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The similar shape and texture of colonic polyps and normal mucosal tissues

lead to low accuracy of medical image segmentation algorithms. To solve

these problems, we proposed a polyp image segmentation algorithm based on

deep learning technology, which combines a HarDNet module, attention

module, and multi-scale coding module with the U-Net network as the basic

framework, including two stages of coding and decoding. In the encoder stage,

HarDNet68 is used as the main backbone network to extract features using

four null space convolutional pooling pyramids while improving the inference

speed and computational efficiency; the attentionmechanismmodule is added

to the encoding and decoding network; then the model can learn the global

and local feature information of the polyp image, thus having the ability to

process information in both spatial and channel dimensions, to solve the

problem of information loss in the encoding stage of the network and

improving the performance of the segmentation network. Through

comparative analysis with other algorithms, we can find that the network of

this paper has a certain degree of improvement in segmentation accuracy and

operation speed, which can effectively assist physicians in removing abnormal

colorectal tissues and thus reduce the probability of polyp cancer, and improve

the survival rate and quality of life of patients. Also, it has good generalization

ability, which can provide technical support and prevention for colon cancer.

KEYWORDS

colon polyps, attention mechanism, HarDNet, image segmentation, deep learning
1 Introduction

Colon cancer is a malignant tumor on the colonic mucosa, mostly formed by

adenomatous polyps, characterized by high incidence and high lethality, and is currently

one of the three most prevalent malignancies in the world (1). Colon polyps are

convexities that grow in the colonic mucosa, and the gold standard for early screening
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of colorectal cancer is the use of colonoscopy to detect polyps

larger than 5 mm in diameter in the intestine (2). There is a link

between the accurate detection rate of polyps and the incidence

of colon cancer. Dougla et al. (3) showed that for every 1%

increase in polyp detection, the prevalence of colorectal cancer

would decrease by 3%. Prevention and diagnosis of colorectal

cancer through early screening are very important and can

improve patient survival rates. Polyps can usually be effectively

detected by colonoscopic screening, but even if the polyps are of

the same type, it varies in size, color, and texture. Secondly, in

colonoscopic images of intestinal polyps, the contrast between

the polyps and the surrounding mucosa is not strong enough

and the border is blurred and not clear enough due to the

intestinal mucus and the reflection of the intestinal polyps under

colonoscopy. Therefore, it may cause the physician to miss the

polyps and segment them inaccurately. Therefore, how to

segment colon polyps quickly and accurately is important for

the early prevention of colorectal cancer coming (4).

For the segmentation of colon polyp images, a large number

of methods exist at home and abroad. They can be mainly

included two types: early traditional algorithms and deep

learning-based algorithms. The traditional segmentation

methods mainly extract features such as color, shape, and

texture, and then use classifiers to distinguish polyps from

their surrounding non-polyp regions.

Saul et al. in 2009 proposed the use of similarity measures to

discriminate colon polyps as a way to reduce the workload of

physicians (5). Bashar et al. in 2010 proposed the segmentation

of the capsule endoscopic images from the possible presence of

polyps based on the energy distribution of the images (6). Segui

et al. in 2012 used the texture and color information as the basis

for screening (7). Turcza et al. in 2013 proposed to use an

entropy encoder to initially screen capsule endoscopic images

and filter out some highly similar images (8). Hassan et al. in

2015 proposed to perform gray value statistics on capsule

endoscopic images and observe their spectral features to screen

out images of polyps (9). In 2016, Qiao et al. attempted to

convert capsule endoscopy images from red, green, and blue

(RGB) color gamut to columnar color gamut, which enhanced

the contrast between the polyp part and normal bowel part (10).

In 2014, Mamonov et al. designed a binary classifier to label each

frame of a colonoscopy video based on the geometric analysis

and texture content on each frame as containing or not

containing polyps (11). In 2015, Tajbakhsh et al. used an

automatic method to detect colonoscopy video polyps based

on shape and contextual information (12). In 2015, Bernal et al.

designed a model based on the appearance of polyps using the

median depth of the valley accumulation window. The algorithm

associated with the probability of polyp presence WM-DOVA

energy map to obtain the specific range of distinction between

polyps and surrounding tissue and thus determine the specific

location of polyps (13).
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In these early algorithms for image segmentation of colon

polyps, more reliance was placed on manual efforts to extract

feature information from the images, followed by classifiers to

segment polyps and tissues.

Although the traditional algorithms are relatively simple in

implementation, they cannot combine the effective features of

the polyp region by considering them simultaneously. At the

same time, since the designed classifiers usually produce effects

only on the specified polyp dataset, the traditional algorithms

have poor generalization and the segmentation effects on other

polyp datasets are significantly reduced.

Deep neural network techniques are rapidly developing and

are increasingly using in polyp image segmentation.

Brandao et al. proposed Fully Convolutional Networks

(FCN) for recognition and segmentation of polyp images in

2017 and achieved good polyp segmentation results (14). Wang

used Dynamic Convolution Neural Network (DCNN) model in

2018 to validate and evaluate two publicly available polyp

datasets (15). In 2018, Zhou et al. designed an encoder-

decoder network structure UNet ++, which employs a deeply

supervised training approach that allows supervised learning of

the model’s multi-branch output. The model applies more jump

connections between high-dimensional and low-dimensional

information, reduces the feature error between semantic

information, and better improves the segmentation accuracy of

colon polyp images (16). In 2019, Jha et al. improved the

segmentation accuracy of colon polyp images by using residual

blocks, compressed excitation blocks, null spatial pyramid

pooling and attention mechanism to design the ResUNet++

network, which significantly improved the segmentation of

colon polyps (17). Fang et al. in 2019 designed the Selective

Feature Aggregation Network (SFANet) to predict and segment

regions and boundaries of polyp images (18). In 2020, to capture

more effective semantic information, Jha et al. further designed

the DoubleU-Net model, which effectively bridges two U-shaped

structures through void space pyramidal pooling, and validated

the performance of the model on a colon polyp image

segmentation dataset, but the model’s parameter number was

large (19).

Nadimi et al. proposed an improved AlexNet compounded

with migration learning, data preprocessing, and data

enhancement to detect capsule endoscopic polyps in 2020 and

achieved 98.0% accuracy and 98.1% sensitivity (20). Owais et al.

proposed a method in 2020 and achieved better results in 52471

endoscopic capsule images to achieve better polyp detection

(21). Yanada used a novel deep learning automatic detection

method in 2020 and produced a dataset to confirm the method’s

effectiveness for polyp images, thus improving the early

detection rate of intestinal tumors (22). Lee et al. proposed in

2021 the use of a variable depth of CNN for cancer risk level

assessment of various intestinal diseases such as polyps (23). Lai

et al. proposed in 2021 that the raw capsule endoscopic images
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were multi-channel separated and then fed into a deep CNN for

t ra in ing , which resu l t ed in more accura te po lyp

identification (24).

In 2020, Fan designed the PraNet to improve segmentation

accuracy on five colon polyp datasets, allowing real-time

prediction of polyps in colonoscopy detection videos (25). In

2021, Zhao et al. designed the Multi-scale Subtraction Network

(MSNet). The different levels of perceptual fields are then set in a

pyramidal fashion to obtain rich multi-scale difference

information (26). In 2021, Huang et al. improved on PraNet

by designing a simple encoder-decoder model using Harmonic

DenseNet (HarDNet) (27) HarDNet-MSEG. The original

Res2Net50 (23) backbone network was replaced using the

HarDNet68 backbone network, and the attention mechanism

was removed to achieve more accurate polyp image

segmentation. However, the method still does not work well

for the diversity of polyp size, shape, and texture (28).

Instead of relying on the manual acquisition of features, deep

learning algorithms use colon polyp datasets to continuously

train on the established neural network model and finally

optimize the model with the highest segmentation accuracy.

However, many polyp segmentation networks based on deep

learning algorithms focus on developing complex network

structures to achieve better polyp segmentation performance,

resulting in increased network model parameters and larger

computation, which directly affect the computational efficiency

of polyp segmentation networks. As shown in reference (29), the

model parameter size of UACANet-L is 69.15M, HRNetV2-W48

model parameter size is 65.84M, while the parameter size of the

proposed model in this paper is 23.11M.

To solve these problems, we propose a multi-scale coded

colon polyp segmentation network combining HarDNet and

attention mechanism; the segmentation network uses the U-Net

network as the basic framework, including two stages of

encoding and decoding. In the encoder stage, HarDNet68 is

used as the backbone network to extract features using four null

space convolutional pooling pyramids while improving the

inference speed and computational efficiency. The attention

mechanism module is added to the encoding and decoding

networks so that the segmentation network can learn the

global and local feature information of polyp images, thus

having the information processing capability in both spatial

and channel dimensions, solving the problem of encoder part

of the information loss and the difficulty of small

lesion segmentation.

The main contributions of this paper are as follows:
Fron
(1) Considering the impact of computation and memory

access on the model design, this paper adopts

HarDNet68 as the backbone network. HarDNet68

network can both learn the global feature information

of polyp images and reduce the computation of the

model, thus improving the operation speed of the model
tiers in Oncology 03
and the segmentation effect and accuracy of polyp

images.

(2) An integrated spatial and channel attention (SCA)

module is proposed, which can assign different

attention weights from both spatial and channel

dimensions, enabling the model to focus more on the

image segmentation task. The model can be integrated

into mainstream neural network segmentation tasks.

(3) The DenseASPP module is used in the segmentation

network, which constitutes a dense feature pyramid, and

the field obtains a larger perceptual field to improve the

model’s ability to obtain information about image

features.

(4) To address the problem that the targets segmented in

this paper have a small proportion in the image, the

combined algorithm of Dice loss and Focal loss is

proposed as a loss function to reduce the weight of

simple samples and improve the segmentation accuracy

of small target samples.

(5) We perform analytical analysis on five polyps datasets

with different sizes and performances, as well as

generalization experiments, etc., to verify the

effectiveness and excellence of the algorithms in this

paper.
2 The proposed architecture

The proposed polyp image segmentation network is based on

the traditional U-Net network structure, including the encoder-

decoder structure. Incorporating the HarDNet68 structure, the

attention mechanism module, and the multi-scale null

convolution module into the network, as shown in Figure 1.

The input image is subjected to a 3×3 convolution operation,

followed by five consecutive HarDNet integration blocks.

HarDNet68 improves the global dense connection of the

original DenseNet into a sparse connection with the

convolution, BN, and ReLU activation functions to achieve

repetition of batch normalization, reducing the number of

parameters to obtain shorter inference speed while maintaining

accuracy. The output of the encoder is used as the input of the

multi-scale cavity convolution module, thus capturing more

visual information of different scale features while capturing

feature information of different scales. The decoder consists of

three SCA modules, which obtains the spatial and attentional

feature outputs on the channels by dot-product operations from

the output of the previous stage and the corresponding edge

outputs in HarDNet68. The Sigmoid function obtains the final

segmentation result at the output of the decoder.

The segmentation network proposed in this paper forms an

iterative interaction mechanism between the encoder and the
frontiersin.org
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decoder, which can effectively correct the conflicting regions

such as boundaries in the prediction results thus improving the

segmentation accuracy, as well as enhancing the inference speed

and computational efficiency of the model.
2.1 U-net

The U-net network structure (30) is all convolutional layers

without fully connected layers, as shown in Figure 2. In the

encoder part, the feature of the image is continuously extracted

through the convolution layer, and the size of the feature image

is also reduced. In the decoder part, the image is restored to the

original size by de-convolution, and in the decoding part, the

same size of the feature map in the encoding process is

connected through cross-links, so that the image information

features are lost as little as possible.
2.2 HardNet

HarDNet structure, a harmonic densely connected network

proposed by Chao et al. in 2019 (27), is optimized and improved
Frontiers in Oncology 04
based on the DenseNet network structure, optimization and

improvement are made to improve the model running speed, as

shown in Figure 3.

HarDNet uses a sparse connection, assuming that layer k is

connected to layer , 2n which can divide k integer, where n≥0, k–

2n≥0. With this connection, if 2n is processed, layer 1 to layer 2n–

1 can be cleared from memory, reducing the amount of model

parameter computation. At the same time, HarDNet balances

the channel ratio between the input and output of key layer

layers by increasing the number of channels of some key layers

to reduce the amount of model memory access.

According to the above design ideas, six HarDNet structures

with different parameter settings are proposed, and the

HarDNet68 structure is used in this paper. Table 1 shows the

parameter settings of HarDNet68.

Multiplier m is the low-dimensional compression factor,

“3×3, 32” means 32 convolutional layers with 3×3, HDB is the

number of HarDNet modules, k is the growth rate, and t is the

number of output channels of 1 × 1 convolutional transition.
2.3 DenseASPP

In the deep learning network model, the size of the image is

generally uniform by stretching or cropping, but this causes

information loss, distortion, and many other problems. He et al.

proposed the Spatia Pyramid Pooling (SPP) structure, which is
FIGURE 2

U-net architecture (29).

FIGURE 3

HarDNet network structure (27).
FIGURE 1

The proposed architecture.
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to use multiple pooling layers of different scales for feature

extraction and fusion into an n-dimensional vector input to a

fully connected layer (31). The Google team proposed the Atrous

Spatia Pyramid Pooling (ASPP) structure based on the

characteristics of multi-scale information and extension

convolution in the DeepLab (32) series of work. ASPP

introduces the concept of void convolution on the basis of SPP

and further improves the abil ity of image feature

information extraction.

However, the polyps have various shapes and textures, and

the picture background is complicated, which easily causes poor

segmentation effect in the process of polyp image segmentation.

We introduces the DenseASPP module (33) to replace the ASPP

module, which has the network structure shown in Figure 4.

DenseASPP further increases the denseness of the null

convolution and expands the range of the network model,

improving the ability of the network model to extract image

feature information without significantly increasing the model

size. Since using a null convolution with too large an expansion

rate can lead to convolutional degradation and cause

degradation in feature extraction performance, only null

convolutional layers with expansion rates of 3, 6, 12, and 18

are used in this paper.
2.4 Attention mechanism

When human beings observe things, their attention will

focus on the areas of interest and ignore other areas. Through
Frontiers in Oncology 05
the attention mechanism, the input information is selectively

distinguished, located, and analyzed. In the process of neural

network learning, the attention mechanism will also be applied

in the fields of image segmentation, target tracking, and behavior

detection. We also can obtain the image feature information of

different spaces and latitudes by giving different weight

information to the input image, to improve the adaptability

and effect of the neural network model (34, 35). How to build an

attention mechanism model and integrate it into the mainstream

neural network structure, so that the simple neural network can

achieve complex and high-precision image segmentation tasks,

is one of the problems that need to be solved.

2.4.1 Spatial attention
After analyzing the input image, the neural network assigns

more weights to the regions which are closely related to the

segmentation task, which makes the target segmentation region

more prominent. At the same time, the image region feature

information which has nothing to do with the segmentation task

is suppressed. After the maximum and average pooling

operations, the two pooling results are stitched together to

achieve the input image feature information fusion. Then, the

convolution kernel of 1×1 is multiplied by the fused feature

information, the sigmoid activation function is used for

nonlinear transformation, and the spatial attention weight

map is obtained. Finally, the input feature information of the

image is multiplied by the spatial attention weight map to get the

final output result, the formula is shown in Eq. (1) to Eq. (4).

xm = Maxpool xinput
� �

(1)

 xa = Avgpool xinput
� �

(2)

xgraphs = Sigmoid w1* cat xm, xa½ �ð Þ + b1ð Þ (3)

xoutputs = xgraphs*xinput (4)

xm and xa, are obtained using maximum pooling and average

pooling operations on the feature map. xinput represents the

input feature maps. xgraphs represents that the feature map

obtained after nonlinear transformation of the fused image

features with the sigmoid activation function.

xoutputs represents the output of the input image multiplied

with the spatial attention weight information.
TABLE 1 HarDNet68 parameters.

m Stride 2 Stride 4 Stride 8 Stride 16 Stride32

1.7

3×3,32,
Stride=2 8(HDB),

k=14,t=128

16(HDB),
k=16,t=256 16(HDB),

k=40,t=640
4(HDB),

k=160,t=1024
3×3,64

16(HDB),
k=20,t=320
FIGURE 4

DenseASPP network structure (32).
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2.4.2 Channel attention
In the neural network, the corresponding channel represents

the image feature information. Convolution kernels of different

scales process the input image features to generate different

image feature channel information. The feature information on

each channel is different, and the importance of the global

feature information of the whole image is also different.

Through the analysis of the segmented image, we can assign

weight information to each channel information, indicating the

importance of the channel information to the global feature

description. For the input image feature information, firstly, the

dimensionality reduction operation is carried out by maximum

pooling and average pooling, and the two feature infor

xm=Maxpool(xinput) mation is input into a shared network

structure for processing. The convolution kernel of 1×1 is

multiplied by the fused feature information, the Sigmoid

activation function is used for nonlinear transformation, and

the channel attention weight map is obtained. Finally, the input

feature information of the image is multiplied by the channel

attention weight map to get the final output result, the formula is

shown in Eq. (5) to Eq. (10).

xm = Maxpool xinput
� �

(5)

xa = Avgpool xinput
� �

(6)

x1 = wfc3* wfc2* wfc1*xm + bfc1ð Þ + bfc2ð Þ + bfc3 (7)

x2 = wfc3* wfc2* wfc1*xa + bfc1
� �

+ bfc2
� �

+ bfc3 (8)

xgraphc = Sigmoid wf * cat x1, x2½ �ð Þ + bf
� �

(9)

xoutputc = xgraphc*xinput (10)

xm and xa, are obtained using maximum pooling and average

pooling operations on the feature map. xinput represents the

input feature maps. xgraphs represents that the feature map

obtained after nonlinear transformation of the fused image

features with the sigmoid activation function. wfc1∈RC/8×1×1 ,

wfc2∈RC/8×1×1 , wfc3∈RC×1×1 .xoutputs represents the output of

the input image multiplied with the spatial attention

weight information.

2.4.3 Spatial channel attention
In the paper, the channel attention and spatial attention

mechanism are combined and given different weights. Finally,

the output image feature information processed by the SCA

module is as Eq. (11):

xoutput = cat xoutputs, xoutputc
� �

(11)

xoutputs represents the output of the input image multiplied

with the spatial attention weight information.
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xoutputc represents the output of the input image multiplied

with the channel attention weight information.

Our proposed SCA module (36), with a general design idea

similar to the architecture proposed by Fu et al. (37), integrates

spatial and channel attention integration modules into an

improved U-net network structure. The SCA module

combines spatial and channel attention mechanisms to get

comprehensive attention mechanism information. This

module enhances the significant features of the up-sampling

process by applying attention weights to high-dimensional and

low-dimensional image feature information.

The feature map x∈RC×H×W as input, the attention weights

Mc (F)∈RC×1×1 and weights Ms (F)∈R1×H×W in the channel and

space are obtained respectively through the SCA module.

Finally, the results of the two modules are operated by

concatenation, as shown in Figure 5.

The SCA module proposed in the paper can address the

feature information of medical images, highlight more of the key

feature information of medical images, and suppress the

interference of noise factors in medical images.
2.5 Loss function

The loss function is the function of a neural network to

measure the degree of loss and error, and it is the index of a

neural network to find the optimal weight parameters (38).

Through the loss function, the difference between the

segmentation result of the model and the actual result can be

reflected. There are many kinds of loss functions, including

single loss function and mixed loss function. The loss function

adopted in this paper is the combined loss function of Dice loss

(39) and Focal loss (40). This function can combine the

advantages of the two functions to make the network better

find the optimal parameters for optimization learning LDiceloss is

the loss function of Dice loss. It is mainly used to measure the

degree of loss of similarity between the segmented image

predicted by the model and the real segmented image, and the

value range is [0,1]. The calculation formula of the function is

shown in Eq. (12). jX ∩ Yj represents the number of

intersections between a real segmented image and a model
FIGURE 5

The SCA architecture.
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predicted image, |X| and |Y| represent the number of real

segmented images and model predicted images respectively.

LDiceloss = 1 −
2 X ∩ Yj j
Xj j + Yj j (12)

LFocalloss is a loss function to deal with the unbalanced

classification of samples. According to the difficulty of sample

resolution, different weight coefficients a are added to the

samples to reduce the adverse effects on training loss caused

by the imbalance of sample classification. The calculation

formula of the function is shown in Eq. (13).

LFocalloss = −a� 1 − pð Þg�log pð Þ (13)

p∈[0,1] is the model’s probability of predicting the positive

sample. a∈[0,1] is used to balance the uneven proportions of

positive and negative samples themselves. is used to adjust the

rate of weight reduction for simple samples. LFocalloss is a

modification of the cross entropy loss function. The total loss

function proposed in this paper is LTotal , the formula is shown

in Eq. (14).

LTotal = LDiceloss + LFocalloss (14)
3 Experimental results and analysis

3.1 Datasets and preprocessing

To evaluate the model performance and verify the

effectiveness of the algorithm, the model in this paper was

subjected to relevant experiments on the Kvasir dataset (41),

CVC-ClinicDB dataset (13), ETIS-Larib dataset (42), CVC-

ColonDB (13) and CVC-300 (43) datasets.

We increase the number of training samples by the data

augmentation method to improve the training effect of

the model.

Firstly, the data of Kvasir and CVC-ClinicDB datasets are

combined respectively, and then the training set, validation set

and test set are divided according to the ratio of 80%, 10%, and

10%. CVC-ColonDB, ETIS-Larib, and CVC-300, are only used

as the test set and do not participate in the dataset division. We

expand the number of images in the training set by operations

such as data enhancement, including center cropping, random

rotation, Gaussian blurring etc. Among, center cropping size is

(160,160), random rotation is 30 degrees, and Gaussian blurring

kernel size is (3,3). A single image can be augmented into 20

different images, the original number of images in the Kvasir

dataset is 800, and 16,000 after data enhancement; the original

number of images in the CVC-ClinicDB dataset is 490, and 9,800

after data enhancement.

In the above datasets, polyps are highly variable in shape,

size, structure, and orientation, and the boundaries between
Frontiers in Oncology 07
them and the background are very blurred and difficult to

distinguish, which poses a great challenge to accurate polyp

segmentation. The model resizes the resolution of colonoscopy

images with different resolutions at the time of input and resizes

all images uniformly to 256×256 size.
3.2 Training and evaluation metrics

In the experimental part, the settings of all models are kept

the same. The hardware device parameters of the algorithm

running environment in this paper are: the processor is Intel i5-

12400F, the graphics card is NVIDIA GeForce RTX2080T, and

the deep learning framework is PyTorch1.6 framework. The

network training process uses small batch training iterations, the

batch size is set to 4, and the total number of training rounds is

300. The training is terminated early when the validation set

accuracy no longer gets better for 50 consecutive rounds. The

weighted sum of Dice loss and Focal loss function is used as the

loss function, and the early stop method is triggered. We use the

Adam optimization algorithm, and the learning rate set to 1e-4.

X is the set of pixels of the polyp region in the predicted

segmentation result, and Y is the set of pixels of the gold

standard polyp region in the original polyp image.

Segmentation Results (SR) is the set of pixels predicted by the

model for polyp segmentation, Ground Truth (GT) is the set of

pixels for actual polyp segmentation, TP is the pixels correctly

segmented in the polyp segmentation results, TN is the pixels

incorrectly segmented in the polyp segmentation results, FP is

the background pixels incorrectly treated as polyp pixels in the

polyp segmentation results, and FN is the polyp pixels

incorrectly treated as background pixels in the segmentation

results. n is the number of images in the test set.

Several evaluation metrics of segmentation are used in the

experiments, and the specific definitions of these metrics are

given below.

Dice Similarity Coefficient (DSC): Calculates the similarity

between the predicted target region and the actual target region.

In this paper, the sum of the similarity coefficients of all test

results in the test set is averaged and denoted as mDice. The

relevant formula for the similarity coefficient is calculated as

follows:

mDice =
1
n
ðo n

i=1
j 2jX ∩ Yj

Xj j + Yj j jÞ (15)

Intersection over Union (IoU): Calculates the ratio of the

intersection of the two sets of predicted and actual values to the

concurrent set. In this paper, the sum of the Intersection-over-

Union coefficients of all the test results in the test set is averaged

and denoted as mIoU. The relevant formula for the Intersection-

over-Union coefficient is calculated as follows:
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mIou =
1
n
ðo n

i=1
j X ∩ Y

Xj j + Yj j − X ∩ Yj j jÞ (16)

Sensitivity (sens): which indicates the ratio of the number of

pixels correctly segmented to the number of all pixels in the image

segmentation result, is calculated by the relevant formula as follows:

mIou =
1
n
ðo n

i=1
j X ∩ Y

Xj j + Yj j − X ∩ Yj j jÞ (17)

Specificity (spe): which indicates the ratio of the number of

pixels correctly identified as incorrectly segmented to the

number of all incorrectly segmented pixels in the segmentation

result, is calculated by the relevant formula as follows:

spe =
1
n
ðo n

i=1

TN
TN + FP

����

����Þ (18)

The structural similarity measure Sm is used to assess the

similarity between predicted and manually labeled real graphs

(44).

Sm =
1
n
ðo n

i=1
ja� SO + 1 − að Þ � SR jÞ (19)

where a is taken as 0.5; SR and SO are calculated by the

structural similarity metrics in the field of image quality

evaluation (44) denoting region-oriented and object-oriented

structural similarity, respectively.

Mean Absolute Error (MAE): compare the pixel-by-pixel

absolute difference between the predicted value y and the actual

value y.
Frontiers in Oncology 08
MAE =
1
n
ðo n

i=1
jGT − SR jÞ (20)
3.3 Analysis of experimental results

3.3.1 Comparative analysis of different
algorithm models

To verify the performance and segmentation effect of the

algorithm, the segmentation results on the Kvasir and CVC-

ClinicDB polyp image datasets were compared with those of

Unet (29), UNet++ (16), SFA (18), PraNet (25), UACANet-L

(45), and UACANet-S (45) networks, respectively. Table 2 shows

the final obtained methods of each of segmentation performance

metrics, where the bolded values indicate the optimal metrics.

From Table 2, our proposed algorithm achieved good results on

all six evaluation metrics on the Kvasir dataset, mDice, mIou, sens,

spe, Sm and MAE were 0.915, 0.862, 0.911, 0.968, 0.922 and 0.024,

respectively. Compared with the SFA network structure, mDice,

mIou, sens, spe and Sm improve by 0.192, 0.251, 0.037, 0.036 and

0.140, respectively, and MAE decreases by 0.051. On the CVC-

ClinicDB dataset, mDice, mIou, sens, spe, Sm andMAE were 0.931,

0.892, 0.933, 0.984, 0.945, and 0.005, respectively. Compared to the

SFA network structure, mDice, mIou, sens, spe, and Sm improved

by 0.231, 0.285, 0.054, 0.047, and 0.152, respectively, and MAE

decreased by 0.037. The UACANet-L and UACANet-S network

structures improve the metrics sens and spe metrics by 0.008 and

0.005, respectively. On the two datasets, the running time of the

model in this paper is the least.
TABLE 2 Comparison of segmentation effects of different methods on Kvasir and CVC-ClinicDB datasets.

Datasets Methods mDice mIou sens spe Sm MAE Time

Kvasir

UNet (29) 0.818 ± 0.058 0.746 ± 0.069 0.887 ± 0.061 0.941 ± 0.057 0.858 ± 0.062 0.055 ± 0.003 ~8.3h

UNet++ (16) 0.821 ± 0.061 0.763 ± 0.073 0.900 ± 0.059 0.956 ± 0.072 0.862 ± 0.058 0.048 ± 0.002 ~9.2h

PraNet (25) 0.898 ± 0.072 0.840 ± 0.120 0.899 ± 0.056 0.969 ± 0.047 0.915 ± 0.082 0.030 ± 0.003 ~8.5h

SFA (18) 0.723 ± 0.124 0.611 ± 0.097 0.874 ± 0.106 0.932 ± 0.053 0.782 ± 0.069 0.075 ± 0.004 ~13.1h

UACANet-L (45) 0.912 ± 0.071 0.859 ± 0.083 0.907 ± 0.096 0.958 ± 0.084 0.917 ± 0.058 0.025 ± 0.002 ~11.4h

UACANet-S (45) 0.905 ± 0.069 0.852 ± 0.086 0.909 ± 0.078 0.959 ± 0.063 0.914 ± 0.083 0.026 ± 0.002 ~9.7h

Ours 0.915 ± 0.085 0.862 ± 0.120 0.911 ± 0.086 0.968 ± 0.081 0.922 ± 0.074 0.024 ± 0.001 ~7.5h

CVC-ClinicDB

UNet (29) 0.823 ± 0.654 0.755 ± 0.073 0.886 ± 0.061 0.943 ± 0.059 0.889 ± 0.072 0.019 ± 0.003 ~6.2h

UNet++ (16) 0.794 ± 0.058 0.729 ± 0.075 0.893 ± 0.082 0.961 ± 0.079 0.873 ± 0.083 0.022 ± 0.002 ~7.3h

PraNet (25) 0.899 ± 0.103 0.849 ± 0.093 0.935 ± 0.062 0.974 ± 0.072 0.936 ± 0.063 0.009 ± 0.001 ~6.5h

SFA (18) 0.700 ± 0.120 0.607 ± 0.104 0.879 ± 0.093 0.937 ± 0.038 0.793 ± 0.105 0.042 ± 0.002 ~11.1h

UACANet-L (45) 0.926 ± 0.073 0.880 ± 0.071 0.941 ± 0.052 0.985 ± 0.013 0.943 ± 0.032 0.006 ± 0.003 ~9.6h

UACANet-S (45) 0.916 ± 0.580 0.870 ± 0.063 0.927 ± 0.061 0.989 ± 0.011 0.940 ± 0.043 0.008 ± 0.004 ~7.3h

Ours 0.931 ± 0.046 0.892 ± 0.092 0.933 ± 0.047 0.984 ± 0.092 0.945 ± 0.051 0.005 ± 0.002 ~5.5h
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3.3.2 Generalization performance
To verify the generalization performance of the algorithm,

the unseen datasets (CVC-ColonDB, CVC-300, ETIS-Larib) are

used to test the generalization ability of the model (the model

training data are only from Kvasir and CVC-ClinicDB). From

Table 3, we can found that the generalization ability of UNet,

UNet++, and SFA is poor on the three datasets, especially the

evaluation metrics of SFA decreases sharply, while the algorithm

proposed in this paper shows superior levels of all indexes on the

three test sets and achieves good results. Where the bolded

values indicate the optimal metrics.

3.3.3 Results visualization analysis
The model can clearly distinguish polyps from other tissues

in the polyp segmentation task, keep the polyp edge

segmentation intact while reducing the miss segmentation

inside the polyp, and the segmentation results are shown in

Figure 6, and the red areas in the figure are the pixel points

missed segmentation by the network. Some of them are

segmentation networks that incorrectly mark background
Frontiers in Oncology 09
pixels as polyps; some of them are segmentation networks that

incorrectly mark polyps pixels as background pixels.

From Figure 6, we can find that the segmentation model

proposed in this paper can achieve better segmentation results.

However, for images with smooth polyp edges that are easy to

distinguish, such as the third row in Figure 6, all models are able

to segment accurately. When the edges of the lesion region are

similar to the background, all segmentation models have certain

challenges and are prone to multi-segmentation or omission of

pixel points. From the segmentation results in the first and

second rows of Figure 6, it is found that our models have poor

segmentation results; however, for some polyps images with

complex backgrounds, our models can basically distinguish the

lesion regions with blurred borders completely, as shown in the

fourth and fifth rows of Figure 6.

From the visualized results, we can conclude that our

proposed model can generally overcome the problem of polyps

with similar colors and backgrounds well, and detect polyps with

different shapes and sizes and colors of tissues, and the

delineated areas and boundaries are more clear and accurate.
TABLE 3 Comparison results of different methods on an unseen dataset.

Datasets Methods mDice mIou sens spe Sm MAE

CVC-ColonDB

UNet (29) 0.512 0.444 0.754 0.853 0.712 0.061

UNet++ (16) 0.483 0.410 0.735 0.846 0.691 0.064

PraNet (25) 0.709 0.640 0.821 0.914 0.819 0.045

SFA (18) 0.469 0.347 0.716 0.842 0.634 0.094

UACANet-L (45) 0.751 0.678 0.837 0.927 0.835 0.039

UACANet-S (45) 0.783 0.704 0.841 0.936 0.848 0.034

Ours 0.805 0.722 0.849 0.938 0.858 0.031

CVC-300

UNet (29) 0.710 0.627 0.897 0.923 0.843 0.022

UNet++ (16) 0.707 0.624 0.915 0.931 0.839 0.018

PraNet (25) 0.871 0.797 0.938 0.966 0.925 0.010

SFA (18) 0.467 0.329 0.887 0.925 0.640 0.065

UACANet-L (45) 0.910 0.849 0.928 0.970 0.937 0.005

UACANet-S (45) 0.902 0.837 0.931 0.975 0.934 0.006

Ours 0.923 0.857 0.945 0.981 0.946 0.003

ETIS-Larib

UNet (29) 0.398 0.335 0.673 0.782 0.684 0.036

UNet++ (16) 0.401 0.344 0.687 0.779 0.683 0.035

PraNet (25) 0.628 0.567 0.765 0.807 0.794 0.031

SFA (18) 0.297 0.217 0.524 0.723 0.557 0.109

UACANet-L (45) 0.766 0.689 0.797 0.827 0.859 0.012

UACANet-S (45) 0.694 0.615 0.801 0.789 0.815 0.023

Ours 0.774 0.691 0.812 0.834 0.864 0.009
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4 Discussion

We propose a network model for polyp image segmentation

based on deep neural network techniques by combining

HarDNet and a multiscale coding module of attention

mechanism and perform comparison and generalization

experiments on five polyp image datasets. The Table 2 shows

the segmentation results of UNet, UNet++, SFA, PraNet,

UACANet-L, and UACANet-L networks on the Kvasir and

CVCClinicDB polyp image datasets. Table 3 shows the

networks such as UNet, UNet++, SFA, PraNet, UACANet-L,

and UACANet-L tested on the Kvasir and CVCClinicDB

network models on the CVC-ColonDB, CVC-300, and ETIS-

Larib datasets to verify the generalization performance of the

models. Figure 6 shows the segmentation results of each model

on the Kvasir, CVC-ClinicDB, CVC-ColonDB, CVC-300, and

ETIS-Larib polyp image datasets, respectively.

For the data analysis in Tables 2, 3, and Figure 6 above, we found

that the polyp image segmentation model based on deep learning

proposed in this paper can well overcome the problem of similar a

color of polyps and backgrounds, detect polyp tissues with different

shapes and sizes and colors, and achieve excellent results with clearer

and more accurate delineation of regions and boundaries.

Through the analysis of the above results, we know that the

U-Net network causes the semantic gap phenomenon due to the

information difference between the output features in the

encoding and decoding stages, which affects the segmentation

results. Our proposed polyp segmentation network is able to

capture the path of contextual information and effectively reduce

the semantic discrepancy, which well overcomes the diversity of

polyp shape, size, color and texture as well as the unclear

boundary between the polyp and its surrounding mucosa to

achieve more accurate segmentation results.

Our proposed polyp image segmentation network has

achieved a certain degree of improvement, but the model still

has room for further enhancement.
Frontiers in Oncology 10
First, to improve the training speed of the network, we used

parameters and weights based on ImageNet pre-training, but

there are huge differences in features, textures, and other

information between ordinary images and polyp images, which

impose certain limitations on the effectiveness of medical image

segmentation. Secondly, our network has not been attempted to

be validated on a 3D medical image segmentation dataset.

Finally, the size of polyp images in the polyp image dataset

studied in this paper varies greatly, but we set a uniform size of

256×256 during image preprocessing and did not validate the

effect of image size on model segmentation accuracy. In

addition, we just merged the Kvasir and CVC-ClinicDB

datasets and could not guarantee the independence between

the subsets. We will further investigate these issues in our

future work.
5 Conclusions

In the paper, a multi-scale coded colon polyp image

segmentation network combining HarDNet and attention

mechanism was proposed for automatic polyp segmentation of

colonoscopy images, reducing the effects of orientation, shape,

texture, and size on the results. The proposed segmentation

network was evaluated on five polyp image datasets, just as the

Kvasir, CVC-ClinicDB, CVC-ColonDB, CVC-300, and ETIS-

Larib, and analyzed and compared with other existing

representative methods. Through comparative analysis with

other models, we can found that the accuracy of the

segmentation algorithm proposed in this paper is better than

other methods, and for images with very low contrast between

polyps and surrounding mucosa. Through experimental

comparison and analysis, the segmentation algorithm

proposed has better accuracy than other methods. It can

accurately segment the boundary of polyps even for images

with very low contrast between polyps and surrounding mucosa.
FIGURE 6

Polyp segmentation results.
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There are no image artifacts outside the boundary with good

image coherence. The polyp segmentation network proposed

has excellent performance and good generalization ability, which

can assist physicians in the diagnosis of colorectal polyps and

reduce the leakage and misdiagnosis in clinical time, and is of

reference for the processing and analysis of colorectal

polyp images.
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