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Systemic treatments for breast
cancer brain metastasis
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Technology, Wuhan, China
Breast cancer (BC) is the most common cancer in females and BC brain

metastasis (BCBM) is considered as the second most frequent brain

metastasis. Although the advanced treatment has significantly prolonged the

survival in BC patients, the prognosis of BCBM is still poor. The management of

BCBM remains challenging. Systemic treatments are important to maintain

control of central nervous system disease and improve patients’ survival. BCBM

medical treatment is a rapidly advancing area of research. With the emergence

of new targeted drugs, more options are provided for the treatment of BM. This

review features currently available BCBM treatment strategies and outlines

novel drugs and ongoing clinical trials that may be available in the future. These

treatment strategies are discovered to be more efficacious and potent, and

present a paradigm shift in the management of BCBMs.
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1 Introduction

In 2020, the incidence of breast cancer (BC) surpassed lung cancer and was ranked

first, accounting for 11.7% of all cancer, with about 2.3 million new cases, worldwide (1).

With the BC treatment development, the frequency of central nervous system (CNS)

metastases has steadily increased because BC patients survive long enough to be at risk of

developing CNS metastasis (2). About 7% of metastatic BC will develop brain metastases

(BMs) (3), including parenchymal and leptomeningeal disease, accounting for roughly

17% of all BMs, and the second major cause of BMs after lung cancer (4, 5). Risk of BM is

variable across BC subtypes. BM is majorly observed in triple-negative BC (TNBC) and

human epidermal growth factor receptor 2 (HER2)-positive BC. In comparison with the

hormone receptors (HR) positive subtype, the risk of BM development in HER2 positive

and TNBC is 2-5 times higher (6, 7). Although the advanced BC treatment has

remarkably prolonged the patient’s survival, the prognosis of BC brain metastasis

(BCBM) is still substandard. The median patients’ survival in parenchymal and

leptomeningeal disease was 3 to 23 and 3 to 4 months, respectively (8, 9). The survival
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time for HER2+ patients is reported to be the longest, while that

of TNBC patients is considered the least (10). In a large multi-

center study, the median overall survival (OS) after the diagnosis

of BCBMwith HR+/HER2+ was 18.9 months, with HR–/HER2+

was 13.1 months, with HR+/HER2– was 7.1 months and for

triple-negative was 4.4 months (11). Due to the substandard

prognosis and lack of efficient treatment strategies, BCBM

represents a unique and challenging clinical problem.

The brain is the most complex and unique organ in the body,

and because of this, there are differences in treatment. The brain

microenvironment is composed of two different components,

parenchyma and leptomeninges (12). The brain parenchyma

comprises cells that are not present anywhere else in the body,

which include astrocytes, oligodendrocytes, microglia, and

neuronal cells. The leptomeninges is mainly filled with the

circulating cerebrospinal fluid (CSF) produced by the choroid

plexus (13). The blood-brain barrier (BBB) is the main

gatekeeper of the CNS (13). BBB is a unique neurovascular

unit consisting of a continuous segment of non-porous blood

vessels and interacts with parietal, immune, glial, and nerve cells

to carefully modulate the movement of ions, molecules, and cells

between the brain and the blood (14, 15), thereby protecting the

CNS from pathogens, toxins, injury, inflammation, and diseases,

while also providing a barrier for drugs delivery to the brain (16).

Another important factor that produces drug resistance during

BM treatment is the BBB efflux transporter systems, which

reversely transport and prevent drug penetration into CNS.

These include P-glycoprotein, BC-resistance protein, multidrug
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resistance-associated proteins, etc. (17). The formation of

metastatic tumors may partially disrupt the BBB, allowing it to

become more permeable. However, it is still not sufficiently or

homogeneously permeable for effective drug therapy (18).

Currently, the main treatment strategies for BCBM include

local (surgical resection and radiotherapy) and systemic

treatments (19). In the study by Minniti et al, it has been

demonstrated that BM patients who received multifraction (3×

9 Gy) stereotactic radiosurgery after surgery had an improved

local control rate of 91% at 12 months (20). Systemic treatments

are important for controlling CNS diseases and improving

patients’ survival (19). Although heavy literatures on BBB’s

effect and anti-cancer drugs’ efficacy on BCBM is deficient, our

knowledge about the effect of systemic treatments on BCBM is

rapidly increasing. This review focuses on the currently available

system treatment drugs for BCBM, such as chemotherapy, target

therapy, endocrine therapy, immunotherapy, and novel

therapies that may be available in the future (Figure 1).
2 Treatment for HER2-Positive
BCBM

HER2+ BC accounts for approximately 20% of all BC cases

(21). HER is a group of reversible tyrosine kinase receptors,

comprising four members: epidermal growth factor receptor

(EGFR)/HER1, HER2, HER3, and HER4. These have crucial

functions in tumorigenesis and help tumor cells escape anti-
FIGURE 1

Targeted therapy of BCBM treatment. HER2 inhibitors includes: trastuzumab, which binds to subdomain IV of HER2, leading to the inhibition
of HER2 signaling; pertuzumab, which binds to subdomain II of HER2, preventing HER2/HER3 dimerization; T-DM1, an ADC of trastuzumab
and the cytotoxic agent DM1; DS-8201, another ADC that combines trastuzumab and deruxtecan, a potent topoisomerase I inhibitor;
lapatinib, which is a reversible TKI of HER1 and HER2; tucatinib, a specific HER2 TKI; pyrotinib and neratinib, TKIs that inhibits HER1, HER2,
and HER4. Pathway inhibitors include: PI3K/Akt/mTOR pathway inhibitors (buparlisib, alpelisib, Gdc-0084, ipatasertib, and everolimus);
CDK4/6 inhibitors (abemaciclib), VEGF pathway inhibitors (anlotinib, bevacizumab). Other therapies include: PARP inhibitors, FASN inhibitors,
chemotherapy, and immunotherapy.
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tumor immunity. Anti-HER2-targeting drugs can inhibit the

kinase activity of these HER receptors and prevent further

cancer cell survival and proliferation (22). HER2-targeting

drugs involve tyrosine kinase inhibitors (TKIs), monoclonal

antibodies, and antibody-drug conjugates (ADCs). TKI is a

small molecule and comprises lapatinib, neratinib, tukatinib,

etc. have a considerably lower molecular weight, allowing them a

more efficacious penetration through the BBB (21). Table 1 lists

the characteristics of studies reporting on outcomes related to

BMs in patients with HER2-positive BC.

Monoclonal antibody drug, such as trastuzumab, was the

first authorized targeted therapy against HER2+ BC. In the

registHER study, trastuzumab treatment after CNS metastatic

diagnosis significantly improved OS statistically (treatment vs.

no trastuzumab treatment, 17.5 vs. 3.8 months) (23).

Trastuzumab also has inconsistent responses in intracranial
Frontiers in Oncology 03
and extra-cranial tumors, as it cannot entirely cross the BBB

to play a preventive role (39). A meta-analysis of HER2+ BC

patients (n=9020) showed that CNS metastasis accounted for a

greater proportion of the first relapse site in patients receiving

trastuzumab treatment (24). Among HER2+ patients receiving

trastuzumab adjuvant therapy, the CNS metastasis incidence as

the first site of disease recurrence was 2.56% (95% CI 2.07%-

3.01%) than in those who did not receive adjuvant trastuzumab

1.94% (95% CI 1.54%-2.38%) (24). Pertuzumab acts on a

different HER2 site, and it prevents HER2/HER3 dimerization

(40) which can lead to significant PI3K-Akt activation (main

signaling pathway in BC cells) (41). When combined with

trastuzumab, it can play a complementary role and provides

efficient treatment for HER2+ BC patients. However, this dual-

target therapy fails to show an advantage in BMs (42). In the

phase II PATRICIA investigation, the CNS ORR for pertuzumab
TABLE 1 Characteristics of studies reporting on outcomes related to BMs in patients with HER2-positive BC.

Anti-HER2 Agent Authors Study Population Outcomes related to
BM

Trastuzumab Brufsky et al.
(23)

Prospective Newly diagnosed HER2+ MBC Time to BM progression, OS

Trastuzumab Olson et al. (24) Retrospective HER2+ BC Incidence of BM as first
metastatic site

Pertuzumab + high dose
trastuzumab

Lin et al. (25) Prospective HER2+ BCBM after RT CNS ORR

Trastuzumab + pertuzumab
+ taxane

Gamucci et al.
(26)

Retrospective HER2+ MBC ORR, PFS, OS

Pertuzumab + capecitabine
+ trastuzumab

Urruticoechea
et al. (27)

Prospective HER2+ MBC PFS, OS

Lapatinib Lin et al. (28) Prospective HER2+ BCBM, prior trastuzumab and RT CNS ORR, PFS, OS

Lapatinib + capecitabine Bachelot et al.
(29)

Prospective HER2+ BC with untreated BM CNS ORR, PFS

Lapatinib + WBRT Lin et al. (30) Prospective HER2+ BCBM Maximum tolerated dose, CNS
ORR, PFS, OS

Neratinib +capecitabine Freedman et al.
(31)

Prospective HER2+ BCBM CNS ORR, PFS, OS

Neratinib + paclitaxel Awada et al.
(32)

Prospective HER2+ MBC Incidence BM, Time to BM,
Time to BM progression

Pyrotinib + capecitabine Yan et al. (33) Prospective HER2+ BCBM CNS ORR, the time to CNS
response, PFS, OS

Tucatinib + trastuzumab +
capecitabine

Murthy et al.
(34)

Prospective HER2+ MBC, prior treated with trastuzumab, pertuzumab,
and trastuzumab emtansine

PFS, OS, ORR

T-DM1 Krop et al. (35) Retrospective HER2+ MBC Incidence of BM, PFS, OS

T-DM1 Montemurro
et al. (36)

Prospective HER2+ BCBM CNS ORR, PFS, OS

DS-8201 Modi et al. (37) Prospective HER2+ MBC, previous treated with T-DM1 PFS

DS-8201 Cortés et al. (38) Prospective HER2+ MBC PFS, OS, ORR

BC, breast cancer; BCBM, breast cancer brain metastases; BM, brain metastasis; CNS, central nervous system; DS-8201, trastuzumab deruxtecan; HER2, human epidermal growth factor
receptor 2; MBC, metastatic breast cancer; OS, overall survival; ORR, objective response rate; PFS, progression-free survival; RT, radiotherapy; T-DM1, trastuzumab emtansine; WBRT,
whole brain radiotherapy.
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plus high-dose trastuzumab was 11% (95% CI 3-25) (25). In

early studies, the trastuzumab–pertuzumab dual-target therapy

combined with other agents indicated some activity in BCBM

(26, 27, 43). A retrospective observational investigation which

included 264 HER2+ BCBM patients revealed that dual HER2-

blockade and taxanes treatment produced an ORR of 52.4% in

baseline BM patients (26). In the phase III PHEREXA trial, after

pertuzumab was added to capecitabine + trastuzumab, the PFS

markedly elevated in the subgroup of HER2+ baseline BM

patients (n = 53; HR 0.29, 95% CI 0.15–0.60) (27). All in all,

trastuzumab and partuzumab, as macromolecular monoclonal

antibodies, have limited their ability to pass the blood-brain

barrier, but their combination with other chemotherapy drugs

has increased their intracranial activity to some extent.

Lapatinib inhibits EGFR and HER2 and is authorized to be

given with capecitabine as a combined therapy for metastatic BC

(44). The CNS ORR of mono lapatinib therapy is approximately

only 6% (28), while the CNS ORR of lapatinib + capecitabine in

13 BCBM patients who prior received trastuzumab and radiation

therapy is 38% (95% CI, 13.9-68.4) (45). At the same time, a

single-arm phase II clinical trial showed that in untreated BCBM

patients, the CNS ORR of lapatinib + capecitabine could reach

65.9% (29). Lapatinib + capecitabine is also associated with less

incidence of CNS at the first progression. A phase III

randomized trial indicated that in comparison with

capecitabine monotherapy, the CNS involvement cases at first

progression were fewer (2% vs 6%, P = 0.045) in combined

therapy (46). Lapatinib combined with fractionated

radiotherapy may be useful against HER2+ BCBM in the

tumor xenograft model (47). In a Phase I investigation,

lapatinib with WBRT had a higher CNS ORR (79%) than that

of WBRT alone (36%) in 28 BCBM patients (30).

Neratinib irreversibly inhibits HER2, HER1, and HER4 (48),

and may pass through the intact BBB by inhibiting ATP-binding

cassette B1 transport function which is one of the dominant efflux

transporters in the BBB (49, 50). In a phase II trial of neratinib

combined with capecitabine treatment in refractory HER2+ BCBM

patients, 33% and 49% of the patients with and without previous

lapatinib treatment achieved CNS ORR, respectively (31). In a

randomized clinical trial of previously untreated metastatic HER2+

BC, 8.3% and 17% of patients in the neratinib + paclitaxel and

trastuzumab + paclitaxel groups experienced symptomatic or

progressive CNS recurrence, respectively (32), demonstrating its

preventive effect on the CNS metastasis of BC.

Pyrotinib is an irreversible TKI that targets HER1, HER2,

and HER4 (51). A phase II clinical trial (PERMEATE trial)

showed the intracranial ORR was 74.6% in a radiation-naive

population with pirotinib + capecitabine (cohort A) (n=59) and

42.1% in cohort B (n=19) included patients who had progressive

disease after radiotherapy (33). The median PFS in cohort A was

11.3 months and 5.6 months in cohort B (33). PERMEATE
Frontiers in Oncology 04
research adds strong medical evidence for drug treatment of BM,

especially for patients with new BM. However, the efficacy of this

regimen still needs more randomized controlled trials for

further verification.

Tucatinib is a selective HER2-targeting TKI, and has fewer

side effects than other TKIs due to its lack of strong EGFR

inhibition (10). In 2020, Tucatinib is authorized by the Food and

Drug Administration (FDA) for HER2+ BCBM treatment. A

randomized clinical trial (HER2CLIMB trail) was conducted

where tucatinib was given with trastuzumab+ capecitabine as a

combination therapy to patients who were initially treated for

HER2+ metastasis BC. In BM patients, the estimated 1-year PFS

in the tucatinib and placebo groups was 24.9% (95% CI, 16.5 to

34.3) and 0%, respectively. The median PFS in the tucatinib and

placebo groups was 7.6 months (95% CI 6.2-9.5) and 5.4 months

(95% CI 4.1-5.7), respectively. The CNS ORR was 40.6% (95% CI

35.3-46.0) in tucatinib group compared with 22.8% (95% CI

16.7-29.8) in placebo group (P<0.001). However, the side effects

such as the incidences of diarrhea and hepatic injury (grade 3 or

higher) were more frequent than those in the control group (34).

Trastuzumab emtansine (T-DM1), an ADC of trastuzumab

and the cytotoxic drug emtansine, a maytansine derivative and

microtubule inhibitor, has been aproved for the treatment of

HER2+ metastatic BC patients after taxane and trastuzumab

therapy, and for the adjuvant therapy of early BC HER2+

patients with the residual invasive disease after neo-adjuvant

taxane and trastuzumab therapy (43, 52). In the EMILIA study,

the patients with baseline CNS metastases had OS of 26.8

months in the T-DM1 arm, compared with 12.9 months in the

capecitabine + lapatinib arm (HR=0.38, P=0.008). PFS in the two

treatment arms was similar (5.9 vs. 5.7 months; P=1.0) (35). In a

KAMILLA single-arm research, in the 126 measurable BCBM

patients, CNS ORR was 21.4% (95% CI 14.6–29.6), whereas, in

the 398 baselines BCBM patients, the median PFS and OS were

5.5 months (95% CI 5.3–5.6) and 18.9 (95% CI 17.1–21.3),

respectively (36). In short, T-DM1 may be effective in treating

HER2+ intracranial lesions.

Another ADC is trastuzumab deruxtecan (DS-8201),

comprising a human HER2 antibody, a new enzyme-

cleavable linker, and a topoisomerase I inhibitor payload.

Compared with T-DM1, the antibody-drug ratio of DS-8201

is higher (8 vs 3–4) (37). The DESTINY-Breast01 trial,

evaluating DS-8201 in HER2+ metastatic BC patients with

previously treated with T-DM1, revealed a median PFS of 18.1

months (95% CI 6.7–18.1) in the BM subgroup (37). In

DESTINY-Breast03, in the 82 BCBM patients, DS-8201 had

better efficiency than T-DM1. The median PFS was 15.0

months (95%CI 12.5-22.2) in the DS-8201 group and 3.0

months (95%CI: 2.8-5.8) in the T-DM1 group (HR=0.25;

95%CI 0.31-0.45), and the ORR of DS-8201 group and T-

DM1 group were 67.4% and 20.5%, respectively (38, 53).
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To summarize, the available data indicate remarkable

intracranial efficacy from treatments for HER2-positive

BCBM, such as TKIs, monoclonal antibodies, and ADCs.

However, some problems need to be solved, for example,

treatment-induced diarrhea and hepatic injury may be

limiting factors and require appropriate surveillance, and the

optimal administration time and sequence of each agent

remain uncertain.
3 Treatment for HR-Positive BCBM

The patients suffering fromHR+ BC are less likely to develop

BMs than patients with other subtypes of BC (6). The effects of

hormone therapy specifically on BMs are still unclear (54).

Concentrations of tamoxifen and its metabolites in the BM

tumor and brain tissue were 46 times higher than those in

serum, suggesting that tamoxifen might be clinically beneficial

(55). Furthermore, in preclinical models, estrogen promoted

BMs by altering polarity and suppressing the phagocytic activity

of M2 microglia, whereas tamoxifen blocked its polarization and

enhanced its phagocytic ability, thereby inhibiting BMs (56).

Other hormone therapies, such as megestrol acetate and

letrozole, only a small number of case reports have

documented the responses of hormonal therapy in BCBM

patients, and the efficacy has not been confirmed in large-

sample clinical trials (54, 57–60).

The growth of HR+ BC cells depends on cyclin D1, which

activates cyclin-dependent kinases 4 and 6 (CDK4 and CDK6),

thereby inducing the G1-S phase transition and entering the cell

cycle. CDK4/6 inhibitors are reliable treatment options for HR+

BC patients with extra-cranial diseases (10). In preclinical

models, CDK4/6 inhibitor abemaciclib has better central

permeability than other existing CDK4/6 inhibitors (61, 62),

which can reach the therapeutic level in human BM (62). In the

JPBO study, abemaciclib was given to HR+/HER2- BCBM

patients, and the results showed that 25% of patients did

achieve clinical benefit (CR, PR, or SD>6 months), but definite

intracranial ORR was only 5.6% (63). The real effectiveness of

CDK4/6 inhibitors in treating BMs is not verified yet.

Everolimus is a kinase that acts selectively to inhibit the

mammalian target of rapamycin (mTOR), and can easily

penetrate the CNS of a mouse model (64). However, the

intracranial response in a phase II study of everolimus,

trastuzumab, and vinorelbine for the treatment of progressive

HER2+ BCBM was only 4% (65). But in the phase Ib/II trial

assessing the effect of everolimus, lapatinib, and capecitabine

combined therapy for HER2+ BCBM, the CNS ORR was 28%

(66), highlighting the need for exploring better treatment

modalities for everolimus.
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4 Treatment for Triple-Negative
BCBM

4.1 Chemotherapy

Lack of specific therapeutic targets, chemotherapy is the

major treatment of TNBC. Chemotherapeutic agents used in BC

treatment that can cross the blood brain barrier include

capecitabine, platinum compounds, and temozolomide (10).

But their efficacy is limited (67) and new chemotherapeutic

drugs are still being actively explored.

Capecitabine is an inhibitor of thymidylate synthase (the

enzyme required for DNA replication in metastatic cancerous

cells) and has been traditionally used as a chemotherapeutic

drug (68). Some studies showed that capecitabine or its

metabolites may penetrate the BBB, and its efficacy in BCBM

patients has been reported in the literature (69–71). Chao and

colleagues assessed 873 BCBM patients’ data and reported that

those who received chemotherapy survived 2.4 to 12.2 months

longer than those who did not. Among patients with recurrent

CNS cancer, those who received chemotherapy after local BCBM

treatment also had a longer brain metastasizing time. The

median OS of capecitabine alone in patients with BCBM was

11.8 months (72).

Cisplatin is a platinum-based drug that alkylates DNA by

forming platinum-DNA adducts, which damages DNA, arrest

G1/S phase, and promote apoptosis (73). In the in-vitro BBB

model, cisplatin at concentrations from 5 µM to 20 µM was

shown to reduce the chance of BMs in MDA-MB-231 cells

(p<0.05) (74). A phase II investigation comprising 12 BCBM

participants revealed that the CNS objective response rate (ORR)

of bevacizumab, etoposide, and cisplatin was 75% (95%CI 42.8-

94.5) and the median CNS progression-free survival (PFS) was

6.6 months (95% CI 0.8-12.4) (75).

Temozolomide is an oral alkylating agent and has the

potential to transport across BBB. It is commonly used for

glioma treatment and its efficacy in BC is not clear. However,

recent large-scale clinical trials indicated that temozolomide

alone or combined with radiotherapy has no clinical advantage

(76). In a phase II clinical trial, temozolomide showed no

objective responses in 18 patients with observable lesions who

previously received extensive treatment (77). In a phase II

investigation of whole-brain radiation therapy (WBRT) with

or without concurrent temozolomide treatment for BCBM,

WBRT combined temozolomide was not better than the

WBRT group in ORR, PFS, and OS. At 6 weeks, ORRs for the

WBRT arm were 36% and for the WBRT + temozolomide, the

ORR was 30%. The median PFS and OS were 7.4 and 11.1

months in the WBRT arm, and 6.9 and 9.4 months in the

WBRT + temozolomide arm, respectively (78).
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Etirinotecan pegol (NKTR 102) is a four-armed polyethylene

glycol polymer, with each arm ending with an irinotecan

molecule (79). In its preclinical studies, compared to

conventional irinotecan, NKTR 102 treatment can improve the

survival rate of the TNBC brain metastatic model (80). In the

BEACON trial (a phase III trial), BCBM patients who received

NKTR-102 treatment had a markedly lowered death risk than

those who received treatment of physician’s choice (TPC) (HR

0.51; P < 0.01), with median OS of 10.0 and 4.8 months,

respectively (81). In ATTAIN trial, a phase III study of NKTR

102 versus TPC in metastatic BC patients (82), the median PFS

in BM patients of NKTR 102 and TPC was 3.9 and 3.3 months,

respectively (HR, 0.59; 95% CI, 0.33-1.05; P =0.07), and the

median OS in both the groups was nearly the same (7.8 months

for NKTR 102, and 7.5 months for TPC group; HR=0.90; 95%

CI, 0.61-1.33; P =0 .60) (83). The ATTAIN randomized clinical

trial was not consistent with the positive OS benefit observed in

BEACON trial (81, 83).

Sacituzumab govitecan (SG) is an ADC comprising an anti-

trophoblast cell-surface antigen 2 (Trop-2) antibody bound with

SN-38, an active topoisomerase I inhibitor irinotecan metabolite,

capable of crossing BBB (84, 85). Trop-2 is a transmembrane

calcium signal transducer greatly expressed in BC (85). In a

phase III ASCENT investigation of SG versus TPC for metastatic

TNBC, the subgroup assessment of stable BMs patients (n=61)

revealed that the median PFS and OS for SG were 2.8 and 6.8

months while these were 1.6 and 7.5 months for TPC,

respectively. ORR for SG and TPC was 3% and 0%,

respectively (86). Suggesting that about ORR and PFS, SG was

better than TPC but not OS.

A new taxane derivative, ANG1005 comprises 3 paclitaxel

molecules that are covalently bound with Angiopep-2. It can

pass through the BBB and enter the malignant cells by

lipoprotein receptor-related protein 1 transport system.

ANG1005 has shown a significant CNS efficiency in a phase II

clinical trial with an overall intracranial ORR of 15%,

intracranial clinical benefit rate (CBR) of 68% in all BCBM

patients. The median intracranial PFS and OS were 2.8 months

and 7.8 months (87).
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In a word, the efficacy of single chemotherapeutic drug was

unsatisfactory, and the efficacy of combined chemotherapy was

objective (Table 2).
4.2 Vascular Endothelial Growth Factor
-A-targeting Monoclonal Antibody

Brain metastatic tumors can utilize the host’s vascular

system to make blood vessels abnormal and torturing.

Angiogenesis inhibitors can remodel and normalize tumor

vascular and can play a crucial part in the treatment of BMs

(94). In preclinical mouse models of BCBMs, the vascular

endothelial growth factor (VEGF) -A-targeting monoclonal

antibody bevacizumab, have been associated with improved

OS (94, 95). Two phase II clinical trials have investigated

bevacizumab combined with platinum chemotherapy in

patients with BCBMs that have progressed after WBRT, with

CNS ORR of 63-77% and median OS of 10.5-14.1 months (96,

97). Additionally, bevacizumab also controls intracranial edema.

According to a retrospective research, bevacizumab’s edema

control rate in the BCBM group was 77.14% (98).
4.3 Poly (ADP-ribose)
polymerase inhibitors

Homologous recombination is an error-free mechanism for

repairing double-strand DNA breaks, and poly (ADP-ribose)

polymerase (PARP) inhibitors promote apoptosis of tumor cells

by inhibiting DNA homologous recombination. Mutations in

the BC susceptibility gene 1 (BRCA1) or BC susceptibility gene 2

(BRCA2), make tumors sensitive to PARP inhibitor therapy (99,

100). About half of patients with BRCA1 or BRCA2 mutations

develop BMs in the late stage of BC (101). Olaparib and

talazoparib are the PARP inhibitors that are authorized for the

treatment of brca1 and brca2-related metastatic BC (10). In the

phase III EMBRACA clinical trial, talazoparib notably improved

PFS and ORR than that in the TPC group. In the subgroup of
TABLE 2 Efficacy of combined chemotherapy trials in BCBM.

Authors Study Patients Treatment ORR (%) PFS OS

Franciosi et al. (88) Prospective 56 BCBM Cisplatin + etoposide 38% / 7.1 months

Christodoulou et al. (89) Prospective 6 BCBM Cisplatin + temozolomide / 2.9 months 5.5 months

Erten et al. (90) Retrospective 6 TN BCBM Cisplatin + gemcitabine 66.6% 5.6 months /

Philippe et al. (91) Prospective 25 BCBM Cisplatin + vinorelbine + WBRT 44% 3.7 months 6.7 months

Anders et al. (92) Prospective 34 TN BCBM Iniparib + irinotecan 12% 2.14 months 7.8 months

Mehta et al. (93) Prospective 25 BCBM Veliparib + WBRT 41% / 7.7 months

BCBM, breast cancer brain metastases; OS, overall survival; ORR, objective response rate; PFS, progression-free survival; TN, triple negative; WBRT, whole brain radiotherapy.
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BM patients, the benefit of PFS was even higher than that of

patients without BM (HR 0.32 vs. HR 0.58) (102), which

suggested its possible effect on BCBM.
5 Potential strategies for the
treatment of BCBM

5.1 Immunotherapy

Generally, there are no lymphocytes in the healthy brain

parenchyma, which belongs to the immune-privileged site, but

human BMs have been confirmed to have obvious T cell

infiltration (103). Retrospective research revealed that more

than 90% of tumor-infiltrating lymphocytes (TIL) were present

in BCBM and its microenvironment (104). The density of TILs

infiltrate is related to the size of peritumoral edema and survival

prognosis, and CD8+ T cells can delay intracranial progression

(103, 105). Taggart et al. demonstrated that in a mouse

melanoma BM model, successful immunotherapy is associated

with increased CD8+ T cell trafficking (106). Monoclonal

antibodies, such as antibodies of programmed death-1 (PD1),

programmed death ligand-1(PD-L1), or cytotoxic T-lymphocyte

antigen 4 (CTLA4), can block immune checkpoints, and has

showed moderate overall response rates in BM patients,

especially in melanoma patients (107). The retrospective and

prospective clinical trials showed that intracranial response rates

were 16–25% after ipilimumab treatment in melanoma patients,

however, these studies are very small in patient number (108,

109). More clinical studies are expected to confirm the role of

immunotherapy in BCBM in the future.
5.2 Small molecule Vascular
Endothelial Growth Factor Receptor
tyrosine inhibitor

Anlotinib hydrochloride is a multi-target TKI drug that is

administered orally and inhibits tumor angiogenesis and tumor

cell growth by suppressing tumor-related kinases, such as TKI

receptor, VEGFR 1 to 3, fibroblast growth factor receptor 1 to 4,

EGFR, platelet-derived growth factor receptor a, and b, and
stem cell factor receptor (110, 111). In the randomized ALTER

0303 clinical trial (a phase III trial) of advanced non-small cell

lung cancer patients, in those with baseline BM, the median PFS

was 4.17 months for anlotinib treatment than 1.3 months for

placebo treatment (HR=0.72; 95% CI 0.15-0.56), and the median

OS after anlotinib therapy was 8.57 months than 4.55 months

observed after placebo therapy (HR=0.72; 95% CI 0.42–1.12)

(112). Apatinib similar to anlotinib, is a small molecule that

taken orally and selectively targets VEGFR-2 (113). In a phase II

PATHER2 single-arm research on patients with non-small cell
Frontiers in Oncology 07
lung cancer, in those with baseline BM patients (n=13), the ORR

was 53.8% (95% CI, 25.1-80.8%), and the median PFS was 6.7

(95% CI, 4.1-9.7) months (113). Anlotinib and apatinib have

shown good efficacy in BMs of lung cancer, and more clinical

data are expected to verify these efficacies in BCBM.
5.3 Novel therapy

In addition, there are many novel therapies being explored,

including the phosphoinositide 3-kinase (PI3K)/Akt/mTOR

pathway inhibitors, fatty acid synthase (FASN) inhibitors and

the drugs with new delivery systems.

The PI3K/Akt/mTOR pathway is a key intracellular

signaling pathway that activates tyrosine kinase receptors or G

protein-coupled receptors through extracellular signals. It

promotes many physiological processes such as survival,

proliferation, metabolism, and angiogenesis (114). About 43-

70% of BCBM patients have mutations in this pathway (115). In

a mouse model of extensively metastasized HER2+ BC,

buparlisib, an oral pan-PI3K inhibitor, effectively controlled

the metastasis in various organs, including the brain (116).

Alpelisib is another PI3K inhibition, which is reported to be

effective in BCBM in some case reports (117). Ipatasertib, one of

the selective ATP-competitive Akt inhibitors, shows an effective

response in preclinical BCBM models (115). The mTOR, a

downstream effector of the PI3K-Akt pathway, has been

indicated to modulate PI3K inhibition resistance in BC,

whereas, the combination of PI3K and mTOR inhibitors can

overcome this resistance in a HER2+ BCBM model (118). Gdc-

0084 is a dual PI3K/mTOR inhibitor with brain permeability,

which has been proven to significantly inhibit PIK3CA mutant

tumor growth in a patient-derived BM mouse model (119).

Relevant clinical trials are underway.

The brain tissues are deficient in several nutrients necessary

for cancer cells. Ferraro et al. found up-regulated fatty acid

synthesis genes in BMs with a mouse model, whereas no effect

was seen in in-vitro BM system, suggesting that the brain

microenvironment itself promotes increased tumor fatty acid

synthesis. Compared with primary breast tumors or metastasis

to other sites, FASN and its encoding mRNA are highly

expressed in BCBM. The use of FASN inhibitors can reduce

the growth of BCBMs (120).

Since BBB may theoretically hinder the delivery of drugs to

the brain, some drug delivery systems are being developed to

cross BBB. One such system that is being tested is microbubble-

assisted focused ultrasound (FUS), which uses oscillating

microbubbles to produce micrometer-scale mechanofluidic

effects to increase drug transport. When trastuzumab was

combined with FUS, they revealed a potent anticancer activity

in the rat brain, and also increased survival significantly (121).

Another system being investigated is nanoparticles conjugated
frontiersin.org

https://doi.org/10.3389/fonc.2022.1086821
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2022.1086821
TABLE 3 Ongoing clinical trials for metastatic breast cancer with brain metastases.

Treatment ClinicalTrials.gov Phase Patients’ Population Primary Endpoint

Neratinib + capecitabine NCT04965064 II HER2- BCBM and
abnormally active HER2
signaling

OS, CNS-PFS

Pyrotinib + vinorelbine NCT03933982 II HER2+ BCBM CNS-ORR

Palbociclib + trastuzumab + pyrotinib +
fulvestrant

NCT04334330 II HR+/HER2+ BCBM CNS-ORR

Pyrotinib + trastuzumab + abraxane NCT04639271 II HER2+ BCBM CNS-ORR, CNS-PFS

T-DXd NCT04752059 II HER2+ BCBM CNS-ORR

T-DXd NCT04739761 III Advanced or metastatic
HER2+ BC

ORR; PFS

GDC-0084 + trastuzumab NCT03765983 II HER2+ BCBM CNS-ORR

Trastuzumab + taxanes + pertuzumab vs.
trastuzumab + taxanes + TKIs

NCT04760431 II HER2+ BCBM CNS-ORR

ARX788 NCT05018702 II HER2+ BCBM CNS clinical benefit rate

T-DM1 + afatinib vs. T-DM1 NCT04158947 II Active refractory HER2
+ BCBM

Safety and tolerability of T-DM1 and afatinib; ORR

Trastuzumab/pertuzumab + tucatinib or
T-DM1 + tucatinib

NCT05323955 II HER2+ BCBM PFS

Phase I: T-DM1 + TMZ in dose escalation
Phase II: T-DM1 vs. T-DM1 + TMZ

NCT03190967 I/II HER2+ BCBM
following SRS

MTD of temozolomide when used with T-DM; Median
amount of time subject survives without disease progression
after treatment.

Pyrotinib + capecitabine + brain
radiotherapy

NCT04582968 I/II HER2+ BCBM Assess safety and tolerability (Phase Ib part); Intracranial
local tumor control rate (Phase II part)

SRT + pyrotinib + capecitabine vs. WBRT
+ pyrotinib + capecitabine

NCT05042791 II HER2+ BCBM CNS-ORR

Abemaciclib + elacestrant NCT04791384 Ib/II HR+/HER2+ BCBM Adverse events; iORR

Utidelone + bevacizumab NCT05357417 II BCBM CNS-ORR

Nivolumab + SRS NCT03807765 Ib BCBM Number of participants who experience dose limiting
toxicities

Abemaciclib + SRT NCT04923542 I/II HR+/HER2- BCBM CNS-PFS

Cycle 1: Olaparib + SRS Cycle 2 and 2+:
Physician’s choice systemic therapy and
durvalumab

NCT04711824 I/II TN or BRCA-mutated
BCBM

Frequency and severity of adverse events; intracranial
disease control rate

Liposomal irinotecan + pembrolizumab NCT05255666 II TN BCBM CNS disease control rate

Nal-IRI NCT03328884 II Progressing HER2-
BCBM

CNS-ORR

QBS72S NCT05305365 IIa TN BCBM CNS-ORR

ANG1005 NCT02048059 II Recurrent BCBM iORR

Bintrafusp alfa + pimasertib NCT04789668 I/II BM Clinical benefit rate; toxicities and dose-limiting toxicities;
time to intracranial progression; OS

Anti-HER2/3 dendritic cell vaccine +
pembrolizumab

NCT04348747 II TN or HER2+ BCBM CNS-ORR

HER2-CAR T cells NCT03696030 I HER2+ BCBM Incidence of dose limiting toxicities; number of participants
with treatment related adverse events

BC, breast cancer; BCBM, breast cancer brain metastases; BM, brain metastasis; CNS, central nervous system; CAR, Chimeric Antigen Receptor; HR, hormone receptor; HER2, human
epidermal growth factor receptor 2; iORR, intracranial objective response rate; nal-IRI, nanoliposomal irinotecan; OS, overall survival; ORR, objective response rate; PFS,
progressionfree survival; SRS, stereotactic radiosurgery; SRT, stereotactic radiotherapy; T-DM1, trastuzumab emtansine; T-DXd, trastuzumab deruxtecan; TN, triple negative; TTP,
time to progression; WBRT, whole brain radiotherapy.
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anticancer agents (122). Patil et al. demonstrated that the EGFR

or HER2 inhibitors carried by nano-conjugates markedly

prolong the survival of mice with HER2+ BCBM (122).

Hamilton et al. also revealed that tumor-penetrating peptides

coated nanoparticles can block tumor progression when tested

in a preclinical BCBM model (123).

Furthermore, except the potential strategies mentioned

above, there are a lot of novel treatments, such as dendritic

cell vaccines, chimeric antigen receptor T-cell therapy, and so

on. Table 3 reveals the ongoing clinical trials of BCBM. In order

to improve the efficacy, new therapeutic strategies are the

combinations of immunotherapy, radiotherapy and targeted

therapies, and the corresponding side effects also follow. We

look forward to having a treatment scheme that is most

beneficial to patients among the controllable side effects.
6 Future prospects

In the future, compared with the systemic treatment of

patients with BM, prevention of BM from the primary tumors

seems to be a more important clinical goal. How to accurately

screen the high-risk population with BM from BC patients

requires more clinical research to explore a reliable prediction

model. With the rise of liquid biopsy technology represented by

circulating tumor cells (CTCs), it provides strong support for the

detection of circulating brain-tropic cancer cells before their

extravasation (114). The gene signature of CTCs associated with

BCBM has revealed the up-regulation of Notch signaling (124).

Notch targeted therapy may specifically reduce the incidence of

BM in BC.
7 Conclusions

BM is an important clinical source of morbidity and

mortality in patients with metastatic BC (43). Local

interventions are the pillar of BM management (19). Systemic

treatments are often used to complement local strategies to

achieve optimal control of CNS diseases (19). At present, with

the emergence of various new drugs, some systematic therapies

have shown promising clinical results. The best results published

to date have been obtained in patients with HER2+ BCBM,
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especially in new BM, for whom currently used combinations of

chemotherapy and anti-HER2 therapy have shown certain

efficacy, with particularly impressive results obtained with

pirotinib + capecitabine and trastuzumab deruxtecan.

However, patients with BM from HR+ BC or TNBC lack

effective medical options currently, PI3K inhibitors, FASN

inhibitors and immunotherapy are promising therapeutic

candidates. In the coming years, the results of ongoing clinical

trials with combinations of immunotherapy, radiotherapy and

targeted therapies may provide better treatment options for

BCBM patients.
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