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Poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC)

have a worse prognosis with respect to well differentiated TC, and the loss of

the capability of up-taking 131I is one of the main features characterizing

aggressive TC. The knowledge of the genomic landscape of TC can help

clinicians to discover the responsible alterations underlying more advance

diseases and to address more tailored therapy. In fact, to date, the

antiangiogenic multi-targeted kinase inhibitor (aaMKIs) sorafenib, lenvatinib,

and cabozantinib, have been approved for the therapy of aggressive

radioiodine (RAI)-resistant papillary TC (PTC) or follicular TC (FTC). Several

other compounds, including immunotherapies, have been introduced and, in

part, approved for the treatment of TC harboring specific mutations. For

example, selpercatinib and pralsetinib inhibit mutant RET in medullary thyroid

cancer but they can also block the RET fusion proteins-mediated signaling

found in PTC. Entrectinib and larotrectinib, can be used in patients with

progressive RAI-resistant TC harboring TRK fusion proteins. In addition FDA

authorized the association of dabrafenib (BRAFV600E inhibitor) and trametinib

(MEK inhibitor) for the treatment of BRAFV600E-mutated ATC. These drugs not

only can limit the cancer spread, but in some circumstance they are able to

induce the re-differentiation of aggressive tumors, which can be again

submitted to new attempts of RAI therapy. In this review we explore the

current knowledge on the genetic landscape of TC and its implication on the

development of new precise therapeutic strategies.
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Introduction

Thyroid cancer (TC) is a highly diffuse endocrine tumor

affecting especially the female gender with a low death rate but

increasing worldwide (1–4). TCs classification is based on the

cells of origin with an incidence that changes according to the

different histotypes. The differentiated TC (DTC) is the most

common tumor, which arises from thyroid follicular cells, and

represents with papillary TC (PTC), and follicular TC (FTC)

about 85–95% of all TCs. Hürthle cells TC and poorly

differentiated TC (PDTC) account for 2–5% of all TCs, and

the anaplastic TC (ATC) comprises about 1.7% of all cases of

TC. Medullary TC (MTC) arises from para-follicular C cells of

neuroendocrine origin, accounting for 3–5% of all TCs (5).

Patients with PDTC and ATC have a worse prognosis with

respect to well differentiated TC (WDTC), and a lower overall

survival (OS) rate with a mean survival of about 3.2 years and 6

months, respectively (6). High rate of disease relapse is registered

in PDTC patients, who report frequent local invasion of the

disease at the level of trachea and/or esophagus, and also distant

progression to the liver, lungs, bone and brain (7–9).

Some PDTC tumors are characterized by refractoriness to

T4-mediated TSH suppression or to the therapy with

radioiodine (RAI) (7).

ATC is a very aggressive cancer usually originating from

DTCs or PDTCs, and is characterized by a quickly growth that

can vary from days to several weeks; it is often associated to

dysphagia, acute hoarseness, dyspnea, and/or neck pain (7, 10).

Thyroid ultrasound (US) helps in stratifying the risk of

malignancy of thyroid nodules, that according to their

morphological features (shape, size, echogenicity, margins, the

presence of microcalcifications) can be further examined by the

fine needle aspiration cytology (FNAC) (11).

The criteria defining the risk of malignancy for biopsied

nodules and their subsequent clinical management follow the

Bethesda classification system (12).

However, it is often challenging make the right therapeutic

decision with indeterminate thyroid nodules, and molecular

testing of genetic mutations related to TC can improve the

risk stratification supporting the decision-making process in

order to avoid unnecessary invasive procedure, such as

surgery, and predicting possible adverse clinical outcomes in

the post-operative phase (11, 12).
Thyroid cancer molecular alterations

Some of the genetic TC alterations are called “driver”

mutations that promote the normal cell transition into

cancerous one, whereas the “passenger” mutations are the

consequences of carcinogenesis and of loss of differentiation

(13, 14). About 90% of alterations are mutually exclusive

activating oncogene BRAF (~60%), RAS (~13%), and
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rearrangements [ALK, RET, and NTRK genes (~5%)]; whereas

the other 10% are loss-of-function of tumor suppressor genes

(including PPARg, PTEN, and TP53) (15–17). The Cancer

Genome Atlas (TCGA) documented aberrations of genes in

97% of PTCs, including driver genes CHEK2, EIF1AX, and

PPM1D, members of the phosphoinositide 3-kinase (PI3K)

pathway and other gene fusions (17), however 3% of PTCs

(called “dark matter”) still are genetically undefined (18). The

molecular mechanisms that guide the progression to a more

aggressive pattern are not largely elucidated (19). The genetic

alterations per tumor found in ATC are higher in comparison to

PTC and FTC (16); and according to TCGA, PDTC has also a

higher mutational burden compared to PTC, but lower than

ATC. Genomic instability in PDTC and ATC involve both

somatic driver mutations and gene fusions (17, 20). Parallel

sequencing studies have been carried out on both PDTCs and

ATCs, in order to study their molecular features and discovering

the differences between these two types of tumors. Elevated

frequencies of TERT promoter, TP53, PTEN and PIK3CA

mutations have been observed in ATCs with respect to

PDTCs; ATCs also have NF1, NF2, ATM, CDKN2A,

CDKN2B and RB1 mutations. Instead, PDTCs showed a

higher frequencies of gene fusions (RET, ALK, NTRK1,

NTRK3) (21). Recently, next-generation sequencing (NGS)

studies, have revealed molecular clues underlying the

progression of DTC to PDTC and ATC (15, 16).
Genetic pathways, and epigenetic
mechanisms implicated in TC
pathogenesis and progression

Most of the TC primary driver oncogenes activate the

mitogen activated protein kinase (MAPK) and the PI3K

pathways (22–24); the alterations involving these pathways are

the most found in ATC and PDTC (20). BRAFV600E and RAS-

like mutations, including three highly homologous isoforms

(NRAS, KRAS and HRAS) are the most common found in TC.

According to the TCGA, BRAFV600E is the most frequent

driver mutations associated with PTC (1, 17, 25); found in 25%

of ATC, and associated with tumor aggressiveness, and a bad

prognosis (26, 27). Moreover, it is related to an absent or

reduced expression of various genes, such as those encoding

thyroid-peroxidase, the sodium-iodide symporter, Tg, TSH

receptor, and pendrin genes (SLC26A4) (1, 28, 29). Therefore,

it is suggested as a predictive marker of PTC persistence or

recurrence, decreased efficacy of RAI therapy (30), and reduction

of the OS (13, 31–33).

Mutated BRAF PTC has been related to different clinical-

pathological conditions with a negative prognostic impact, and a

more aggressive behaviour (extra-thyroidal extension, lymph

node metastases, advanced disease stage) (1, 34, 35). Other
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studies showed no kind of correlation between BRAFV600E and

any of the PTC aggressiveness features (13, 36). However, the

detection of BRAFV600E in FNAC improves the diagnostic

accuracy of PTC reducing also false-negative results (13).

RAS genes mutations are mainly found in FTC and in

follicular variant PTC (FVPTC) (30-45%), in PDTC (20-40%),

in a less percentage of ATC (10-20%), and also in benign

follicular thyroid adenoma (20-25%), while rarely in classical

PTC (1, 37). These mutations are more commonly related to

indolent behaviour, follicular growth, encapsulation, and a lower

incidence of nodal metastasis (11, 38). However, RAS mutations

are believed to worsen TC prognosis and life expectancy

inducing the passage from a WDTC to a de-differentiated

type, the development of distant metastases, and recurrence

(13). Furthermore, the de-differentiation effect has been

supported by the chromosome instability because of mutant

RAS (1, 39, 40).

Association with clinical-pathological manifestation is

controversial (41, 42). Disease-specific death risk is 2.9 times

higher in subjects harbouring RAS mutation with respect to

those without RAS mutation (43). The detection of RAS

mutation in FNAC has an important clinical meaning for

indeterminate nodules, with a predictive value for cancer

ranging between 74% and 88% (13).

The gradual passage or de-differentiation of WDTC to ATC it

has been hypothesized to be induced by the accumulation of genetic

alterations, particularly of BRAF or RAS mutations (6, 44, 45).

Point mutations have been also identified in TERT

promoter, resulting in a telomerase activation that is up-

regulated in 80-90% of TC; whereas it is not present in normal

thyroid cells (1, 46, 47).

Duan et al. studies found that: 1) ATC with PTC

components is typically characterised by a BRAF mutation,

and at least one late mutation event (TP53, TERT, or

PIK3CA); 2) RET fusion is more frequently associated to

PDTC with PTC components. In subjects with PDTC/ATC a

worse OS is related to TERT and concurrent PIK3CA mutations

(6). The prognostic effect related to TERT promoter mutations

was not present when BRAF mutation occurred separately,

showing that the co-existence of both mutations is

determinant for tumor aggressiveness (40).

Other alterations mostly found in PDTC (10-14%) than in

ATC (3-5%) are the genes fusions (48). RET represents the most

frequent genetic fusion, especially RET/PTC1 and RET/PTC3;

NTRK, ALK and BRAF fusions are unusual (20, 48). Post-

radiation exposure TC, and children, reporting or not a

previously irradiation history, display a high frequency of

RET/PTC1 and RET/PTC3 rearrangements. RET/PTC3 is

related with the tendency for aggressive behaviour and

advanced stage, higher rates of extra-thyroidal extension and

lymph node metastases (13). It seems that RET/PTC is a leading
Frontiers in Oncology 03
mutation in thyroid carcinogenesis (49–51), it is especially

related to the classic PTC subtype (51). However, according to

TCGA, RET/PTC is considered a primary genetic event in only

6.8% of the PTC cohort (1, 17). The diagnostic and predictive

value of RET/PTC is controversial; in fact, in cases of

indeterminate cytology it is still not routinely examined by

molecular testing (13, 52, 53).

As regard the NTRK1/3 rearrangements, their encoded

protein is constitutively active, causing the activation of the

pro-oncogenic pathways PI3K/AKT, phospholipase C (PLC-g),
and MAPK (1, 7, 54).

Also ALK, a transmembrane tyrosine kinase, when activated

can trigger downstream signalling pathways, including MAPK,

JAK/STAT, and PI3K/AKT. ALK gene alterations lead to disease

progression and aggressiveness, and they are more detected in

PDTCs, ATCs than in PTCs (1, 55).

The mechanism of age-associated genetic alterations is not

still fully understood, however chromosomal rearrangements are

strongly related to the exposition to ionizing radiation, while

BRAFV600E point mutations may be associated to excess dietary

iodine intake or exposure to chemical disruptors in volcanic

regions (56, 57). DNA fragility and impaired repair mechanism

are both implicated in radiation-induced genetic damaged or

stocastic oncogenic fusion (58–60). Young children might

develop more frequently uncoupled double-stranded breaks

and translocation with partner genes because they seem to be

more vulnerable to the ionizing radiation activity and to the loss

of the DNA repair capacity (60).

Only 2.3–2.5% of FTCs display microsatellite instability

(MSI), which derived from persistent oxidative stress and

subsequent impairment of DNA mismatch repair gene(s)

encoding MutL-homolog DNA mismatch repair enzymes

PMS1, PMS2, and MLH1, MLH3 (61–63). Since tumors

harboring MSI are susceptible to anti-programmed cell death

ligand 1 (PD-L1) immunotherapy, additional efforts are needed

to clarify the role of mismatch repair gene deficiency in TC (64).

Epigenetic alterations influence gene expression: hyper-

methylation of gene promoter sequences lead to heritable

inhibition of transcription, while unmethylation results in

increased gene transcription (65). Thyroid-specific tumor

suppressor genes can promote cell de-differentiation if wrongly

methylated during the first steps of tumorigenesis. If cell lines,

with TSHR gene silenced by hyper-methylation, are treated with

a demethylating agent, they can in part restore TSHR expression

and subsequent TSH-induced iodine uptake and effectiveness of

RAI (66–68). Other tumor suppressor genes silenced by aberrant

methylation are genes encoding cyclin-dependent kinase

inhibitors p15INKa and p16INK4b (69), RASSF1A (70),

ECAD, RARb-2, NIS-I, DAPK, ATM, SLC26A, SLC5A8, and

TIMP3 (71, 72). It has been suggested that the latter four are

associated with aggressive features (18).
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Molecular driven therapies

Several molecular driven therapies have been evaluated in

aggressive TC (Table 1) (73). Systemic treatments for

unresponsive metastatic non-anaplastic follicular cell derived

TC include the antiangiogenic multitargeted kinase inhibitor

(aaMKIs) sorafenib and lenvatinib (7, 23, 74–77). The Food And

Drug Administration (FDA) authorized these aaMKIs, because

they can improve progression-free survival as emerged from

phase III randomized double blinded crossover clinical trials.

Although non tested in a “head-to-head” trial, lenvatinib showed

a longer progression-free median survival (18.3 months vs 3.6

months of the placebo group, p < 0.001) compared to sorafenib

and to placebo group (10.8 months vs 5.8 months respectively, p

< 0.0001), becoming the first-choice agent among oral aaMKIs

(78, 79). Most patients demonstrated disease stabilization or

minor/partial responses, which lasted mean period of 12-24

months (78). Lately, also Cabozantinib, an aaMKI previously

approved by FDA for the treatment of MTC, has been authorized

in case of failure offirst-line therapy with lenvatinib and sorafenib,

since it improves progression free survival as a second-line agent

(80). These compounds do not require mutation profiling of the

tumors and they can be also administered when specific targetable

mutation (eg,NTRK,ALK,RET, orBRAF) have not been identified.

As they target primarily the angiogenic vascular endothelial growth

factor receptor (VEGFR) signaling, the side effects may include

fatigue, hypertension, diarrhea, hand-foot skin reaction and other

rashes, thyroid dysfunctions, hepatotoxicity, renal toxicity and

fistula formation in the gastrointestinal tract and/or in

other locations.

On the other hand, if specific driver mutations are identified

(eg, NTRK, ALK, RET, BRAF), new mutation-specific kinase

inhibitor should be considered which have been FDA-approved,

specifically for TCs or for any tumor type harboring the same

molecular target (7, 23, 81, 82). For this reason, these

compounds require the tumor mutation profiling to prove

their pertinence to a specific patient. For example,

selpercatinib and pralsetinib inhibit mutant RET in MTC but

they can also block the RET fusion proteins-mediated signaling

found in PTC and other types of tumor (such as lung cancer) as

documented by enduring high partial response and several

complete responses rates in Phase III trials (83, 84). These

RET inhibitors appear also to be better tolerated than the

aaMKIs. However, emerging over time new RET mutations

can cause therapeutic resistance by blocking drugs access to

the active site or through other mechanisms (85, 86). The clinical

trials performed for TRK inhibitors, entrectinib and

larotrectinib, have documented activity also for TC (87, 88)

and they can be used in some patients with progressive RAI-

resistant TC harboring TRK fusion proteins. In addition, the

FDA, according to a small cohort study in which ~50% of

patients had partial responses to therapy, authorized the
Frontiers in Oncology 04
association of dabrafenib (BRAFV600E inhibitor) and

trametinib (MEK inhibitor) for the treatment of BRAFV600E-

mutated ATC (89, 90). A subgroup of patients of that cohort

displayed a prolonged responses of several years (89). Based on

these data, it is recommended to obtain rapid BRAFV600E testing

in all patients with ATC (91). Regarding BRAFV600-mutant PTC,

off-label administration of a BRAF inhibitor could be considered

especially for whom aaMKI therapy is contraindicate.

Furthermore, BRAFV600E inhibitors have showed promising

results for advanced DTC in phase II studies (92, 93).

Ultimately, the activity of FDA-approved immune checkpoint

inhibitors (such as anti-PD1 and anti-PDL1) is also routinely

tested in TC samples and predictors of response are the detection

of MSI and high mutational burden (24).
RAI-R development and
redifferentiation strategies

The loss of the capability of up-taking 131I is one of the main

features characterizing aggressive TC. The cancer therapy with

RAI is based in the exploiting of Na/I symporter (NIS). NIS is

primarily regulated by TSH through the cAMP pathway, and it is

necessary to transport the iodide against a concentration

gradient in thyroid follicular cells to synthetize thyroid

hormone (94). This mechanism is lost in case of NIS

downregulation or loss of function.

RAI refractoriness can be defined by different scenarios, such

as the absence of RAI uptake at the initial whole body scan

(WBS) or in metastatic lesions, or the loss of the capacity to

uptake RAI after a previous WBS showing avidly uptake RAI

metastases; a progression of the disease in a subject who has

previously received RAI, or a cumulative activity of 600 mCi of
131I; the presence of locally advanced disease that cannot be

treated by surgery or evaluated by RAI uptake (95, 96). Genetic

and epigenetic alterations in the RTK/BRAF/MAPK/ERK and

PI3K-AKT-mTOR pathways underly the diminished NIS

signalling/activity that lead to RAI refractoriness and to a

more aggressive behaviour (97): their identification can be

useful to investigate new compounds able to act against these

aberrant molecular mechanisms overcoming the standard

cancer therapy resistance.

In vivo studies in mice focused on the disruption of

BRAFV600E-driven MAPK signaling and found an increase of

the iodine uptake (29). According to these findings a clinical trial

has been conducted on RAI-resistant metastatic TC subjects who

had undergone a whole body I124 PET/CT, who were then

treated with selumetinib (a MEK inhibitor) for 4 weeks, and

subsequently underwent a second scan (98). A partial response

has been obtained in approximately 62.5% of the treated

subjects, whereas the others had stable disease over a year. It

has been observed a difference in the response of the patients
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TABLE 1 FDA-approved therapies for thyroid cancer.

Drugs (commercial name) Targets Type of cancers Ongoing/completed Trials
in the last 5 years

Lenvatinib (Lenvima®)
VEGFR-1-2-3, FGFR1-2-3-4;
PDGFRa, KIT, and RET

Poorly Differentiated/ATC

NCT04731740 (study suspended)
in combination with

Pembrolizumab (Pembrolizumab
+Lenvatinib or Pembrolizumab

+Chemotherapy)

Locally Advanced Invasive TC NCT04321954 (recruiting)

RAI-R TC NCT04858867 (recruiting)

Stage IVB Locally Advanced and Unresectable or
Stage IVC Metastatic ATC

NCT04171622 (recruiting)
in combination with
Pembrolizumab

Recurrent, metastatic RAI-R DTC.
NCT03573960 (Active, not

recruiting)

In bone-predominant metastatic RAI-R DTC
NCT03732495 (recruiting)

in combination with Denosumab

Radioactive Iodine-Sensitive DTC
NCT03506048 (terminated)

(Study has been abandoned for lack
of accrual)

Sorafenib (Nexavar®)
BRAF, V600EBRAF, c-KIT,
FLT-3, CRAF, VEGFR-2;
VEGFR-3, PDGFR-b

ATC
NCT03565536 (recruitment status

unknown)

TC

NCT03630120 terminated (Lack of
efficacy)

in association with Lenvatinib;
Cabozantinib or Vandetanib for

MTC

Cabozantinib (Cabometyx®)
MET, VEGFR, GAS6, RET,
ROS1, TYRO3, MER, KIT

receptor, TRKB, FLT3, TIE-2

Advanced DTC

NCT03914300 (Active, not
recruiting)

in combination with Nivolumab
and Ipilimumab

RAI-R DTC
NCT03690388 (Active, not

recruiting)

Advanced and progressive tumors from endocrine
system (ATC, etc)

NCT04400474 (recruiting)
in association with atezolizumab

Advanced Cancer and HIV
NCT04514484 (recruiting)

in association with nivolumab

Selpercatinib
(Retsevmo®)

RET, VEGFR1-3, FGFR-1-2-3

Progressive, Advanced, Kinase Inhibitor Naïve,
RET-Mutant MTC

NCT04211337 (recruiting)

Advanced Solid Tumors including RET Fusion-
positive Solid Tumors, MTC and other Tumors

with RET Activation

NCT04280081 (Active, not
recruiting)

RET-Altered TC NCT04759911 (recruiting)

Pediatric Patients With Advanced RET-Altered
Solid (MTC, PTC, etc) or Primary Central

Nervous System Tumors
NCT03899792 (recruiting)

Pralsetinib
(Gavreto®)

RET

RET-Mutated MTC NCT04760288 (Not yet recruiting)

Unresectable or Metastatic NSCLC or MTC
NCT04204928 (Approved for
marketing)

(Continued)
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TABLE 1 Continued

Drugs (commercial name) Targets Type of cancers Ongoing/completed Trials
in the last 5 years

Entrectinib (Rozlytrek®)
TRKA, TRKB, TRKC, ROS1,

and ALK

Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/
C), ROS1, or ALK Gene Rearrangements (Fusions)

(PTC, etc)
NCT02568267 (recruiting)

Larotrectinib (Vitrakvi®) TRKA, TRKB, TRKC

Solid Tumors Harboring NTRK Fusion NCT02576431 (recruiting)

Advanced Refractory Solid Tumors, Lymphomas,
or Multiple Myeloma

NCT02465060 (recruiting)
MATCH Screening Trial

Dabrafenib
(Tafinlar®)
Trametinib (Mekinist®)

RAF kinase
MEK

Locally Advanced or Metastatic, RAI-R BRAFV600E

Mutation-positive DTC
NCT04940052 (recruiting)

ATC NCT04238624 (recruiting)

RAI-R TC NCT05182931 (recruiting)

RAI-R TC
NCT04554680 (recruitment status

unknown)

Metastatic TC NCT04619316 (recruiting)

BRAF-positive ATC NCT04739566 (recruiting)

BRAF Mutated ATC
NCT03975231 (recruiting)
in association with IMRT

BRAF Mutated ATC
NCT04675710 (recruiting)

in association with Pembrolizumab

RAI-R TC
NCT04544111 (recruiting)
in association with PDR001

Trametinib (Mekinist®) MEK
Advanced Solid Tumor Patients with a BRAF

V600 Mutation
NCT05275374 (not yet recruiting)

in combination with XP-102

Ipilimumab
(Yervoy®)

anti-CTLA-4

Relapsed or Refractory Ovarian Cancer, Triple
Negative Breast Cancer (TNBC), ATC,

Osteosarcoma, or Other Bone and Soft Tissue
Sarcomas

NCT03449108 (recruiting)
in association with Nivolumab and

other drugs

Nivolumab
(Opdivo®)

anti-PD-1

Metastatic RAI-R BRAF V600 Mutant TC
NCT04061980 (recruiting)

Encorafenib and Binimetinib with
or without Nivolumab

Advanced Solid Tumors (PTC, etc)
NCT04731467 (recruiting)
in combination with CM-24

Pembrolizumab
(Keytruda®)

anti-PD-1

Metastatic or Locally Advanced Anaplastic/
Undifferentiated TC

NCT05119296 (recruiting)

Poorly Chemo-responsive Thyroid and Salivary
Gland Tumors

NCT03360890 (recruiting)
in combination with Docetaxel

DTC
NCT02973997 (Active, not

recruiting)
in combination with Lenvatinib

ATC NCT05059470 (recruiting)

Malignant Neoplasms of Thyroid and Other
Endocrine Glands, and other malignant cancer

NCT03435952 (recruiting)
in association with Clostridium
Novyi-NT and Doxycycline

Advanced/Metastatic Solid Tumors (TC, etc)
NCT04234113 (recruiting)

in combination with SO-C101

Atezolizumab
(Tecentriq®)

anti-PD-L1 Advanced Solid Tumors (TC, etc)
NCT05253053 (recruiting)

To Evaluate Efficacy and Safety of

(Continued)
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according to their mutational status, in fact those harboring RAS

mutations responded more frequently with respect to those with

the BRAFV600E mutations.

Other studies have been carried out by using different drugs

including BRAFV600E, TRK, and RET inhibitors in selected

patients according to their genomic tests (58, 99–101).

A study enrolled non-genomically identified patients for first

RAI therapy after surgery, who were randomly assigned in a

“receiving selumetinib group” and in a “no selumetinib group”

and benefits in response rates between the groups were not

reported (102). The redifferentiation approach could be in the

future a useful strategy to delay long-term treatment with kinase

inhibitors using RAI therapy.

These results suggest the use of genomic tests for treatment

decisions (24).
Conclusion

De-differentiated TC and ATC have a worse prognosis with

respect to WDTC and the loss of the capability of up-taking 131I

is one of the main features characterizing de-differentiated and

aggressive TC. The knowledge of the genomic landscape of TC

can help clinicians to discover the responsible alterations

underlying more advance diseases and to address more

tailored therapy (103–109). In fact, to date, the aaMKIs

sorafenib, lenvatinib, and cabozantinib, have been approved

for the therapy of aggressive RAI-resistant PTC or FTC.

Several other compounds, including immunotherapies, have

been introduced and, in part, approved for the treatment of

TC harboring specific mutations. For example, selpercatinib and

pralsetinib inhibit mutant RET in MTC but they can also block

the RET fusion proteins-mediated signaling found in PTC.

Entrectinib and larotrectinib, can be used in some patients

with progressive RAI-resistant TC harboring TRK fusion

proteins. In addition FDA authorized the association of

dabrafenib and trametinib for the treatment of BRAFV600E-

mutated ATC (89, 90).
Frontiers in Oncology 07
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altered pathways implicated in the pathogenetic process of

aggressive TC. However, patients can’t have a good therapeutic

response to the therapies with activation of other pathways able

to evade the drugs antitumoral effect. Moreover, patients can

experience important side effects that can lead to the

interruption of the therapy.

New therapies strategies are under investigations, with drugs

against immune checkpoint inhibitors.

A good therapy strategy is knowing the molecular pattern of

each patient that could aid in the choice of right therapies avoiding

the administration of ineffective drugs. A personalized therapy is

the challenge of the precision medicine. This challenge can be

largely support by in vitro drug tests performed on primary tumor

cells obtained from patients, that reflect the in vivo behavior with a

predictive positive value of 60%, and negative predictive value of

90% (110–112). Furthermore, in vitro studies can be performed in

cells obtained by using the non-invasive technique of FNAC,

without the use of surgery (113–115).

Therefore, additional studies about molecular implications

involved in the development of aggressive cancer, as well as

about each individual patients response to chemotherapeutics

will pave the way in the battle against thyroid aggressive cancer.
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TABLE 1 Continued

Drugs (commercial name) Targets Type of cancers Ongoing/completed Trials
in the last 5 years

TT-00420 as Monotherapy and
Combination

Selumetinib
(Koselugo®)

MEK 1/2
Malignant Neoplasms of Thyroid and Other
Endocrine Glands, and other Malignant

Neoplasms

NCT03162627 (active, not
recruiting)

The most recently 2017
in combination with Olaparib

°All the cited trials have been obtained from the site: https://clinicaltrials.gov.
ALK, Anaplastic lymphoma kinase; ATC, Anaplastic thyroid cancer; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; DTC, Differentiated thyroid cancer; FGFR, Fibroblast growth factor
receptors; FLT3, Fms-like tyrosine kinase-3; IMRT, Intensity-Modulated Radiation Therapy; MEK, Mitogen-activated protein kinase kinase; MTC, Medullary thyroid cancer; NTRK,
Neurotrophic tyrosine receptor kinase; NSCLC, Non-small-cell lung cancer; PD-1, Programmed cell death protein 1; PD-L1, Programmed Death Ligand-1; PTC, Papillary thyroid
cancer; PDGFR, Platelet derived growth factor receptor; RAI-R TC, Radioiodine-refractory thyroid cancer; RTK, Receptor tyrosine kinase; TC, Thyroid cancer; TRK, Tropomyosin
receptor kinase VEGFR, Vascular endothelial growth factor receptors.
frontiersin.org

https://clinicaltrials.gov
https://doi.org/10.3389/fonc.2022.1099280
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Elia et al. 10.3389/fonc.2022.1099280
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Oncology 08
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Elia G, Ferrari SM, Ragusa F, Paparo SR, Mazzi V, Ulisse S, et al. Advances in
pharmacotherapy for advanced thyroid cancer of follicular origin (PTC, FTC). new
approved drugs and future therapies. Expert Opin Pharmacother (2022) 23:599–
610. doi: 10.1080/14656566.2022.2030704

2. Hernandez-Prera JC. The evolving concept of aggressive histological variants
of differentiated thyroid cancer. Semin Diagn Pathol (2020) 37:228–33.
doi: 10.1053/j.semdp.2020.03.002

3. Antonelli A, Ferri C, Fallahi P. Thyroid cancer in patients with hepatitis c
infection. JAMA (1999) 281:1588. doi: 10.1001/jama.281.17.1588

4. Ferrari SM, Fallahi P, Elia G, Ragusa F, Ruffilli I, Paparo SR, et al. Thyroid
autoimmune disorders and cancer. Semin Cancer Biol (2020) 64:135–46.
doi: 10.1016/j.semcancer.2019.05.019

5. Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, et al. 2019
European Thyroid association guidelines for the treatment and follow-up of
advanced radioiodine-refractory thyroid cancer. Eur Thyroid J (2019) 8:227–45.
doi: 10.1159/000502229

6. Duan H, Li Y, Hu P, Gao J, Ying J, Xu W, et al. Mutational profiling of poorly
differentiated and anaplastic thyroid carcinoma by the use of targeted next-
generation sequencing. Histopathology (2019) 75:890–9. doi: 10.1111/his.13942

7. Cabanillas ME, Ryder M, Jimenez C. Targeted therapy for advanced thyroid
cancer: Kinase inhibitors and beyond. Endocr Rev (2019) 40:1573–604.
doi: 10.1210/er.2019-00007

8. Xu B, Ibrahimpasic T, Wang L, Sabra MM, Migliacci JC, Tuttle RM, et al.
Clinicopathologic features of fatal non-anaplastic follicular cell-derived thyroid
carcinomas. Thyroid (2016) 26:1588–97. doi: 10.1089/thy.2016.0247

9. Ibrahimpasic T, Ghossein R, Carlson DL, Chernichenko N, Nixon I, Palmer
FL, et al. Poorly differentiated thyroid carcinoma presenting with gross
extrathyroidal extension: 1986-2009 memorial Sloan-Kettering cancer center
experience. Thyroid (2013) 23:997–1002. doi: 10.1089/thy.2012.0403

10. Ferrari SM, Elia G, Ragusa F, Ruffilli I, La Motta C, Paparo SR, et al. Novel
treatments for anaplastic thyroid carcinoma. Gland Surg (2020) 9(Suppl 1):S28–42.
doi: 10.21037/gs.2019.10.18

11. Semsar-Kazerooni K, Morand GB, Payne AE, da Silva SD, Forest VI, Hier
MP, et al. Mutational status may supersede tumor size in predicting the presence of
aggressive pathologic features in well differentiated thyroid cancer. J Otolaryngol
Head Neck Surg (2022) 51:9. doi: 10.1186/s40463-022-00559-9
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