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The advent of targeted therapy has transformed the treatment paradigm and

survival of patients with metastatic non-small cell lung cancer (NSCLC) with

driver mutations. The development of acquired resistances during treatment

with tyrosine kinase inhibitors (TKIs) impedes a prolonged survival in many

patients. This fact is leading to the use of locally ablative therapies such as

stereotactic ablative radiotherapy (SABR) to counter these resistances. SABR is

a non-invasive treatment that can be delivered in multiple locations and has

already proven effective in oligometastatic disease. Clinical evidence suggests

that the combination of SABR with TKIs prolongs progression-free survival

(PFS) in metastatic NSCLC patients with mutations in epidermal growth factor

receptor (EGFR), with international guidelines recommending their use in

unfavorable scenarios such as oligoprogressive disease. In this publication,

we have reviewed the available evidence on EGFR-TKIs resistance mechanisms

and the combination of SABR with TKI in metastatic NSCLC with EGFR

mutations. We also describe the utility and clinical recommendations of this

combination in oligometastatic and oligoprogressive disease.
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Introduction

Historically, stage IV non-small cell lung cancer (NSCLC)

has been considered an incurable disease, only candidate for

palliative treatments. Chemotherapy (CT), the standard

treatment, offered survival rates of less than a year (1). More

recently, the identification of several genetic variants with a

predomination of mutations in the oncogene for epidermal

growth factor receptor (EGFR) has transformed the

therapeutic landscape in this subset of patients (2–5). Targeted

therapy (TT) with tyrosine kinase inhibitors (TKIs) has reported

median overall survivals (OS) of 22-36 months in patients with

an EGFR mutation (6). However, the onset of primary and

acquired resistances continue to be the main obstacle to further

improve these results (7). The main example is the T790M

mutation, which is responsible for 60% of TKI resistance in this

setting (8). Moreover, third-generation TKIs are also affected by

the C797S mutation, causing resistance in 10-26% of patients

receiving osimertinib as second-line and 7% when used as first-

line (9).

Stereotactic ablative radiotherapy (SABR) is an effective

treatment for oligometastatic disease (10). Recently, several

studies have reported results on its promising combination

with immunotherapy and TT (11–13). Various clinical

guidelines recommend the use of SABR in oligometastatic or

oligoprogressive patients with driver mutations (14). This has

garnered a special interest in the potentially decisive role of

SABR in the eradication tumor clones that are resistant to

systemic therapy by extending clinical benefit. In this review,

we aim to present the clinical data that justify the use of SABR as

a therapeutic agent that may counteract the resistance to EGFR-

TKI in patients with metastatic NSCLC.
State of targeted therapy in EGFR-
mutated NSCLC

EGFR mutations occur in 12% of NSCLC cases, although

Asian patients have a higher prevalence at 47% (15). The

majority of these patients have no prior history of smoking,

and the most common activating mutations are deletions in

exon 19 and the L858R point mutation in exon 20.

Currently, EGFR testing is recommended for all patients

with stage IB-IV adenocarcinoma-type NSCLC and stage IV

squamous cell carcinoma. EGFR inhibitors are the preferred

treatment for NSCLC patients with somatic EGFR mutations.

Those stage IB-IIIA EGFR+ patients initially treated with

surgery and achieving a complete resection (R0) may benefit

from adjuvant treatment with osimertinib 80 mg daily for 3 years

following the results of the phase 3 ADAURA trial, which

showed a substantial benefit in terms of disease-free survival.

This benefit was most evident in stage IIIA patients. In this
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group, at 24 months, 88% of patients treated with adjuvant

osimertinib were alive and disease-free compared to 32% in the

placebo group. This trial reported that osimertinib had an

acceptable safety profile with serious adverse events occurring

in 16% of patients versus 13% in the placebo group (16).

Stage IV disease remains incurable, but EGFR inhibitors

have shown consistent clinical and statistically significant

benefits for the EGFR+ population compared with standard

CT. Erlotinib, gefitinib, afatinib, dacomitinib and osimertinib are

effective as monotherapy, while combination regimens such as

erlotinib plus ramucirumab or erlotinib plus bevacizumab have

emerged as alternative treatments for selected patients (17–23).

Subsequently, the FLAURA trial has reported better results for

osimertinib compared to gefitinib or erlotinib in terms of PFS

and OS (21). It should be noted that these EGFR inhibitors are

also effective in patients with less common EGFR mutations,

such as S7681, L861Q and G719X, because these mutations are

also sensitive to these treatments (24). However, recent real-

world data suggest that osimertinib has better outcomes in

patients with common EGFR mutations compared to patients

harboring these rare mutations (25).

Ultimately, there is strong evidence from phase 3

randomized trials to support the use of EGFR inhibitors as

first-line treatment for stage IV disease, and as adjuvant

treatment after complete resection for stage IB-IIIA, being

osimertinib the currently preferred option. Questions about

the best regimen after failure to osimertinib in both settings

warrant future research.
Mechanisms of resistance to EGFR-
TKIs: “failure patterns”

Although EGFR inhibitors have represented a turning point

in the treatment of EGFR-mutated lung cancer, most stage IV

patients will suffer from disease progression and eventually die

from it. Lung cancer is a heterogeneous disease and sensitivity to

treatment is not the same for all EGFR mutations. The best

example is EGFR exon 20 insertion mutations, as most variants

do not respond to EGFR inhibitors. Amivantamab (a bispecific

EGFR-MET) and mobocertinib (an irreversible kinase

inhibitor), are under investigation for these patients. Both have

shown promising results in recent trial and expected to the

widely available in the future (26, 27).

On the other hand, many patients who initially respond to

EGFR inhibitors will develop secondary resistances through

different mechanisms. The first-generation drugs erlotinib and

gefitinib are reversible inhibitors, while second and third

generation agatinib, dacomitinib and osimertinib are

irreversible inhibitors. For first and second-generation

inhibitors most cases will develop a new mutation in EGFR,

the most frequent being T790M. This mutation produces a
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biochemical change in the ATP levels required to achieve a half-

maximal reaction rate, ultimately resulting in a sensitivity to

inhibitors which is similarly low as in EGFR wild–type (28).

Osimertinib provides clinical and statistical benefit for patients

who develop this resistance and is the preferred option for this

subgroup (29). Another resistance mechanism called “bypass” is

based on alternative molecular pathways that activate

proliferation and survival independent of EGFR activation, the

most frequent being the amplification of the ERBB2 and MET

genes. Mutations in other genes such as BRAF, PIK3CA, KRAS,

PTEN, NF-1 have also been described but are less frequent (28).

Ongoing trials are testing several drugs (capmatinib, sotarasib,

trastuzumab-deruxtecan and trastuzumab-emtasine) that are

already used in clinical practice as a second line option for

lung cancer and their benefit is not limited to the population

with EGFR mutation (29–33).

A great challenge for oncologists nowadays is the acquired

resistance to the third-generation inhibitor Osimertinib. The

mutation in C797S is the most frequent in this context and most

patients retain the T790M mutation after progression (6). There is

currently no consensus on the standard treatment after failure to

osimertinib. Rebiopsy is recommended at the time of relapse, either

in tissue or liquid biopsy. Combinations of immunotherapy with

CT, antiangiogenic agents or combinations of TT can be employed,

with no choice being clearly superior. Clinical trials will hopefully

establish the standard therapy for these progressing patients in the

coming years.
SABR in metastatic NSCLC

The standard treatment for patients with metastatic NSCLC

is systemic therapy based on CT and/or immunotherapy. In the

case of NSCLC with driver mutations, TT is the treatment of

choice. However, although improved from only CT regimes,

median survival is still limited. When analyzing the relapse

patterns of these patients, most recurrences occur at the same

sites of the initial metastatic disease. Considering this fact, the

addition of SABR in oligometastatic patients or those with low

tumor burden with ECOG ≤2 could improve PFS and OS (34).

Even though no phase III trials that validate these results have

been published, the use of SABR in clinical practice is increasing,

with even international guidelines such as the National

Comprehensive Cancer Network (NCCN) recommending the

addition of ablative therapy in de novo oligometastatic patients

to try to improve survival and in oligoprogressive disease to

prolong the benefit of systemic therapy (35).

These recommendations are based on the results of different

retrospective and prospective studies. As for retrospective data, a

meta-analysis published in 2014 including 757 oligometastatic

patients (1-5 lesions but 96.5% ≤2 metastases) treated with local

therapy (surgery +/- radiotherapy/SABR). Median PFS was 11
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months, with a two-year PFS of 25%. Furthermore, Median OS

was 26 months and two-year OS was 51.1%. These are relevant

numbers, especially considering that CT was part of the first-line

treatment in only 17.7% of cases (36). A more recent meta-

analysis of 693 NSCLC patients (78% oligometastatic) compared

local consolidative treatment (surgery or radiotherapy) vs

systemic therapy. In the oligometastatic subgroup, hazard ratio

(HR) for PFS was 0.30 (p<0.001) and 0.41 (p<0.001) for OS,

which shows the benefit of local therapy in these patients (37).

Moreover, several phase II studies have presented results that

further show the effectivity of SABR in oligometastatic NSCLC:
• A phase II study conducted in Belgium analyzed 26

patients with ≤5 metastases diagnosed by positron

emission tomography (PET) receiving CT, or SABR (5

Gy in 10 fractions) in patients who were not candidates

for CT. Seventy five percent of patients presented

synchronous oligometastases. With a median follow-up

of 16.4 months, median PFS was 11.2 months and 1-year

PFS was 45%. In terms of OS, median was 23 months

and 67% at one year. Local failure in the irradiated sites

was only 15% (38).

• Iyengar et al. published in 2017 a single-institution

cohort of patients with ≤6 metastases (including the

primary tumor) treated with at 4-6 cycles of CT and who

were not treatable with TT for driver mutations. Patients

who did not progress after CT were randomized to

SABR plus maintenance CT vs CT alone. After 29

patients and a median follow-up of 9.6 months, the

study was closed due to the interim analysis showing

positive results, with a median PFS of 9.6 months in the

SABR group vs 3.5 months in the control group (p=0.01)

(13).

• The OLIGOMEZ study (2019) is a multicenter

randomized study of patients with up to three

metastases (>90% synchronous) after induction

systemic therapy (CT or TT in case of EGFR or ALK

+). Forty-nine patients which did not progress after

systemic therapy were randomized to receive local

therapy (surgery and/or radiotherapy/SABR) or

maintenance systemic therapy (17% received no

treatment in this arm). After a median follow-up of

38.8 months, median PFS was 14.2 months in the local

treatment group vs 4.4 months in the control group

(p=0.022). Median OS was also significantly better in the

experimental arm (41.2 months vs 18.9, p=0.017). An

interesting endpoint analyzed in the study was the time

until the diagnoses of new lesions, which showed a non-

statistically significant tendency in favor of the local

treatment group (14.2 vs 6 months). This could suggest

that local treatment could even limit the dissemination

potential of the disease (12, 13, 39).
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• The final results of the SABR-COMET trial were

published in 2020. This study included 99 patients

with different primary tumors (18 patients had lung

cancer) and with 1-5 metastases (93 ≤3 lesions) that

were randomized 2:1 to receive SABR plus best palliative

treatment vs palliative treatment alone). With a median

follow-up of 51 months, median PFS was 11.6 months

with SABR vs 5.4 in the control arm (p=0.001), and four-

year PFS was 21.6% vs 3.2%. A favorable impact of SABR

was also reported in terms of OS, with a median of 50

months vs 28 months. After excluding prostate cancer

from the analysis, OS remained better for SABR (five-

year OS 33.1% vs 16.2%, p=0.085) (10). In 2022, updated

results have been published with a median follow-up of

5.7 years. Eight-year PFS was 21.3% in the SABR arm vs

0% in the control arm (p<0.001). The positive impact of

SABR was also observed in eight-year OS: 27.2% vs

13.6% (p=0.008). These recent data supports the

durability of the effect of SABR (34).
In terms of toxicity, all these studies confirm that SABR is a

safe approach. Recently, a phase II multicenter study has

analyzed toxicity in 381 patients treated with SABR, reporting

grade ≥3 toxicity of 4% and grade ≥2 of 8% (40).

All the studies above justify the use of SABR in oligometastatic

patients (≤5) with ECOG ≤2 that do not progress to systemic

therapy. However, it must be noted that these are studies with few

patients, with a heterogeneous systemic therapy and none of them

include the use of immunotherapy, which currently has a key role

in these patients.We are awaiting the results of phase III studies in

oligometastatic NSCLC such as NRG-LU-002 (NCT03137771),

SARON (NCT02417662), and SABR-COMET 3 (NCT03862911)

and 10 (NCT03721341). Many of these are aiming to demonstrate

the benefit in OS of the addition of SABR to systemic therapy.

Moreover, the OMEGA (NCT03827577) study is comparing

locally ablative treatment vs conventional systemic therapy (41).

Given these results, and while ongoing studies report their

data, SABR may be recommended in oligometastatic patients

(with up to 3-5 metastases) with ECOG ≤2 that do not progress

to initial systemic therapy. The ESTRO-ASTRO consensus also

adds that size is not a limiting factor and that, in fact, larger

lesions can be treated with adequate constraints (42).
SABR + TKI

Rationale of the combination

The biological effect of SABR differs from conventional

radiotherapy. SABR unleashes additional microvascular

damage through the activation of different cellular pathways,

producing a higher rate of tumor cell death (43). Several studies
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have reported that the combination of SABR and TKIs could

have a synergistic effect. This could be justified by the following

ideas: a) EGFR-mutated patients present a higher sensitivity to

radiation (44), b) TKIs inhibit DNA repair (45), c) there is a

reduction in T790M mutations after irradiation (46).

EGFR+ patients tend to suffer from disease progression 1-2

years after the star of TKIs. In fact, 60% develop acquired

resistance explained by the T790M mutation T790M (18, 20,

47), and 70% in the form of oligoprogression (48). Yajing Wu

et al. found it a recent meta-analysis that adding local therapy to

systemic treatment improves PFS and OS with no increase in

grade ≥3 toxicity (37). These reasons have led to the considering

SABR as a tool that may revert these resistances with the

following objectives:
-Lower/maintain disease burden.

-Delay disease progression.

-Extend the duration of clinical Benefit from TKIs, mainly

in the oligometastatic scenario (oligorrecurrence,

oligopersistence and oligoprogression).

-Local control of symptomatic lesions.
Evidence

Prospective studies evaluating the combination of SABR and

TKIs are limited and focus on more unfavorable scenarios such

as oligoprogressive disease. While most evidence comes from

retrospective data, results are similar to those reported in

controlled studies, showing a positive impact on PFS

(Table 1). At present, clinical guidelines like the ones by

NCCN recommend SABR in oligoprogressive EGFR+ NSCLC

patients (35).

The study by Weickhardt et al. was one of the first to

evaluate the use of SABR to mitigate the resistance to TKIs. Of

65 patients included, 27 presented EGFR mutation and were in

progression to TKIs. Despite the limited size sample, there was a

benefit in PFS for patients who received SABR and maintained

the line of TKIs (58). Further retrospective studies have also

reported a tendency towards better PFS for patients treated with

SABR, ranging from 6.2 to 19.4 months (Table 1). In the context

of oligoprogression, maintaining TKIs after SABR has shown

better PFS (7 vs 4.1 months) and OS (28.2 vs 14.7 months)

compared to CT (55).

Although most studies included oligometastatic patients (up

to 5 lesions), Kroeze et al. did actually assess polymetastatic

patients. This study in particular found a promising PFS of 10.4

months despite 75% of patients presenting brain metastases (53).

The upfront combination of SABR with TKIs at the start of

therapy was evaluated by Iyengar et al. in a phase II trial (13). This
frontiersin.org
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TABLE 1 Selected studies of SABR and TKIs combination in metastatic NSCLC EGFR-mutated patients.

Local
control (%)

PFS
(median,
mo)

OS
(median,
mo)

Grade ≥ 3
toxicity (%)

91.2
55.4
(p<0.001)

20.2
12.5

(p<0.001)

25.5
17.6

(p<0.001)

35.4
41.4

NR
17.4
10.3

(p=0.042)
NR 0

93.6 at 9 mo 14.7 20.4 8.3

NR
19.4
13.7

(p=0.034)

34.5
43.5

(p=0.557)

20
17.8

(p=ns)

NR 6.3 38.7 2.7

84 at 24 mo 10.4 181 6.2

73 11 31 0.6

100
7
4.1

(p=0.0017)

28.2
14.7

(p=0.026)
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NR 10 41 11.1

NR 6.2 NR 0
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Author Study
design N Strategy Fractionation TKI Timing

Wang et al. [2022]
SINDAS Trial (49)

Phase III
Randomized

133
SABR + TKI
TKI

25-40 Gy/5 fx Gefitinib, Erlotinib, Icotinib Concurrent

Peng et al. [2019] (50)
Phase II
Randomized

61
TKI + SABR
TKI

NR NR Sequential

Iyengar et al. [2014]
(13)

Phase II 24 SABR + TKI
27-33 Gy/3 fx
35-40 Gy/5 fx
10-20 Gy/1fx

Erlotinib Concurrent

Wang et al. [2021] (51) Retrospective 308
SABR + TKI
TKI

70 Gy/10 fx
60 Gy/8 fx
50 Gy/5 fx

Gefitinib, Erlotinib, Icotinib,
Osimertinib, Afatinib

Concurrent

Santarpia et al. [2020]
(52)

Retrospective 36 SABR +TKI
12-60 Gy/2-30 fx
SABR (36%); RT
(64%)

Gefitinib Concurrent

Kroeze et al. [2021] (53) Retrospective
65
(EGFR=49)

SABR+TKI
20 Gy/1fx
Median BED
95.3 Gy/3fx

Gefitinib, Osimertinib, Afatinib,
Erlotinib

Concurrent

Pembroke et al. [2018]
(54)

Retrospective
163
Various
tumors

SABR + TKI BED 42-150 Gy NR

Concurrent
(44.3%)
Sequential
(55.7%)

Chan et al. [2017] (55) Retrospective 50
SABR + TKI
CT

50-60 Gy/3 fx
35 Gy/5 fx
24-35 Gy/2-5 fx

Osimertinib Sequential

Conforti et al. [2013]
(56)

Retrospective 15 SABR + TKI NR Erlotinib, Gefitinib Concurrent

Yu et al. [2013] (57) Retrospective 18
TKI +
SABR/
surgery

NR Gefitinib,Erlotinib Sequential

Weickhardt et al. [2012]
(58)

Retrospective
25
(EGFR=10)

SABR or
surgery

40 Gy Crizotinib, Erlotinib Sequential

SABR, Stereotactic Ablative Radiotherapy; TKI, Tyrosine Kinase Inhibitor; CT, Chemotherapy; Gy, Gray; Fx, fraction; PFS, Progression-free survival; OS, Over
epidermal grown factor receptor.
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study found a PFS of 14.7 months and OS of 20.4 months. A

posterior phase II randomized study found a PFS of 17.4 vs 10.3

months in the systemic therapy alone group (50). Finally, the

phase III SINDAS trial included 133 oligometastatic EGFR+

patients treated with upfront SABR plus TKI vs TKI alone. A

statistically significant benefit was observed in the combination

group, with an OS of 25.5 months vs 17.4 months (p<0.001) (49).
Is it safe to combine SABR and TKIs?
What should the sequence be?

Generally, the combination of SABR and TKIs has reported

safe outcomes. Randomized studies such as SINDAS found no

significant different in grade ≥3 toxicity between the

combination and TKI alone (49). Table 1 shows that grade ≥3

side effects are acceptable in most studies. However, liver SABR

and treatment with sorafenib has reported a high risk of

gastrointestinal toxicity (59). The combination of osimertinib

and thoracic radiotherapy has reported a potential increase in

pulmonary toxicity. Nonetheless, these data come from

retrospective studies with small cohorts, and percentages are

similar to those of CRT-induced pneumonitis (60).

In terms of the treatment sequence, there is no clear consensus

on whether the combination should be administered concurrently

or if TKI should be interrupted during SABR. Studies that have

administered this combination concurrently have not reported high

grade ≥3 toxicities (0-11%) (13, 47). However, more data are needed

to establish the most adequate approach.
SABR dose and fractionation

The optimal dose and fractionation of SABR when

combined with TKIs is still unknown. Although the studies in

Table 1 are very heterogeneous, doses have generally followed

recommendations for definitive treatments with SABR alone,

trying to reach biologically equivalent doses (BED) ≥ 100 Gy.
Future directions

Ongoing clinical trials are aiming to confirm the data

reported up to this point. In oligoprogression to TKIs, the

phase II/III HALT trial (NCT03256981) will include an

experimental arm in which patients will receive SABR to up to

three extracranial sites while continuing TKI. In an earlier

scenario, the randomized NORTHSTAR trial (NCT03410043)

will evaluate if the combination of SABR plus osimertinib is

better than osimetinib alone in stage IIIB/IV EGFR+ NSCLC as

first-line therapy.
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A pending challenge to overcome is the incorporation of

translational aspects into clinical practice through novel

biomarkers. Detection of circulating DNA can predict

treatment response, but also detect possible resistances (61).

The use of these blood biomarkers in clinical trials combining

SABR and TKIs could be promising as their implementation into

clinical practice would be easily accessible.
Conclusion

SABR is a safe and effective approach for the treatment of

oligometastatic NSCLC. Moreover, it can be used in multiple

locations and does not require the interruption of systemic

therapy. Acquired resistance to TKIs is a challenging scenario

in which the use of SABR has reported very promising results at

overcoming the resistance mechanisms to TKIs in metastatic

NSCLC. Although evidence remains limited, clinical benefit has

outweighed the risks mainly in oligoprogresive disease. In this

setting, TKIs maintenance after successful SABR has prolonged

PFS and, in some cases, OS. The combination has also reported

an effective role as first line, although the best strategy is still

unknown and warrants further research.
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