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Single-cell profiling reveals that
SAA1+ epithelial cells promote
distant metastasis of esophageal
squamous cell carcinoma
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and Bingqiang Zhang1*

1Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University,
Chongqing, China, 2Department of Orthopaedics/Sports Medicine Center, State Key Laboratory of
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Chongqing, China
Introduction: Esophageal squamous cell carcinoma (ESCC) is one of the most

common cancers globally, with significant cell heterogeneity and poor

prognosis. Distant metastasis in ESCC is one of the key factors that affects

the prognosis of patients.

Methods and results: Starting with the analysis of ESCC single-cell sequencing

data, we constructed a single-cell atlas of ESCC in detail and clarified the cell

heterogeneity within tumor tissues. Through analysis of epithelial-mesenchymal

transition (EMT) levels, gene expression, and pathway activation, we revealed the

existence of a novel subpopulation of SAA1+ malignant cells in ESCC that are

highly aggressive and closely associated with distant metastasis of ESCC. In vitro

wound healing and transwell assays confirmed a strong invasion capacity of

ESCC tumor cells with high expression of SAA1. Then, we constructed an

effective and reliable prediction model based on the gene expression pattern

of SAA1+malignant cell subpopulations and confirmed that patients in the high-

risk group had significantly worse prognosis than those in the low-risk group in

the training cohort, internal verification cohort and external verification cohort.

Discussion: This manuscript contributes to exploration of the heterogeneity of

ESCC tumor tissues and the search for new ESCC subpopulations with special

biological functions. These results contribute to our understanding of the

underlying mechanisms of distant metastasis of ESCC and thus provide a

theoretical basis for improved therapies.

KEYWORDS

esophageal squamous cell carcinoma, metastasis, scRNA-seq, SAA1, prognosis
Abbreviations: ESCC, esophageal squamous cell carcinoma; EC, epithelial cells; EMT, epithelial-

mesenchymal transition; PCA, principal component analysis; scRNA-seq, single-cell RNA sequencing;

GEO, Gene Expression Omnibus; SNN, shared nearest neighbor; UMAP, Uniform Manifold

Approximation and Projection; GSEA, Gene Set Enrichment Analysis; ES, enrichment score; TCGA,

The Cancer Genome Atlas; SD, standard deviation.
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Introduction

Esophageal squamous cell carcinoma (ESCC) is one of the

most aggressive squamous cell carcinomas and is particularly

common in Asia (1). According to the latest Global Cancer

Statistics 2020, esophageal cancer has the 7th highest incidence

rate among all malignancies, with approximately 604,000 new

cases and 544,000 deaths worldwide each year (2). ESCC is the

most prevalent histological type of esophageal cancer,

accounting for more than 90% of esophageal cancer cases (3).

Despite the use of surgery, radiotherapy and chemotherapy, the

prognosis for patients with ESCC remains poor, with a 5-year

survival rate of only approximately 25% (4). In recent years,

molecular-targeting therapy (including cetuximab and

bevacizumab) and immunotherapy (including pembrolizumab

and nivolumab) have been shown to effectively improve the

survival and prognosis of patients with advanced esophageal

cancer. However, the high costs and increased incidence of

adverse reactions are arousing widespread concern (5).

Tumor metastasis is the leading cause of treatment failure in

patients with ESCC (6). The poor outcome in esophageal cancer

is largely due to cancer metastasis, with the 5-year survival rate

declining from 43% for patients with localized disease to 23%

and 5% for those with regional and distant metastasis,

respectively (7). Epithelial-mesenchymal transition (EMT) is a

reversible process in which epithelial cells acquire mesenchymal

properties by changing their morphology, cellular structure,

adhesion, and migration capacity. EMT initiates the metastatic

properties of cancer cells by enhancing mobility, invasion, and

resistance to apoptotic stimuli (8).

SAA1 is a member of the serum amyloid A family of

apolipoproteins, which play an important role in chronic

inflammation, cancer and other diseases (9). Xiao et al. found

that serum SAA1 is a potential biomarker for eosinophilic

granulomatosis with polyangiitis (10). Ren et al. discovered

that SAA1+ epithelial cells were identified as a featured

subpopulation of endometrial tumorigenesis (11). However,

the role of SAA1 in the occurrence and development of ESCC

has not been elucidated.

In this study, we constructed a single-cell atlas of ESCC

tissue by an in-depth analysis of ESCC single-cell sequencing

data. By comparing the EMT status, functional gene expression,

and key pathway activation of different tumor cell

subpopulations, we identified the crucial cell subset mediating

ESCC metastasis and verified this finding in another

independent sample dataset. These findings contribute to

exploration of the heterogeneity of ESCC tumor tissues and

the search for new ESCC subpopulations with special biological

functions and provide a theoretical basis for further research on

the molecular mechanisms related to ESCC progression

and metastasis.
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Materials and methods

ScRNA-seq data download
and preprocessing

ESCC single-cell sequencing data were downloaded from the

GEO database (GSE160269 and GSE188900). The original files

were read by the CreateSeuratObject function in R and

constructed into a Seurat object. We screened 1500 top

variable features for further analysis, setting the selection

method as “vst” (fitting a straight line to the relationship

between log(variance) and log(mean) using local polynomial

regression). We used the FindIntegrationAnchors function to

find a set of anchors between different batches of data and then

perform the dataset integration.
Data dimensionality reduction
and clustering

A combination of linear and nonlinear methods was

employed to reduce the dimensionality of the data. First,

principal component analysis (PCA) was conducted for linear

dimensionality reduction, setting “weight.by.var” to TRUE to

weight cell embeddings by the variance of each PC. Then, unified

manifold approximation and projection (UMAP) was carried

out for nonlinear dimension reduction, and the calculation

method “uwot” was selected, and the parameter “min.dist” was

set at 0.3. The k.param nearest neighbors were computed to

construct the nearest-neighbor graph. The shared nearest

neighbor (SNN) algorithm was used to identify clusters of cells.
Assessment of EMT levels in
epithelial cells

The genes related to EMT were obtained from the MSigDB

database (GO:0001837). EMT scores were calculated for

individual epithelial cells using the AddModuleScore function,

with 100 control features selected from the same bin per

analyzed feature. Single epithelial cells were colored on the

UMAP dimensional reduction plot according to the EMT

scores. Boxplots were drawn to compare the differences in

EMT levels among different cell clusters.
GSEA enrichment

GSEA software (v4.1.0) was downloaded from the official

website (http://www.gsea-msigdb.org/gsea/index.jsp) and used

for enrichment analysis. The gene set data were obtained from
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the MSigDB database and constructed into the GMT format file

according to the instructions. The expression patterns of each

subpopulation were calculated and disposed into input files in

the RNK format. In the process of enrichment analysis, the

number of permutations was set to 1000, and the permutation

type was set to “gene set”.
Cell culture

The human ESCC cell line KYSE-30 was generously

provided by the American Type Culture Collection (Manassas,

VA, USA). The cells were cultured in Dulbecco’s modified

Eagle’s medium/nutrient mixture F-12 (DMEM/F-12; Gibco,

CA, USA) supplemented with 10% fetal bovine serum (FBS;

HyClone, UT, USA) and 1% penicillin−streptomycin (Sigma

Aldrich, MO, USA) at 37°C with 5% CO2.
Plasmid DNA transfection

The construction and amplification of the SAA1 plasmid were

carried out by Genechem Co., Ltd. (Shanghai, China). The

plasmid DNA vector was GV141 and the component sequence

was CMV-MCS-3FLAG-SV40-Neomycin. Transfection was

performed using INVI DNA Transfection Reagent. Specifically,

4 μg DNA was added to 50 μl of Opti-MEM and mixed gently.

The transfection reagent (7 mL) was diluted in 50 μL of Opti-

MEM. Then, the prepared DNA was combined with the prepared

transfection reagent and incubated for 20 minutes at room

temperature to allow the DNA-transfection reagent complexes

to form. Finally, the complexes were added to each well.
Real‐time quantitative PCR

Total RNA was extracted from cells using RNeasy Kits,

according to the protocol provided by the manufacturer

(QIAGEN, Hilden, Germany). The superscript III first‐strand

synthesis kit (TaKaRa) was used to synthesize complementary

DNA (cDNA) from total RNA. Then, RT-qPCR was performed

on the ABI Prism 7900 Sequence Detection System (PE Applied

Biosystems, Foster City, CA, USA) using a SYBR Green RT-PCR

kit (TaKaRa). Expression levels were normalized to expression of

the housekeeping gene glyceraldehyde-3-phosphate

dehydrogenase (GAPDH).
Wound healing

KYSE-30 cells were digested using 0.05% Trypsin‐EDTA

(Sigma Aldrich, MO, USA), resuspended in the wash buffer at 4 *

105 cell/ml, and then seeded into 24-well plates (2 * 105 cell/
Frontiers in Oncology 03
well). When the cells reached approximately 90% confluence

(about 24 hours after the seeding), the plate was vertically

scratched with a 50 μL sterile pipette tip. Floating cells were

removed by washing with PBS (1X) three times. The scratch was

examined under an inverted microscope (IX73P2F, Olympus,

Japan), and photographs were taken at 0 and 24 hours.
Transwell assay

The transfected cells were digested using 0.05% Trypsin‐

EDTA (Sigma Aldrich, MO, USA). Briefly, culture medium was

removed, and cells were washed once with PBS. Remove PBS,

add 200 μL of 0.05% trypsin‐EDTA, and incubate for 3 min at

room temperature. When the fibroblasts showed cell contraction

and increased cell space under the microscope, trypsin was

removed and medium containing 10% FBS was added to stop

the digestion. The cells were suspended by blowing and beating

with a pipette and then collected in centrifugal tubes. Cells were

counted and resuspended in serum-free medium (10 * 104 cell/

mL), and then 200 μL of cell suspension was added to each well

(2 * 104 cell). After 24 hours of incubation, the cells were fixed

with a 4% paraformaldehyde solution and stained with 0.1%

crystal violet.
Grouping of ESCC patients

RNA-seq and clinical data from 176 ESCC patients were

downloaded from GSE53625. These patients were randomly

divided into two cohorts: a training cohort (n = 88) and an

internal verification cohort (n = 88). In addition, ESCC

sequencing data from the database TCGA were downloaded,

which was used as an external verification cohort (n = 155). To

ensure the accuracy of the results, we excluded patients who had

been followed for less than 30 days.
Risk score calculation

The regression model calculates a risk score for each patient

based on the following formula:

Risk   score =  on
i=1(ei*   ci)

where N is the number of genes in the model; ei is the gene

expression; ci is the gene coefficient in the regression model.
Statistical analysis

Bilateral tests were performed for statistical tests. The mean

± standard deviation (SD) was used to present the quantitative
frontiersin.org
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data. A P value less than 0.05 was considered statistically

significant, the statistical difference between groups is

indicated on graphs with stars: the stars (from 1-4 stars)

respectively represent p-values less than 0.05, 0.01, 0.001 and

0.0001. Some R packages were used in this study, including

“limma”, “Seurat”, “dplyr”, “magrittr”, “infercnv”, “survival”

and “survminer”.
Results

Cell type identification in the
ESCC microenvironment

To perform an in-depth analysis of the cell composition

within the tumor microenvironment in ESCC, a total of 206,701

cells with scRNA-seq data were examined in this study. Through

unbiased clustering, we divided cells into 6 main clusters and

used the UMAP algorithm to reduce dimensionality (Figure 1A).

Cluster-specific markers were extracted and used for cell type
Frontiers in Oncology 04
identification: T cells (CD4, CD3E, CD8A, CCR4 and CCR5,

69324 cells); epithelial cells (KRT17, KRT7, KRT8, CSNK2A1

and EPCAM,43498 cells); fibroblasts (IL11, PI16, VIM, CXCL12

and POSTN, 41448 cells); B cells (CD19, CD22, CD79A, CD20

and CD40, 22524 cells); myeloid cells (CD33, CXCL9, CCL4,

IL1B and CXCL2, 17346 cells) and endothelial cells (PECAM1,

CD34, FLI1, ERG and vWF, 12561 cells) (Figures 1B, C).
Heterogeneous analysis of the metastatic
potential of malignant epithelial cells

ESCC is characterized by the uncontrolled proliferation of

epithelial cells. We further investigated epithelial cells to gain a

better understanding of the cellular heterogeneity. A total of 43498

epithelial cells were subdivided into five subpopulations (EC-0 to

EC-4, Figure 2A). Moreover, EMT is a crucial biological process in

which epithelial-driven malignant tumor cells acquire the ability

to migrate and invade (12). We evaluated the EMT levels in

epithelial cells and found that cells in EC-4 showed the highest
A B

C

FIGURE 1

ScRNA-seq profiling of ESCC microenvironments. (A). The UMAP plot visualizes the cell types in the ESCC microenvironment, with each cell
type represented by a different color. (B). Heatmap showing the expression of marker genes in the different cell types. (C). UMAP plot showing
the expression levels of marker genes for different cell types.
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level of EMT, suggesting that these cells are tending to metastasize

(Figure 2B). We detected the gene expression patterns of EC-4

cells and found that certain genes that have been proven to

promote ESCC metastasis were significantly enhanced in the

EC-4 group (CCND1, CTTN, DKK3, ETV5, MARCKSL1,

SOX4, Figure 2C). In addition, the PI3K-AKT and WNT

pathways were found to play an important role in promoting

metastasis (13, 14). Gene Set Enrichment Analysis (GSEA)

showed that these two pathways were significantly activated in

EC-4 cells (Figure 2D). Collectively, these results pointed to EC-4

cells as a central driver of metastasis in ESCC, with stronger

metastatic potential than other cell subpopulations.
SAA1 is the primary target for highly
invasive epithelial cells

To clearly define the highly invasive cell subpopulations in

ESCC, we compared the gene positive rate of EC-4 cells to that of
Frontiers in Oncology 05
other cell subpopulations and found that SAA1 exhibited the

most significant difference (Figure S1A). So, we defined the EC-4

group as SAA1+ epithelial cell subpopulations (Figure 3A).

Survival analysis showed that ESCC patients with low SAA1

expression had a better prognosis than those with high SAA1

expression (Figure S1B). We are wondering whether SAA1 is the

key gene that induces EC-4 cells to acquire the ability to be

highly invasive. KYSE-30 expresses relatively low levels of SAA1

(Figure S1C). The PCR results showed that we successfully

increased the expression of SAA1 in the epithelial cell line

KYSE-30 through plasmid transfection (Figure 3B). Wound

healing assays confirmed that KYSE-30 cells with high SAA1

expression had stronger migration ability (Figure 3C). This

stronger migration ability could be attenuated after SAA1

interference (Figure S1D). Similarly, transwell assays showed a

significant increase in the number of highly invasive cells after

overexpression of SAA1 (Figure 3D). These findings suggest that

SAA1 plays a pivotal role in mediating the invasiveness of EC-

4 cells.
D

A B

C

FIGURE 2

Heterogeneous analysis of malignant epithelial cells. (A). UMAP plot showing the subpopulations of epithelial cells. (B). EMT levels of epithelial
cells. (C). Violin plot showing the expression of certain metastasis-related genes. (D). GSEA showing that the pathways activated in EC-4 cells.
The symbol **** represent p-values less than 0.0001.
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Independent verification of SAA1+
epithelial cell subpopulations

To verify the existence of highly aggressive SAA1+ epithelial

cell subpopulations, we imported another set of ESCC single-cell

sequencing data. The 9181 tumor cells were divided into 5 cell

subpopulations (Figure 4A). We examined the expression of

SAA1 and found that it was predominantly expressed in cell
Frontiers in Oncology 06
subpopulation 2, suggesting that cell subpopulation 2 was the

SAA1+ epithelial cells (Figure 4B). The other subpopulations

also have similar corresponding relationships. Subpopulation 0

highly expressed the markers of EC-0 (ELF3, PHLDA2 and

LYPD3); subpopulation 1 cluster cells overexpressed genes

related to EC-3, such as S100A9 and B2M; subpopulation 3

cluster may predominantly correspond to EC-1 (STMN1, TUBB,

HMGB1) and subpopulation 4 corresponded to EC-2 (DSC3,
D

A B

C

FIGURE 3

SAA1 is the primary target for EC-4. (A). Violin plot showing the expression of SAA1 in different epithelial subpopulations. (B). PCR analysis
confirmed the overexpression of SAA1. (C). Wound healing assays were performed to evaluate the migratory capacity after overexpression of
SAA1. (D). Transwell assays were performed to assess the invasion capacity after overexpression of SAA1. The symbols ** and **** represent p-
values less than 0.01 and 0.0001.
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LAMTOR4, RPS11) (Figure S2). Upon further evaluation of the

metastasis-related characteristics of this cell subpopulation, we

confirmed that EMT scores were significantly higher in cell

subpopulation 2 than in the others, as expected (Figures 4C, D).

Meanwhile, GSEA showed that the PI3K-AKT and WNT

pathways were also significantly activated in cell subpopulation

2 (Figure 4E). In summary, these results show that a highly

aggressive SAA1+ epithelial cell subpopulation does exist

in ESCC.
Frontiers in Oncology 07
Establishment of the risk regression
model based on EC-4 cells

Furthermore, we hope to use the characteristics of EC-4 cells to

predict the prognosis of ESCC patients. We analyzed the gene

expression patterns of EC-4 subpopulations and collected a total of

602 EC-4-specific genes (including 322 upregulated genes and 280

downregulated genes). The results of the univariate Cox analysis

identified the genes which was significantly associated with the
D

A B

E

C

FIGURE 4

Verification of SAA1+ epithelial cell subpopulations. (A). UMAP plot showing the subpopulations of epithelial cells in the verification data. (B).
Violin plot showing the expression of SAA1 in different epithelial subpopulations in the verification data. (C). UMAP plot showing EMT levels of
epithelial cells in the verification data. (D). Box plot showing the EMT levels of epithelial cells in the verification data. (E). GSEA showing that the
pathways activated in SAA1+ cell subpopulation. The symbol **** represent p-values less than 0.0001.
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prognosis of patients in the training cohort. The 8 genes EC-4-

related prognostic model was established by lasso regression

analysis, including CTTN, SSPN, GRB7, FOXP1, SNX1,

ALDH7A1, CXCL14 and PODXL2. We applied the model to

predict the survival of patients in the training cohort. The results

showed that the prognosis of patients in the low-risk group was

significantly better than that in the high-risk group (Figure 5A). The

risk score yielded a c-index of 0.768 (95% CI, 0.740-0.796) in the

training cohort. The multivariate Cox results showed that the risk

score was an independent predictor of prognosis in ESCC patients,

and its predictive ability was superior to that of traditional clinical
Frontiers in Oncology 08
assessment indicators (age, sex, smoking, alcohol and TNM stage).

Further extending the application range, our prognosis model

exhibited great performance in both the internal verification

cohort and the external verification cohort (Figures 5B, C). The

risk score had a c-index of 0.730 (95% CI, 0.700- 0.761) in the

internal verification cohort and 0.707 (95% CI, 0.673- 0.741) in the

internal verification cohort. In general, these results confirmed that

gene expression patterns of EC-4 subpopulations could accurately

reflect the developmental characteristics of ESCC and that making a

risk regression model using the EC-4 expression profiles could

effectively predict the prognosis of ESCC patients.
A

B

C

FIGURE 5

Risk regression model establishment. (A). Survival analysis of patients in the training cohort. (B). Survival analysis of patients in the internal
verification cohort. (C). Survival analysis of patients in the external verification cohort. The red box indicated the risk factor and the green
indicated the protective factor.
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Discussion

ESCC is one of the most invasive tumors with a high incidence

rate (15). Despite surgery, chemoradiotherapy and molecular-

targeting therapy, most patients with ESCC develop metastasis,

which leads to treatment failure (16). Elucidating the molecular

mechanism of ESCC metastasis is crucial to improve the

treatment method, prevent tumor metastasis and ameliorate the

prognosis. In this study, we analyzed the cellular composition of

the ESCC tumor microenvironment through in-depth mining of

ESCC single-cell sequencing data. We found that in addition to

malignant epithelial cells, tumor tissues contain a large number of

immune cells (T cells, B cells, and myeloid cells), which suggests

that tumor immunity plays an important role in the occurrence

and development of ESCC. Th1 cells have been shown in previous

studies to upregulate interferon-g response signaling and antigen

presentation pathways and downregulate lipid metabolism and

MAPK pathways of ESCC cells, thereby improving the

neoadjuvant chemoradiotherapy response of esophageal

squamous cell carcinoma (17). Wang et al. found that the

characterization of the intratumor B-cell immunoglobulin

repertoire could help to predict the prognosis of ESCC (18).

As the main cell type of tumor metastasis, malignant

epithelial cells are the focus of this study. Abnormal activation

of EMT is critical for cancer cells during tumor progression and

metastasis (19). In the malignant epithelial cells of ESCC, we

identified a novel subpopulation (EC-4) that exhibited an

extremely high tendency to undergo EMT. Many key genes

closely associated with ESCC metastasis show widely

dysregulated expression patterns in EC-4, such as CTTN.

CTTN is an oncogene that promotes the metastasis of ESCC.

It binds to and activates the actin-related protein complex

(Arp2/3), thereby modulating the actin branching network to

form dynamic cortical actin-related structures (20).

SAA1 was identified as a marker gene of EC-4 cells. Previous

studies have confirmed its close association with chronic

inflammation, SAA1+ cell subpopulations may be extensively

related to the inflammatory response of ESCC, which is worth

further study (21). Moreover, SAA1 has been widely studied in a

variety of tumors. In oral cancer, SAA1 promotes tumor

metastasis by inducing EMT (22). Cancer-associated

adipocytes affect the progression of pancreatic cancer by

regulating the expression of SAA1 (23). Additionally, high

expression of SAA1 can be used as an effective predictor of

advanced renal cell carcinoma (24). We confirmed in vitro that

ESCC cells with high SAA1 expression were more invasive and

migratory by wound healing and transwell assays, and these

results supported our hypothesis that SAA1+ ESCC cell

subpopulations have unique biological functions.

Many studies have predicted ESCC patient prognosis in a

variety of ways. Yu et al. revealed diagnostic biomarkers and risk

factors for esophageal squamous cell carcinoma by plasma
Frontiers in Oncology 09
metabolomics. However, it is unclear whether the findings are

applicable to other regions and populations, as the study was

conducted in a single center. Zhu et al. constructed a prognostic

model for ESCC patients based on lncRNAs, but the model

contained too many genes, which was not conducive to wide

clinical application (25). With the rapid development of single-

cell sequencing technology, the heterogeneity of tumor cells has

been widely studied. Our study combined the advantages of both

single-cell sequencing and transcriptome sequencing and

successfully developed a metastasis-related prognostic model

based on the expression pattern characteristics of the SAA1+

highly invasive subpopulation of ESCC. This model not only has

good performance in the training group but also showed

excellent prediction ability in the independent internal and

external verification cohorts.

In conclusion, we mapped the tumor microenvironment by

mining ESCC single-cell sequencing data. Through the

assessment of EMT levels in epithelial cells and the

comprehensive analysis of key genes and pathways, we found

a group of SAA1+ malignant epithelial cells in esophageal cancer

that are highly invasive and play an important role in the distant

metastasis of ESCC. Based on the results, we constructed an

ESCC metastasis-related prognostic model that could accurately

assess patient prognosis. These findings contribute to our

understanding of the underlying mechanism of ESCC

metastasis and further improve the treatment and prognosis of

patients with ESCC.
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