overall survival in patients with non-central

nervous system (CNS) DLBCL, the outcomes of PCNSL are generally poor

due to the immune-privileged tumor microenvironment or suboptimal delivery

of systemic agents into tumor tissues. Therefore, more effective therapy for

PCNSL generally requires systemic therapy with sufficient CNS penetration,

including high-dose intravenous methotrexate with rituximab or high-dose

chemotherapy followed by autologous stem cell transplantation. However,

overall survival is usually inferior in comparison to non-CNS lymphomas, and

treatment options are limited for elderly patients or patients with relapsed/

refractory disease. Chimeric antigen receptor T (CAR-T) cell therapy has

emerged as a cutting-edge cancer therapy, which led to recent FDA

approvals for patients with B-cell malignancies and multiple myeloma.

Although CAR-T cell therapy in patients with PCNSL demonstrated promising

results without significant toxicities in some small cohorts, most cases of

PCNSL are excluded from the pivotal CAR-T cell trials due to the concerns

of neurotoxicity after CAR-T cell infusion. In this review, we will provide an

overview of PCNSL and highlight current approaches, resistance mechanisms,

and future perspectives of CAR-T cell therapy in patients with PCNSL.
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Introduction

Primary central nervous system lymphoma (PCNSL) is a

rare malignancy with an annual incidence of 4-7 per one million

people in the United States (1, 2). According to the World

Health Organization classification, PCNSL is categorized as a

sub-type of aggressive non-Hodgkin lymphoma (NHL) which

develops in the central nervous system (CNS) (3–5). Unlike most

other CNS malignancies, PCNSL is often responsive to

chemotherapy and/or radiation therapy. However, outcomes

are inferior compared to non-CNS lymphomas, with a median

overall survival of 1.5 months when untreated (6). Furthermore,

the prognosis for relapsed and/or refractory (R/R) PCNSL is

significantly worse, especially when patients are not eligible for

autologous stem cell transplantation (ASCT) or relapse

after ASCT.

Chimeric antigen receptor T (CAR-T) cell therapy has

emerged as a potent and potentially curative therapy in

hematological malignancies (7–9). Pivotal clinical trials of

CD19-directed CAR-T (CART19) cell therapy demonstrated

unprecedented results in non-CNS B-cell lymphomas and

acute lymphoblastic leukemia (ALL), leading to several FDA

approvals of CART19 cell products (10–21). Although novel

therapeutic approaches have improved overall response and

survival in non-CNS lymphomas, the application of CAR-T

cell therapy in PCNSL is not yet established. Nevertheless, recent

clinical data have suggested efficacy and tolerable safety of

CART19 cell therapy in secondary CNS lymphoma as well as

PCNSL (22–25).

In this review article, we will focus on CAR-T therapy in

patients with PCNSL, highlighting outcomes of reported cases

and offering future perspectives to overcome resistance and

improve CAR-T cell activity within the CNS.
Overview of PCNSL

PCNSL is a highly aggressive and rare NHL which includes

lesions in the brain, spinal cord, cerebrospinal fluid (CSF), or

eyes (3). Although rare, the incidence of PCNSL has been

increasing in recent years, especially in patients older than 65

(1). Patients with immunosuppressive conditions such as human

immunodeficiency virus 1 (HIV-1) infections can develop

PCNSL, but the etiology and treatment are separate from

immunocompetent patients with PCNSL (26). In this review

article, we will mainly discuss PCNSL developed in

immunocompetent patients and briefly review PCNSL in

patients with HIV-1 infection.

Frontline treatment strategies of PCNSL have been

improving. In the past, whole brain radiotherapy (WBRT)

alone was the standard therapy for decades. WBRT showed a

strong initial response, but the relapse rate was high and showed

poor survival (27). Chemotherapy alone, particularly high-dose
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methotrexate (MTX), showed better efficacy and less

neurotoxicity than WBRT. For example, prospective analyses

of treatment strategies in PCNSL revealed the safety and efficacy

of high-dose MTX-based induction therapy and cytarabine

(AraC)-based consolidation even in patients older than 60 (28,

29). These findings demonstrated the importance of high-dose

MTX-based induction and other consolidation therapy. WBRT

is also a selective consolidation approach especially for patients

who are not eligible for high dose chemotherapy followed by

ASCT. Some trials reported that the combination therapy of

chemotherapy and WBRT achieved higher response rates and

lower toxicity compared with chemotherapy alone. In a

prospective multicenter study, patients underwent rituximab,

MTX, vincristine, and procarbazine (R-MVP) and demonstrated

2-year overall survival (OS) of 67%, and no treatment-related

neurotoxicity was observed (30). However, there are concerns

about an increased risk of neurotoxicity after WBRT in long-

term survivors (31). Therefore, dose reduction of WBRT should

be considered when used as consolidation therapy. An alternate

approach for consolidation therapy to improve efficacy without

an increased risk of neurotoxicity is high dose chemotherapy

followed by ASCT for eligible patients. ANOCEF-GOELAMS

Randomized Phase 2 PRECIS Study reported that ASCT showed

superior event free survival after consolidations to WBRT (32).

Another prospective study showed WBRT and ASCT are both

feasible and effective consolidation after high dose MTX based

chemotherapy (33). The conditioning regimen is designed to

allow the chemotherapeutic drugs to penetrate the CNS and

thereby exert anti-tumor effects. One common conditioning

regimen used for this particular scenario was primarily a

combination of carmustine, etoposide (VP16), AraC, and

melphalan (L-PAM) (BEAM regimen) or thiotepa-based

treatments (34, 35). GOELAMS group reported an OS of 64%

at 4 years in patients treated with BEAM regimen (34).

Thiotepa-based and/or busulfan (BU)-based regimens have

also demonstrated high efficacy (35–38). Busulfan and thiotepa

(BuTT regimen) had an OS at 2 years of 48% (35). BuTT plus

cyclophosphamide (TBC regimen) may improve the efficacy

without neurotoxicity. Although TBC regimens demonstrated

CR rates of >80%, they were associated with high treatment-

related mortality, particularly in elderly patients (36, 38, 39).

Among various other conditioning regimens, upfront L-PAM,

cyclophosphamide, VP16, and dexamethasone (LEED) followed

by ASCT was reported for patients with newly diagnosed PCNSL

(40); no neurotoxicity was observed in the study. As a more

intensive treatment strategy, combination of a high-dose

regimen followed by ASCT and response-adapted WBRT was

attempted, but WBRT increased the incidence of severe

neurotoxicity (35, 41).

The prognosis of R/R PCNSL is poor. The median OS

without treatment was reported to be only 2 months (42).

Although there is no standard treatment strategy for R/R

PCNSL, numerous studies have been reported. A retrospective
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analysis revealed that the overall response rates of high dose

MTX rechallenge were 85% or higher (43, 44). However, this

study included patients only who achieved CR after first line

MTX-based therapies, and seven of 16 patients relapsed after the

salvage therapy. High dose chemotherapy followed by ASCT is

one of the available treatment strategies for R/R PCNSL for

patients who are eligible for intensive treatment, but the 2-year

overall survival probability was 45% (45, 46). Although these

conventional chemotherapy-based approaches commonly

showed high response rates, the duration of efficacy was

insufficient. Target kinase inhibitors may be a tolerable

approach for patients with R/R PCNSL. Ibrutinib, which is a

first-in-class Bruton’s tyrosine kinase (BTK) inhibitor, showed

77% of clinical responses in patients with R/R PCNSL (47).

Tirabrutinib, a second-generation BTK inhibitor, demonstrated

an overall response rate of 64% in a phase 1/2 study (48).

Although these therapies have shown varying degrees of

efficacy with acceptable safety profiles, other treatment

approaches, such as immunotherapy, are needed for R/R

PCNSL to achieve a durable response. Rubenstein et al.

conducted a phase I clinical trial of lenalidomide, a second-

generation immunomodulatory agent, maintenance therapy in

patients with PCNSL. They reported that the maintenance

therapy with lenalidomide after rituximab plus lenalidomide

therapy was feasible and prolonged the duration of response

(49). This study served as a proof of concept for immunotherapy

in PCNSL.
CD19 CAR-T cell therapy in PCNSL

Pivotal clinical trials of CART19 demonstrated unprecedented

efficacies in patients with R/R large B cell lymphoma or ALL,

which led to the FDA approval of tisagenlecleucel (tisa-cel),

axicabtagene ciloleucel (axi-cel), and lisocabtagene ciloleucel

(liso-cel) (16, 50). Most recently, the FDA has approved axi-cel

for the treatment of R/R follicular lymphoma and brexucabtagene

autoleucel (brexu-cel) for R/R mantle cell lymphoma. Currently,

various investigational drugs of CAR-T cell products are in the

pipeline of clinical development. Clinical trials evaluating CAR-T

cell therapy for large B cell lymphoma have mainly excluded

patients with CNS lymphoma due to the risk of potential

neurotoxicity with CAR-T cells, except for TRANSCEND

NHL001 (22), which allowed secondary CNS involvement.

According to Abramson et al., seven patients who enrolled in

this study had secondary CNS lesions, and six of these patients

were evaluable for CART19 efficacy. Three out of six patients

(50%) achieved a CR, no patients had Grade 3-4 cytokine release

syndrome (CRS), and two patients (33%) had Grade 3

neurological events. Some case studies have also evaluated the

efficacy and safety of CART19 for secondary CNS lymphoma (15,

22–24, 51). Similar to the TRANSCEND study, these cases also

demonstrated ORR of 30-50% with no cases of severe CRS and 0-
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30% of patients experiencing Grade 3-4 neurotoxicity. Based on

the favorable effect of CART19 in secondary CNS lymphoma,

CART19 cell therapy is becoming a potential treatment option for

PCNSL. Table 1 summarizes CART19 cell therapy approaches in

PCNSL. Frigault et al. recently reported a prospective study of

CART19 cell therapy mainly targeting PCNSL (52). This phase 1/

2 study of tisa-cel in adults (median age 63 years, range 34-81

years) with R/R PCNSL enrolled a total of 13 patients and

administered 12 patients with tisa-cel. One patient was excluded

from the trial due to disease progression during CAR-T cell

manufacturing. The majority of patients had the nongerminal

center B-cell subtype of DLBCL. All patients had prior history of

ibrutinib-based therapy, and patients were allowed to continue

these therapies up to 3 months after CAR-T cell infusion. Patients

received standard lymphodepletion chemotherapies offludarabine

(25 mg/m2/day) and cyclophosphamide (250 mg/m2/day) on days

-5, -4, and -3 of CAR-T cell infusion. CAR-T cells were

administered intravenously. Among 12 patients who received

tisa-cel, seven patients responded to the treatment (ORR:

58.3%), which consisted of one partial response (PR) and six

CRs (CR rate: 50%). Three patients have remained in remission

within the follow-up period. CRS and immune cell-associated

neurotoxicity syndrome (ICANS) were graded based on the

American Society for Transplantation and Cellular Therapy

(ASTCT) criteria (53) and occurred in seven (58%, Grade 1/2/3/

4 = 7/0/0/0) and six patients (50%, Grade 1/2/3/4 = 3/2/1/0),

respectively. No patient required tocilizumab to control CRS, and

Grade 3 ICANS was reversible.

The other two retrospective studies discussed in Table 1 also

suggested favorable outcomes of CART19 cell therapy in

PCNSL. Alcantara et al. reported nine cases of R/R PCNSL

treated with CART19 (seven cases of tisa-cel and two cases of

axi-cel). Overall response at one month was observed in six of

nine patients (67%), including CR in three of nine patients

(30%). Median progression-free survival (PFS) was 122 days,

and PFS increased to 210 days for responders. Toxicities were

mild and manageable. Seven patients experienced CRS (77.8%,

Grade 1/2/3/4 = 2/4/1/0), and five patients developed ICANS

(55.6%, Grade 1/2/3/4 = 2/1/1/1). Siddiqi et al. also discussed a

similar case cohort study (54) with five patients with PCNSL.

Overall response was seen in three of five patients (60%), and all

three of these patients achieved CR. It should be noted that

patients were monitored for CRS and ICANS with Lee criteria

(55) and Common Terminology Criteria for Adverse Events

v4.0, respectively. CRS and ICANS were seen in all patients; the

highest grade CRS was 2 (Grade 1/2/3/4 = 3/2/0/0), and the

highest grade ICANS was 3 (Grade 1/2/3/4 = 3/1/1/0). All

toxicities were reversible and tolerable, and there were no

treatment-related deaths.

Although these are small studies, CART19 cell therapies in

PCNSL were well tolerated and showed promising efficacy

similar to non-CNS lymphomas. Table 2 shows ongoing

clinical trials of CAR-T cell therapy in patients with PCNSL.
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TABLE 1 Summary of CAR-T cell therapy in PCNSL.

Median
follow-up

period from
infusion
(range)

Response
ORR/CR

Median
duration

of
response
(range)

CRS ICANS Ref
(PMID)

12.2 months
(3.64-23.5)

58.3%/50%

N/A 3/7
patients have
not
progressed at
data cut off

58.3%
Grade 1/
2/3/4=7/
0/0/0
ASTCT
criteria

50%
Grade 1/
2/3/4=3/
2/1/0
ASTCT
criteria

35167655

8.5 months
(1.2-15.3)

66.7%/55.6%

5.9 months
(2.0-11.7) 4/6
patients have
not
progressed at
data cut off

77.8%
Grade 1/
2/3/4=2/
4/1/0
ASTCT
criteria

55.6%
Grade 1/
2/3/4=2/
1/1/1
ASTCT
criteria

34871363

N/A 60%/60%
9.1 months
(1.4-17.3)

42%
Grade 1/
2/3/4=3/
2/0/0
Lee
criteria

100%
Grade 1/
2/3/4=3/
1/1/0
CTCAE
4.0

34492703

N/A PD N/A
Grade 1
Lee
Criteria

none
CTCAE
5.0

32903866

14.2 months
(1.4-24.2)

100%/75%
9.35 months
(0.23-19.3)

75%
Grade 1/
2/3/4=3/
0/0/0
ASTCT
criteria

25%
Grade 1/
2/3/4=0/
0/1/0
ASTCT
criteria

34267187

17 months CR 17 months none none 31867275

CD22 directed CAR-T cell; ASCT, autologous stem cell transplantation; CART70, CD70 directed CAR-
ity syndrome; ASTCT, american society for transplantation and cellular therapy; CTCAE, common
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Author CAR-T cell
product(s)

Co-
stimulatory
domains

Study
Design

Number
of

patients

Median
age

(range)

Number
of prior
regimen
(range)

Prior
transplantation

Frigault,
M. J.

Tisa-cel 4-1BB-CD3z Phase 1/2 12 63 (34-81) 4 (2-6) 3

Alcantara
M.

Tisa-cel Axi-
cel

4-1BB-CD3z or
CD28-CD3z

Retrospective
9 Tisa-cel:
7 Axi-cel: 2

67 (48-75) 3 (2-5) 7

Siddiqi T. CART19 CD28-CD3z Retrospective 5 49 (42-53) 5 (2-12) 0

Li T.
CART19
CART22

4-1BB-CD28-
CD3z

Prospective 1 49 3 0

Wu J.

CART19
CART22
followed by
ASCT

4-1BB-CD3z Prospective 4
44.5 (39-

55)
3 (3-4) 0

Tu S.
CART19
CART70

CD28-CD27-
CD3z

Case report 1 67 4 0

CAR-T cell, chimeric antigen receptor-T cell; tisa-cel, tisagenlecleucel; axi-cel, axicabtagene ciloleuce; CART19, CD19 directed CAR-T cell; CART22,
T cell; ORR, overall response rate; CR, complete response; CRS, cytokine release syndrome; ICANS, immune effector cell-associated neurotoxic
terminology criteria for adverse event.
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Toxicities of CAR-T cell therapy
in PCNSL

According to the ASTCT, CRS is characterized by fever,

hypotension, hypoxia, and end organ dysfunction (53). CRS is

associated with massive expansion of infused cells in vivo as well

as extreme elevation of multiple cytokines/chemokines. CRS

develops in 50-100% of cases after CART19 cell therapy (15,

56, 57) and is significantly correlated with higher disease burden

at baseline and in vivo CAR-T cell proliferation (58–61). ICANS

is the second-most noted life-threatening adverse event

associated with CAR-T cell therapy and is characterized by

generalized cerebral edema, confusion, obtundation, aphasia,

motor weakness, and occasionally, seizures (53, 62). Any grade

of ICANS occurs in up to 70% of patients, and Grade 3-4 is

reported in 20-30% of patients (15, 16, 56, 60). Overall, CRS and

ICANS are common and can be fatal.

While the exact mechanisms of ICANS remain unknown,

Parker et al. have recently shown that pericyte populations in the

brain express CD19, pointing to one potential mechanism of

ICANS (63). The incidences of ICANS also reported in patients

treated with CD19-targeting bispecific antibodies (64). However,

cases of ICANS have been reported with CD22 (65) and BCMA

(66) directed CAR-T cell therapy, which makes difficult to

conclude that ICANS occurrence is owing to the presence of

the target antigen within the CNS.

Historically, patients with PCNSL or secondary CNS

lymphoma were excluded from most pivotal CAR-T cell

therapy trials due to concerns about the increased risk of

ICANS. A recent CART19 clinical study in PCNSL reported

by Frigault et al. (52) and two retrospective analyses from

Alcantara et al. (25) and Siddiqi et al. (54) showed that

patients with PCNSL treated with CART19 cell therapy

developed reversible and tolerable ICANS.
Local administration of CAR-T Cells

Most clinical trials of CAR-T cell therapy in hematological

malignancies as well as solid tumors have been conducted using

intravenous administration (67). However, limited efficacies

were reported in cases with bulky diseases, PCNSL, or solid

tumors due to the poor trafficking of CAR-T cells to the tumor

site (68). However, there is increasing evidence to suggest that

local application of CAR-T cells may increase tumor penetration

and efficacy in some cases.

Local administration of CAR T-cells was recently tested in

an immunocompromised NOD-SCID-g-/- mouse model of

PCNSL (69). The researchers established an orthotopic PCNSL

mouse model by intracranial injection of human CD19+

lymphoma cell lines (Daudi or JeKo-1). The CART19 cells

(CD28z co-stimulated) were administered through a single
Frontiers in Oncology 05
infusion, either intracerebroventricular or intravenous.

In t e r e s t ing l y , b i o lumines cence imag ing r evea l ed

intracerebroventricularly delivered CAR-T cells were able to

completely and durably eradicate both CNS and systemic

lymphoma. On the other hand, CAR-T cells delivered through

intravenous injection failed to show anti-tumor effects. They also

showed that intracerebroventricularly infused CAR-T cells

exhibited similar trafficking but significantly better

proliferation and persistence compared to intravenously

infused CAR-T cells. Interestingly, intracerebroventricularly

delivered CAR-T cells exhibited a higher percentage of

memory phenotype than intravenously administered CAR-T

cells. The authors concluded that exposure of CAR-T cells to

CSF leads to a metabolic reprogramming that favors the

formation of memory T cells, as inhibition of glycolysis

enhances memory T cell phenotypes (70, 71).

Locally administered CAR-T cells in PCNSL are now being

tested in a phase I clinical trial. All patients will be treated first

with CAR T-cells intravenously in this study. If patients do not

show response (stable disease (SD) or progressive disease (PD) at

day 28) to the first round of CAR-T cell infusion and in the

absence of severe CART-related toxicity, patients will be

potentially eligible for a second round of CAR-T cells

administered intracerebroventricularly via an Ommaya

reservoir (Table 2) (NCT04443829).

Similar to local CART19 injection in the PCNSLmouse model

byWang et al. (69), B7H3-targeted CAR-T cell therapy was tested

in orthotopic atypical teratoid/rhabdoid tumor xenografts with

either intracerebroventricular or intravenous injection. Theruvath

et al. demonstrated that intracerebroventricular administration of

B7H3 CAR-T cells resulted in significantly better overall survival

and anti-tumor effects, with faster CAR-T expansion in vivo and

reduced systemic inflammatory cytokines compared to

intravenous injection (72).

These recently reported preclinical data provide rationale

to further assess local administration of CAR-T cell to

treat PCNSL.
Targeting multiple antigens with
CAR-T cells

To prevent tumor relapse after CAR-T cell therapy due to

loss of the target antigen, there have been efforts to establish

CAR-T cell strategies to recognize multiple tumor antigens in

preclinical models (73–78), and some dual-targeted CAR-T

products have already been tested in clinical trials in patients

with systemic lymphoma or multiple myeloma (79–84). A

similar concept is also being applied to PCNSL. Wu et al. have

conducted a clinical trial of sequential therapy with ASCT

followed by anti-CD19 and CD22 cocktail CAR-T cell therapy.

Thirteen patients with CNS lymphoma were enrolled in this
frontiersin.org
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TABLE 2 Clinical trials of CAR-T cell therapy in PCNSL.

Clinical Trial
Population Location Study

Design
Study
Design Interventions Conditioning

Regimen

>16 years
University
College,
London

Phase 1

Single-
center, non-
randomised,
open label

Dose 1:CART19 250
x 106 cells iv At Day
28 response SD or PD
!Dose 2: 25 x 106
cells icv

Cy 60mg/kg on Day
-6 Flu 30mg/m2 on
Day -5 to Day -3
Pembrolizumab
200mg on Day -1

>18 years
Massachusetts
General
Hospital

Phase 1

Single-
center, non-
randomised,
open label

One time single
predetermined dose
level of tisa-cel will
be infused
intravenously

Flu/Cy

ndary CNSL
BL, tFL
CL, HGBL,
e CNSL or

>18 years
Dana Farber
Cancer
Institute

Phase 1

Single-
center, non-
randomised,
open label

One time single
predetermined dose
level axi-cel will
be infused
intravenously

Flu/Cy

dolent NHL,
lobulinemia, >18 years

Memorial
Sloan
Kettering
Cancer Center

Phase 1
Dose
escalation
study

Single-
center, non-
randomised,
open label

CD19-Targeted 19
(T2)28z1xx CAR T
cells will be infused
intravenously

Flu/Cy

e; CART19, CD19 directed CAR-T cell; R/R PCNSL, relapsed refractory primary central nervous system lymphoma; DLBCL, diffuse large B cell
transformed follicular lymphoma; NHL, non-Hodgkin lymphoma, MZL, marginal zone lymphoma; SD, stable disease; PD, progressive disease; iv,
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Identifier
(ClinicalTrials.gov)

Title Disease(s)

NCT04443829

Immunotherapy Using CAR T-
cells to Target CD19 for
Relapsed/Refractory CD19+
PCNSL Lymphoma (CAROUSEL)

R/R PCNSL

NCT04134117
Pilot Study of Tisagenlecleucel,
CD19-targeted CAR T Cells, in
Patients With PCNSL

R/R PCNSL

NCT04608487

A Phase I Study of Anti-
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Axi-cel in Patients With
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Secondary CNS Lymphoma

Cohort 1: R/R PCNSL, seco
without DLBCL, HGBL, PM
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PMBL, tFL with either activ
previously treated CNSL
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A Phase I Study of CD19-
Targeted 19(T2)28z1xx CAR
Modified T Cells in Adult
Patients With Relapsed or
Refractory B-cell Malignancies

DLBCL, PMBL, tFL, CLL, in
MZL, Waldenstrom Macrog
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study (four PCNSL and nine secondary CNS lymphoma). Two

patients (one PCNSL and one secondary CNS lymphoma)

achieved CR at the time of CAR-T cell infusion and

maintained durable remission. Overall response was observed

in nine of 11 patients (82%, three PCNSL and six secondary CNS

lymphoma), including CR in six of 11 patients (55%, two PCNSL

and four secondary CNS lymphoma). CRS and ICANS occurred

in 11 patients (85%, Grade 1/2/3/4 = 9/2/0/0) and three patients

(23%, Grade 1/2/3/4 = 2/0/1/0), respectively. All adverse events

were reversible and tolerable, and there were no deaths related to

the treatment (85).

Li et al. also reported five patients with CNS lymphoma (one

patient with PCNSL and four patients with secondary CNS

lymphoma) who underwent anti-CD19 and CD22 cocktail

CAR-T cell therapy with a follow-up of 6-16 months. Two

patients achieved CR, and three other patients achieved PR.

However, four patients developed relapse within 3 to 8 months

after CAR-T cell therapy. Unlike the study from Wu e al., this

trial did not perform ASCT prior to CAR-T cell infusion.

Therefore, the baseline tumor burden at the time of CAR-T

cell administration was higher. Furthermore, the authors

mentioned that the early relapse was seen due to the

immunosuppressive tumor microenvironment (TME) of the

CNS, which was unrelated to antigen escape (86). Tu et al.

reported a case report of dual-targeting CD19/CD70 CAR-T

cells in a patient with R/R PCNSL. Durable remission at 17

months was observed after the treatment (Table 1) (87).

Given these results, dual targeting of different antigens on

tumor cells may not contribute to favorable outcomes. To

achieve long-term durable response, it may be crucial to

decrease the tumor burden before CAR-T cell treatment.

Moreover, targeting not only the tumor cells but also the TME

may enhance anti-tumor activity of CAR-T cells and prevent an

early relapse after CAR-T cell treatment.
Combination with other
immunotherapies

The contribution of the TME to tumor growth and therapy

resistance has been recognized in most malignancies and also

applies to PCNSL. In the last decade, the field of oncology has

been transformed by immunotherapies, including antibodies

directed against immune checkpoints or ligands, such as PD-

1/PD-L1 or CTLA-4 (88, 89). Many studies have demonstrated

that the presence of PD-1+ tumor-infiltrating lymphocytes and

PD-L1+ microglial cells, tumor-associated macrophages, and

tumor cells within the TME correlate with patient outcomes.

Specifically, Chapuy et al. reported PCNSL and primary

test icular lymphoma (PTL) showed a higher 9p24

amplification compared to systemic DLBCL. A 9p24
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amplification in malignant lymphoma correlates with PD-L1/

PD-L2 deregulation and results in increased PD-L1 expression

on tumor cells (90–92). Takashima et al. performed next

generation sequencing on PCNSL samples and discovered that

high expression of LAG3, PD-1, and PD-L2 were associated with

poor prognosis (93). PD-1 blocking therapy in preclinical

PCNSL models as well as early clinical data indicate its efficacy

in PCNSL. Qiu et al. created a mouse PCNSL model by injecting

the murine B-cell lymphoma cell line, A20, to the periventricular

area. PD-1 antibody treatment resulted in prolonged overall

survival, increased CD8+ tumor-infiltrating lymphocytes, and

complete eradication of tumor cells (94). Nayak et al. treated

four patients with PCNSL and one patient with CNS relapse of

PTL with the PD-1 blocking antibody, nivolumab. Overall

response was 100%, including CR rates of 80% (three patients

with PCNSL and one patient with CNS relapse of PTL). One

patient developed Grade 2 pruritus, and another patient

experienced Grade 2 fatigue. The authors concluded that these

are nivolumab-related toxicities. However, one patient

developed worsening of baseline renal functions (Grade 4) and

required hemodialysis. Renal biopsy showed no evidence of

interstitial nephritis, so this event was considered to be

unrelated to nivolumab treatment (95). Another study

reported a case with R/R PCNSL who was successfully treated

with nivolumab and dendritic cell vaccination (96).

These checkpoint inhibitors demonstrate anti-tumor effects

via activated T lymphocytes; therefore, combination therapy of

PD-1 blocking antibody and CAR-T cell therapy may increase

CAR-T cell anti-tumor efficacy in the treatment of PCNSL.

Based on these preclinical and clinical data, the combination

of CAR-T cell therapy with the PD-1 inhibitor, pembrolizumab,

to overcome the negative effects of immunosuppressive cells in

the TME is being evaluated in patients with R/R PCNSL

(T a b l e 2 ) (CAROUSEL T r i a l , p h a s e I c l i n i c a l

trial, NCT04443829).
Can CAR-T cell therapy be applied
to human immunodeficiency virus
(HIV)-1-related PCNSL?

Patients with HIV-1 are at increased risk for PCNSL

compared to uninfected populations. From a retrospective

study, among all patients with PCNSL, 19% had HIV-1 (97).

As we discussed earlier, CAR-T cell therapy may be a feasible

treatment option for patients with PCNSL. Since pivotal clinical

trials of CAR-T cell therapy excluded patients who were positive

for HIV-1, it is difficult to assess whether CAR-T cell therapy is

safe and efficacious in patients with HIV-1-positive PCNSL.

However, the use of CAR-T cell therapy in HIV-1-positive

PCNSL is increasing. Exclusion criteria for CAR-T cell
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products approved by the FDA or other regulatory agencies do

not include HIV-1 positivity. In fact, two HIV-1-infected

patients with high-grade B-cell lymphoma were successfully

treated with CART19 cell therapy (98). In this report, CAR-T

cells were successfully manufactured in HIV-infected patients

who were receiving antiretroviral therapy. CAR-T cell products

were administered safely and led patients into remission. One of

the original concepts of CAR-T cell therapy was to target HIV-1-

infected T cells with anti-HIV CAR-T cells (99). In 2002, Deeks

et al. reported CD4z-modified first-generation anti-HIV CAR-T

cells in a phase II randomized study (100). Although no

therapeutic efficacy was demonstrated, anti-HIV-1 CAR-T

cells were successfully generated from HIV-1-infected patients,

and long-term engraftment was reported. More recently, anti-

HIV-1 CAR-T cell technology was reported by Liu et al. They

developed HIV-1 broadly neutralizing antibody (bNAb)-derived

CAR-T cells, which contain both CD28 and 4-1BB intracellular

costimulatory domains, and administered them to 14 patients

with HIV-1. These CAR-T cells significantly reduced cell-

associated viral RNA and intact proviruses (101). Additionally,

an in vivo study reported that bNAb-derived CAR-T cells could

enhance the efficacy of PD-1 blockade (102). These results

encourage the application of CART19 cell therapy in HIV-1-

positive PCNSL. Novel and promising strategies can further

improve efficacy and favorable outcomes. For example, dual

targeting CD19 along with the membrane-proximal external

region, which is a highly conserved region of the envelope

glycoprotein gp41 subunit near the viral envelope (103–105),

with CAR-T cells or combination of CAR-T cell cocktails

targeting both CD19+ and HIV-infected cells might

synergetically enhance the efficacy.
Discussion

As we discussed in this review article, the standard

therapy for PCNSL has not been established, and numerous

problems and obstacles must be overcome to induce durable

remission. CAR-T cell therapy may be a promising solution to

advance the treatment approach for PCNSL. Historically,

rad ia t ion therapy , h igh-dose MTX or AraC, and

consolidation therapy with autologous transplantation have

been applied for the treatment of PCNSL due to the ability of

these therapies to penetrate the blood-brain barrier. However,

serious adverse events including leukoencephalopathy or

neurotoxicity are common. Unlike these treatments, CAR-T

cell therapies in patients with PCNSL has rarely resulted in

cases of leukoencephalopathy. In terms of neurotoxicity, most

cases of PCNSL treated with CAR-T cel l therapy

demonstrated that treatment-related toxicities were

reversible and tolerable. Cook et al. have recently reported a
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meta-analysis of CAR-T cell therapy in patients with PCNSL

or secondary CNSL. Similar to the studies that we described in

this review article that toxicities were comparable to that of

systemic large B cell lymphoma with no increased incidence of

neurotoxicity. They also described that encouraging efficacy

of CAR-T cell therapy were demonstrated with PCNSL and

secondary CNSL (106).

The major drawback of CAR-T cell therapy in PCNSL is low

durable response, similar to systemic lymphoma or leukemia.

The lack of durable responses has been widely attributed to the

immunosuppressive TME and resultant T cell dysfunction. Lack

of trafficking of CAR-T cells to the tumor site also correlates with

the low durability of CAR-T cells in PCNSL. Novel combination

therapies with other agents, including kinase inhibitors or

checkpoint inhibitors, or local administration of CAR-T cell

therapy are currently being investigated in clinical trials. CAR-T

cell therapy in PCNSL has potential to change overall treatment

strategy. For example, the combination of CAR-T cell therapy

with conventional induction therapy with high-dose MTX may

improve the response rate and durable response as a first line

therapy for PCNSL. This would reduce patients’ exposure to

high-dose chemotherapies and thereby reduce the risk of

associated leukoencephalopathy or neurotoxicity. Overall,

emerging data discussed in this manuscript encourage further

investigation of the use of CART19 cell therapy for the treatment

of PCNSL.
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