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Stigmasterol is a phytosterol derived from multiple herbaceous plants such as

herbs, soybean and tobacco, and it has received much attention for its various

pharmacological effects including anti-inflammation, anti-diabetes, anti-

oxidization, and lowering blood cholesterol. Multiple studies have revealed

that stigmasterol holds promise as a potentially beneficial therapeutic agent for

malignant tumors because of its significant anti-tumor bioactivity. It is reported

that stigmasterol has anti-tumor effect in a variety of malignancies (e.g., breast,

lung, liver and ovarian cancers) by promoting apoptosis, inhibiting proliferation,

metastasis and invasion, and inducing autophagy in tumor cells. Mechanistic

study shows that stigmasterol triggers apoptosis in tumor cells by regulating

the PI3K/Akt signaling pathway and the generation of mitochondrial reactive

oxygen species, while its anti-proliferative activity is mainly dependent on its

modulatory effect on cyclin proteins and cyclin-dependent kinase (CDK). There

have been multiple mechanisms underlying the anti-tumor effect of

stigmasterol, which make stigmasterol promising as a new anti-tumor agent

and provide insights into research on its anti-tumor role. Presently, stigmasterol

has been poorly understood, and there is a paucity of systemic review on the

mechanism underlying its anti-tumor effect. The current study attempts to

conduct a literature review on stigmasterol for its anti-tumor effect to provide

reference for researchers and clinical workers.

KEYWORDS
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1 Introduction

Tumor, featuring a high rate of recurrence and mortality, represents one of the major

threats to the health and life of human. According to the latest data released by an official

journal of the American Cancer Society, there were approximately 18.1 million new

cancer cases and 9.6 million cancer-related deaths globally (1). Under this background,
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cancer is becoming a growing public safety problem (2). Thus,

much attention has been focused on looking for new effective

therapeutic schemes for malignancies and exploring the

underlying anti-tumor mechanisms.

Phytosterol is a c lass of steroids containing a

cyclopentanoperhydrophenanthrene skeleton, and it is

widespread in plants as an important component of

membranes in plant cells. It is diverse with various functions

and plays a critical role in the growth and development of plants

(3, 4). By now, approximately 300 types of phytosterol have been

found in nature, such as campesterol, b-sitosterol and

stigmasterol, which are present in most plants (5).

Stigmasterol is widely distributed in multiple plants and

abundant in herbs, soybean and tobacco (6, 7). It has been

extensively applied in fields like medicine, foods and cosmetics

owing to its high nutritional value, potent bioactivity and

multiple medicinal effects, and thus it is one of the hot topics

in current research on drug development from natural products.

Studies have unraveled various biological and pharmaceutical

properties of stigmasterol, such as analgesia (8), anti-

inflammation (9–14), anti-oxidization (15, 16), anti-diabetes

(15, 17, 18), maintaining psychiatric status (19), lowering

blood cholesterol level (20, 21), improving learning and

memory ability (22), and protecting against Leishmania (6),

etc. Moreover, stigmasterol is recently reported with anti-tumor

potential either in vivo or in vitro in several cancers (e.g., lung

cancer (23, 24), liver cancer (25–27), gallbladder cancer (28, 29),

gastric cancer (30, 31), and ovarian cancer (32)) via inhibiting

growth while promoting apoptosis in tumor cells (Figure 1).

As the research on pharmacological effect of stigmasterol

goes deeper, its anti-tumor activity has received much more

attention in scientific researchers. With the current research

results, stigmasterol has significant anti-tumor effect under

multiple mechanisms and has wide clinical applications

(Table 1). However, there is a paucity of systemic literature

review. The present study reviews the mechanisms of action of

stigmasterol for treatment of malignant tumors so as to provide

reference for future tumor treatment.
2 Stigmasterol biosynthetic pathway

Stigmasterol and b-sitosterol are basically similar in

structure, whereas there is a double bond between C22 and

C23 positions of the stigmasterol side chain. In most cases,

acetyl-CoA is converted to cycloartenol and then to 4-methyl-

24-methylene cholesteric-7-enol . The 4-methyl-24-

methylene cholesteric-7-enol is subsequently converted to

4-methyl-24-ethyl-7-cholestenol via introduction of a

second methyl group under the action of SMT2, a gene key

to the synthesis of plant sterols (33). Then, SMO2 catalyzes

demethylation of 4-methyl-24-ethyl-7-cholestenol at C4
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position, yielding Delta-7-Avenasterol. The Delta-7-

Avenasterol undergoes dehydrogenation at C5-C6 positions

under the catalysis of SC5D1 to generate 5-dehydrogenated

avenasterol, which is then converted to b-sitosterol following
sequential reduction of the C7-C8 and C24-C28 double bonds

under the action of 7-DR1 and SSR1, respectively. Eventually,

the b-sitosterol is dehydrogenated to stigmasterol under the

catalysis of sterol C22-desaturase (22-SD) at C22 and C23

positions (Figure 2).

Chemical synthesis process from acetyl-CoA to stigmasterol.
3 Role of stigmasterol in
different cancers

3.1 Stigmasterol in liver cancer

Liver cancer is one of the common malignancies with a poor

prognosis. The 5-year survival rate in cases with an advanced

liver cancer was estimated ≤ 5%, posing a serious threat to the

health and life of human (34). Additionally, it was reported that

the annual incidence of liver cancer in females continued to

increase by over 2% (35). Stigmasterol as one of the

representative components of phytosterol is critical in

liver cancer.

Apoptosis is a form of programmed cell death that occurs

under both physiological and pathological conditions, and it

plays a vital role in the occurrence and development of tumor

(36). KIM et al. (37) found that stigmasterol up-regulated the

expression of pro-apoptotic genes (Bax, p53) and down-

regulated the expression of anti-apoptotic gene Bcl-2 in liver

cancer cells HepG2. In the meantime, they also noted an increase

in the number of apoptotic HepG2 cells in experiments

including Hoechst staining, Annexin V staining and cell

cycle analysis.

Proliferation as one of the basic cell functions that underlies

life is a precise, ordering process under strict control (38). Tumor

cells display an unrestricted proliferation, while modulating cell

cycle can inhibit proliferation and induce differentiation or death

in tumor cells (39). Current anti-tumor drugs act mostly via

regulating the cell cycle process in tumor cells (40). The study of

Zhang et al. (25) revealed that stigmasterol was able to induce cell

arrest in G0-G1 phase (stationary phase), resulting in few cells in

the G2/M phase (division phase). In addition, the authors also

noted up-regulated protein expression of protein kinaseMAP2K6,

an important participant in cell cycle arrest. The results indicate

that stigmasterol suppresses growth of liver cancer cells possibly

via promoting cell cycle arrest. Another study (26) applied

GeneChip technique to explore the target genes involved in the

inhibitory effect of stigmasterol on growth of SMMC-7721 cells in

human liver cancer. It was noted that stigmasterol inhibited the in

vitro growth of SMMC-7721 cells in a time- and dose-dependent
frontiersin.org
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manner. Expression analysis demonstrated that stigmasterol

decreased the expression of oncogenes (FOS, MYC, RAS, PIM-

1, MET, REL) and increased the expression of tumor-suppressor

genes (NF-2, MAP2K6) to normal levels. Combining the results,
Frontiers in Oncology 03
the authors held the view that stigmasterol exerted marked

suppressive effects on liver cancer cells SMMC-7721 in vitro

with the involvement of multiple target genes and intra- and

extra-cellular signal transduction pathways.
TABLE 1 Real modules, possible mechanisms, doses and reference of Stigmasterol in various cancers.

Cancers Real modules (animal/cell) Possible mechanisms Doses Reference

Liver Cancer HepG2 Apoptosis (Bax, p53, Bcl-2) 20mM 38

Liver Cancer SMMC-7721, BEL-7402, H22, Kungming mice Proliferation, Apoptosis (G0-G1, MAP2K6) 100mg/L 26

Liver Cancer SMMC-7721 Proliferation (MAP2K6) 100mg/L 27

Liver Cancer SMMC-7721 Apoptosis (ROS, Ca+) 64mmol/L 28

Lung Cancer PLA-801D, A-549, H661, SK-SEM-1, BEAS-2B Proliferation, Apoptosis (RORC) 20mg/mL 24

Lung Cancer NCI-H1975, Nude Mouse Proliferation (cyclinD1, CDK2, CDK4, CDK6, p21, p53,
SIRT1, p-SIRT1, PPARg)

40 mg/kg 25

Gall bladder
carcinoma

Cells from the patient sample obtained from SGPGI Apoptosis (MMP, ROS, Caspase3, p27, Jab1, G1) 17.5µM 29

Cholangiocarcinoma KKU-M213, RMCCA-1 TNF-a, VEGFR-2 5mM,10mg/
kg

30

Gastric cancer SGC-7901, MGC-803 Proliferation, Apoptosis, Autophagy (Akt/mTOR) 10mM,20mM 31

Gastric cancer SUN-1 Apoptosis (G2/M, Bax, Bcl-2,JAK/STAT) 15mM 32

leukemia Jurkat, E6-1 Apoptosis (PTKs, EGFRK) NA 82

Skin cancer Swiss albino mice ROS, DNA damage 200 and 400
mg/kg

86

Breast cancer MCF-7, MCF10A, Female Balb/c mice Apoptosis, Proliferation, (Bcl-2, Bcl-xl) 20 µM 94

Breast cancer LMM3, Female Balb/c mice VEGF 50 µM 99

Endometrial cancer Ishikawa, SPEC2, MDA-MB-231,10 cases of normal
endometrium,90 cases of endometrial cancer

Apoptosis (Cisplatin, Nrf2) 20mg/mL 105

Ovarian cancer ES2, OV90 Apoptosis, migration (ROS, calcium, ER-mitochondrial
axis, VEGFA, PLAU, MMP2, MMP14)

20 µg/mL 33
fro
FIGURE 1

The potential targets of stigmasterol therapy in different tumors.
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Currently, there are three major apoptotic signaling pathways:

mitochondrial pathway, death receptor pathway and endoplasmic

reticulum pathway, among which the mitochondrial pathway is

particularly important (41). Mitochondria are the main sources of

ROS and the targets of pro-apoptotic actions. Ca2+ is an important

second messenger involved in various death signal transductions,

and it is intricately linked with mitochondrial function and ROS

(42, 43). Li et al. (27) found that stigmasterol induced a range of

apoptosis-related changes in human liver cancer cells SMMC-772,

which was speculated to be achieved mostly via the mitochondrial

pathway. Upon a stimulation, the mitochondria were damaged,

which impaired the redox system and induced the production of a

massive quantity of ROS, leading to a decline in mitochondrial

membrane potential (DYm) and extracellular Ca2+ influx. As a

consequence, the concentration of intracellular Ca2+ continued to

increase, triggering a series of cascade reactions and eventually

apoptosis in cancer cells. The authors believed that stigmasterol

had a significant suppressive effect on proliferation of SMM-7721

cells in human cancer, and it could induce apoptosis in tumor cells

through promoting the oxidation by ROS, decreasing DYm,
Frontiers in Oncology 04
increasing intracellular Ca2+ concentration and advancing cell

cycle arrest.
3.2 Stigmasterol in lung cancer

Lung cancer is a malignancy originating in the bronchial

mucosal epithelium and gland and featuring strong invasion,

easy metastasis and recurrence (44, 45). On a global scale, lung

cancer ranks second in all cancer types in terms of incidence,

while it is listed first in mortality (46). According to the existing

literature, drugs from natural plants have favorable therapeutic

efficacy against lung cancer (47–49).

Retinoic acid-related orphan receptor C (RORC) is a DNA-

binding transcription factor belonging to the family of orphan

nuclear receptors (50). It has received much attention owing to

its key role in regulating cell proliferation, metastasis, and

chemoresistance in diverse malignant tumors (51–53). Dong

et al. (23) found that stigmasterol inhibited proliferation and

promoted apoptosis in lung cancer cells. The authors also noted
FIGURE 2

The biosynthetic pathway of stigmasterol.
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that stigmasterol directly targeted the expression of RORC in

lung cancer, and overexpression of RORC reversed the

suppressive effect of stigmasterol on cancer cells. This study

suggests the functional role of the stigmasterol-RORC axis in

lung cancer progression, which provides a potential target for

cancer treatment.

Non-small cel l lung cancer (NSCLC) comprises

approximately 80% of total lung cancers, while lung

adenocarcinoma (LUAD) is the most common subtype of

NSCLC (54). The study of Song et al. (24) performed in vivo

and in vitro experiments to investigate the regulatory role of

stigmasterol in LUAD and try to clarify the corresponding

molecular mechanism of action. They found that stigmasterol

distinctly inhibited the viability of NCI-H1975 cells but

promoted lipid deposition. In the meantime, reduction of

energy metabolism in cancer cells was observed, which affected

the cell proliferation and colony formation. The authors also

examined the expression of cyclin proteins using PPARg
inhibitor GW9662. As compared with the control group, the

expression of cyclin D1, CDK2, CDK4, CDK6, SIRT1 and p-

SIRT1 was significantly decreased in the high-concentration

stigmasterol group, while the expression of p21, acetyl-p53

and PPARg was significantly increased. The authors believed

that stigmasterol suppressed the viability and tumorigenicity of

cancer cells by targeting PPARg.
3.3 Stigmasterol in gallbladder cancer

Gallbladder cancer is a collective term of primary malignant

tumors in the gallbladder, including those in the cystic duct, the

neck, body and base of the gallbladder (55). Its onset is insidious,

and most patients are suffering from a middle-to-advanced

disease at the time of diagnosis. As reported, the median

survival time of gallbladder cancer was less than 6 months

with a 5-year survival rate of only 5%, making gallbladder

cancer a refractory disease in the world (56, 57). Stigmasterol

has shown satisfactory therapeutic efficacy against gallbladder

cancer, providing a new way in clinical treatment.

Pandey et al. (28) sampled gallbladder cancer tissue in

clinical patients and found that induction of apoptosis in

cancer cells was linked with Caspase-3 increase, ROS

production, DYm disruption, and expression of p27 and Jab1

proteins. The dose-dependent activation of Caspase-3 suggests

that stigmasterol can induce apoptosis in cancer cells via

mitochondria-mediated pathway, while the disruption of DYm

via depolarization under the action of stigmasterol in a dose-

dependent fashion is considered as an essential prerequisite of

activation of apoptosis (58, 59). The authors also observed that

Caspase-3 inhibitor Z-DEVDFMK distinctly reduced the

stigmasterol-induced cytotoxicity in cancer cells but failed to

completely weaken the viability of cells. Therefore, stigmasterol

might induce apoptosis in gallbladder cancer cells via Caspase-
Frontiers in Oncology 05
dependent and independent pathways. Moreover, this study also

reported significant G1 arrest in cancer cells treated with

stigmasterol. The study of Kangsamaksin et al. (29) revealed

that stigmasterol inhibited the viability, migration and

morphogenesis of human umbilical vein endothelial cells

(HUVECs), whereas it had no suppressive effect on

cholangiocarcinoma (CCA) cells KKU-M213. Expression

experiments demonstrated that stigmasterol greatly reduced

the transcriptional level of TNF-a and the protein levels of a

series of downstream effectors of VEGFR-2 signaling (including

Src, p-Src, Akt, p-Akt, PCL, p-PCL, FAK and p-FAK), while

management of TNF-a rescued the expression of these effectors.

In vivo experiment revealed that stigmasterol disrupted tumor

angiogenesis and decreased the growth of CCA tumor graft. In

addition, immunohistochemical analysis showed reductions in

CD31-positive vessels and recruited macrophages after

stigmasterol administration. Collectively, stigmasterol could

effectively target tumor endothelial cells to inhibit CCA tumor

growth with its anti-inflammatory activity, and it could be an

ideal candidate agent for CCA treatment.
3.4 Stigmasterol in gastric cancer

Gastric cancer is a life-threatening malignancy, with its

incidence ranking sixth and mortality ranking third in total

malignancies globally (1). Prior investigations showed that the

incidence of gastric cancer increased with age, which makes early

prevention and treatment of alimentary malignancies

particularly important (60). As the most common, highly

heterogeneous malignancy (61), gastric cancer currently is

treated by combination therapies involving surgery and

adjuvant therapies such as chemotherapy and radiotherapy

(62). Plant extracts have certain strengths to preventing

premalignancy, prolonging survival time, relieving adverse

reactions to chemotherapy, and other aspects in patients with

gastric cancer. Thus, they are vital in prevention and treatment

of gastric cancer (63, 64).

Autophagy is a ubiquitous, highly conserved catabolic

process complementary to apoptosis, and it plays a key part in

multiple biological processes such as cell development, innate

immunity, stress response, and cell death (65). Zhao et al. (30)

explored the role and molecular mechanism of stigmasterol in

inducing autophagy in gastric cancer cells. They found that

stigmasterol suppressed the proliferation of SGC-7901 and

MGC-803 cells probably via inhibiting the Akt/mTOR

signaling pathway and inducing apoptosis and autophagy. This

is consistent with previous studies (66, 67). In addition, the in

vivo experiment also proved the suppressive effect of

stigmasterol on growth of xenograft tumor. Combining these

results, the authors believed that stigmasterol induced apoptosis

and protective autophagy in gastric cancer cells while inhibiting

the Akt/mTOR signaling pathway, and they thought
frontiersin.org
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stigmasterol was likely to become a potential anticancer agent in

future gastric cancer treatment. The study of Li et al. (31)

investigated the anti-cancer effect of stigmasterol in gastric

cancer and noted increased apoptosis and G2/M arrest in

cancer cells SNU-1. When apoptotic cells are cleaned up from

the body, cell cycle arrest impedes cell division and then induces

apoptosis (68). Previous studies demonstrated that phytosterol

could induce apoptosis and cell cycle arrest in tumor cells (69,

70). Another study indicated an increase in Bax protein

expression while a decrease in Bcl-2 protein expression, which

further proved the promoting effect of stigmasterol on apoptosis

of tumor cells. Metastatic cancer is generally difficult to treat,

and agents capable of preventing metastasis are considered as

important for cancer treatment (71). Li et al. noted that

stigmasterol was capable of inhibiting the metastatic potential

of gastric cancer cells. The JAK/STAT signaling pathway is

highly activated in cancer cells, with significant implications in

tumor development (72). In the study of Li et al., stigmasterol

was found with an inhibitory effect on the JAK/STAT signaling

pathway in gastric cancer, suggesting its potential as a candidate

agent for gastric cancer treatment.
3.5 Stigmasterol in leukemia

Leukemia is a malignancy arising from hematopoietic tissue,

usually driven by aberrant proliferation of leukocytes within the

bone marrow (73). Presently, therapeutic approaches for

leukemia mainly include bone marrow transplantation (BMT)

(74), chemotherapy (75), and immunotherapy (76). However,

the current chemotherapy commonly leads to severe side effects,

and patients usually respond to the therapy poorly (77, 78). In

the meantime, the drug resistance of leukemia cells also limits

the efficacy of multiple chemotherapeutic agents, reducing the

cure rate and thereby leading to a poor outcome in patients (79).

Therefore, it is particularly important to develop new treatment

strategies for leukemia that can reduce side effects, prolong the

survival time and improve the quality of life of patients.

Raczyk et al. (80) examined the cytotoxic effect of three

stigmasteryl esters on leukemia cells using MTT assay, and they

found that the stigmasteryl linoleate had the greatest cytotoxic

effect. Nazemi et al. (81) explored the anti-tumor and

pharmaceutical activities of stigmasterol in oral epithelial

carcinoma cell line KB/C152 and T lymphoblastic leukemia

cell line Jurkat/E6-1. With the PASS software, the authors

confirmed that stigmasterol induced apoptosis in cells. In

addition, they also found stable binding between stigmasterol

and the active sites of PTKs and epidermal growth factor

receptor (EGFR). Moreover, the authors also proved the good

pharmacokinetic properties of stigmasterol, providing evidence

for use of stigmasterol in clinical treatment of oral epithelial

carcinoma and leukemia.
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3.6 Stigmasterol in skin cancer

Skin cancer is a significant health problem increasingly

prevalent in human (82, 83), and it can arise from the

epidermis as malignant melanoma (MM) or non-melanoma

skin cancer (NMSC). The pathogenesis of skin cancer is

complex, and one known significant cause is the DNA defects

resulting from UV exposure, which involves multiple mutated

genes and molecular signaling pathways. Skin cancer can be

found in various ethnic groups and make effects across the

lifespan (84). In this context, there is an urgent need to look for

plant extracts that can be employed as agents for skin

cancer treatment.

Ali et al. (85) studied the chemo-preventive benefits of

stigmasterol in 7,12-dimethylbenz[a]-anthracene (DMBA)

-induced skin cancer in Swiss albino mice and found that

stigmasterol led to tumor shrinkage and reduced the number

of cumulative papillomas. Additionally, stigmasterol was found

to significantly decrease the activity of serum enzymes, such as

aspartate aminotransferase (AST), alanine aminotransferase

(ALT), alkaline phosphatase (AP) and bilirubin, but distinctly

increase the activity of glutathione, superoxide dismutase (SOD)

and catalase. It could be inferred that stigmasterol has chemo-

preventive property in skin cancers, and such property might be

linked with oxidative stress.

Cutaneous melanoma, featuring high invasion, high degree

of worsening and poor prognosis, ranks third in all skin

malignancies and accounts for approximately 10% of all skin

cancers (86, 87). Currently, the preferred treatment for

melanoma remains surgery, which helps patients survive

longer (88). Nevertheless, the incidence and mortality of

melanoma are still high in spite of considerable progress in

terms of therapies (89), which prompts us to look for new

therapies. The study of Cheng et al. (90) revealed that

stigmasterol inhibited proliferation and promoted apoptosis in

melanoma cells B16-F10. After 48-72 h of stigmasterol

treatment, numerous apoptosomes, decreased number of

adherent cells while increased number of floating and dead

cells were observed, presenting as typical presentations of

apoptosis. Additionally, DAPI staining assay found a series of

apoptosis-related events, such as chromatin condensation,

expansion of nuclei or formation of apoptosomes in a large

number of cells, after 72 h of treatment with stigmasterol.

Considering all the findings in this study, stigmasterol

inhibited growth of melanoma cells B16-F10 via inducing

apoptosis to some extent.
3.7 Stigmasterol in breast cancer

Breast cancer is common in females and ranks first in female

malignancies in terms of incidence. Despite that, the incidence of
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breast cancer continues to increase annually, severely affecting the

quality of life of patients and inflicting a heavy burden on the

patient family and society (91, 92). It is of great significance to seek

for candidates with good targeting ability towards breast cancer

cells and characteristics of low toxicity, high efficiency and safety.

Presently, natural products are increasingly used to develop

efficient breast cancer-targeting agents for clinical treatment.

AmeliMojarad et al. (93) assessed the anti-tumor effect of

stigmasterol in breast cancer cell line MCF-7 and found

significant reductions in the expression of anti-apoptotic genes

Bcl-xL and Bcl-2. Moreover, the in vivo experiment in BALB/c

mice revealed a significantly reduced tumor volume in mice

treated with stigmasterol for 30 days in comparison to the

control group, suggesting the potential therapeutic efficacy of

stigmasterol for tumor. Tumor angiogenesis is definitively

significant in tumor growth. Through new vessels, tumor

accesses nutrients from the host and then delivers tumor cells

to the host to potentiate tumor distant metastasis (94, 95). At

present, anti-angiogenic therapies are undergoing clinical

translation (96, 97). Michelini et al. (98) found that

stigmasterol derivatives inhibited the formation of capillary-

like structures and the migration in HUVECs and decreased

the expression of vascular endothelial growth factor (VEGF) in

IL-6-stimulated macrophages and breast cancer cells LMM3.
3.8 Stigmasterol in endometrial cancer

Statistically, the incidence of endometrial cancer increased at

the rate of 0.69% per year from 1990 to 2019 on a global scale,

and patients with endometrial cancer became younger (99).

Early diagnosis is conducive to increasing the cure rate of

patients, whereas there are 21% patients who are suffering

from metastasis to regional lymph nodes while 9% with

distant metastasis at initial diagnosis (100). For patients who

are unfit for surgery or decline it, hormone therapy,

chemotherapy, and targeted therapy remain the basis in

clinical treatment for endometrial cancer (101). Nonetheless,

the current drug therapies still present many problems, such as

resistance, toxicity, and poor efficacy. Therefore, it is urgent to

develop agents that are safer and more effective in improving the

survival and quality of life of patients with endometrial cancer.

In recent years, increasing evidence has suggested that Nrf2

is essential in promoting tumor recurrence by increasing patient

tolerance to adjuvant chemotherapy or radiotherapy (102, 103).

Liao et al. (104) applied network pharmacology to find that

stigmasterol might be an inhibitor of Nrf2. In addition,

experimental result revealed that stigmasterol inhibited the

expression of Nrf2 protein in human endometrial cancer in a

dose-dependent fashion. Cisplatin acts to inhibit cell division

and increase apoptosis in tumor cells by inducing unwinding

and separation of double-stranded DNA (105). In addition, it

also induces the mitochondrial ROS to accumulate, activating
Frontiers in Oncology 07
the mitochondria-dependent apoptotic pathways and then

leading to apoptosis (106). However, its clinical application is

constrained due to its significant ototoxicity, nephrotoxicity, and

drug resistance (107). In this context, Cisplatin is usually used in

combination with other agents to help reduce resistance or

adverse events and then improve clinical efficacy. In the study

of Liao et al., the combination of Cisplatin with stigmasterol

significantly inhibited the activity of Nrf2-ARE. In addition,

stigmasterol enhanced the effect of Cisplatin to inhibit cell

growth, migration, and invasion, and to promote early

apoptosis in endometrial cancer cells. The results indicated

that Nrf2 was significant in chemoresistance in endometrial

cancer, and it had potential to inhibit Cisplatin resistance as a

novel potential inhibitor of Nrf2.
3.9 Stigmasterol in ovarian cancer

Ovarian cancer represents one of the top three malignancies

of the female reproductive system with the highest rate of

lethality (108). The early symptoms of ovarian cancer is

atypical, and there is a paucity of effective screening methods.

Besides, the ovarian is in deep pelvic cavity. All above makes

most patients being suffering from a middle-to-advanced cancer

at the time of diagnosis. It was reported that the 5-year survival

rate associated with an advanced disease was only 29% (109,

110). Looking for safe and effective therapeutic strategies for

ovarian cancer, therefore, has become a difficult but a hot topic

in relevant research.

Bae et al. (32) confirmed the complicated anti-cancer effects

of stigmasterol in ovarian cancer. Endoplasmic reticulum (ER) is

an organelle vital in protein translocation, folding and post-

transcriptional modification in eukaryotic cells. The

accumulation of ER stress can induce death in tumor cells

(111). It was reported that stigmasterol could activate ER

sensor proteins and ER-mitochondria axis proteins in ovarian

cancer cells, demonstrating that stigmasterol exerts its anti-

tumor effect by regulating the ER-mitochondria axis.

Additionally, stigmasterol was also reported with suppressive

effect on cell cycle progress in ovarian cancer cells ES2 and OV90

via inhibiting their proliferation. PI3K/MAPK signaling cascade

plays a key role in proliferation and cell cycle process in cancer

cells (112). It is frequently activated in ovarian cancer, and thus

its suppression emerges as a viable option for cancer treatment.

Since anti-cancer drugs are developed targeting the malignant

properties of cancer cells (113), tumor sphere models are

conducive to exploring the therapeutic efficacy of these drugs.

Stigmasterol can effectively inhibit the accumulation of ovarian

cancer cells, while cancer cells that fail to assemble into a tumor

mass display a scattered distribution. VEGFA can stimulate the

mitosis and migration in ovarian cancer cells (114). PLAU can

induce the migration and metastasis of breast cancer cells (115).

Matrix metalloproteinases (MMPs) exhibit overexpression in
frontiersin.org

https://doi.org/10.3389/fonc.2022.1101289
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1101289
multiple tumor settings to promote tumor metastasis and

migration. Studies found that stigmasterol could reduce the

expression levels of VEGFA, PLAU, MMP2, MMP9 and

MMP14 in ES2 and OV90 cells.
4 Discussion

In recent years, the incidence and mortality of cancer are

increasing annually, which is valued by scientific workers.

According to the World Health Organization (WHO)

statistics, the number of new cancer cases worldwide is

expected to exceed 27 million by 2040 (91). Surgery,

chemotherapy and radiotherapy are the mainstay of treatment

for cancer, but there may have some side effects such as nausea,

hair loss and cardiotoxicity. Besides, the treatment cost is high,

and the suppressive effect towards tumor metastasis is

constrained (116). Plant extracts and metabolites are

considered as safer alternatives to synthetic drugs. Traditional

medicine has successively applied plant extracts to treat or cure

many diseases and believes that the combination of conventional

treatment with plant extracts is a promising and effective

therapeutic approach in cancer treatment.

Phytosterol is generally found in plant foods (e.g., vegetable

oil, nut, plant seeds, vegetables, and fruits) as free sterol,

phytostanyl ester, steryl glycoside (SG) or acylated SG (117).

People can take phytosterol from daily diet and more from

plant foods. Stigmasterol is a common phytosterol that is safe

and free from oral toxicity (118). It has anti-tumor activities by

regulating multiple biological behaviors of tumor cells such as

apoptosis, proliferation, metastasis, invasion, and autophagy

(Figure 3). Numerous studies have proved that inflammation is

closely linked with the onset of some tumors. For example, close

relationships have been confirmed between the chronic infections

that are caused by viruses, bacteria or mycoplasmata and the

occurrence of some tumors, such as HPV and cervical cancer

(119), HBV and liver cancer (120), Helicobacter pylori and gastric

cancer (121). Cytokines such as TNF-a (122), IL-1 (123) and IL-6

(124) have significant pro-inflammatory implications.

Inflammatory mediators are important participants in the

occurrence and development of tumor with stimulating effects

on cell growth, angiogenesis, lymphangiogenesis, tumor invasion

and metastasis (125). At present, the anti-inflammatory property

of stigmasterol has been increasingly investigated (9–14),

providing a new direction for research on anti-tumor effect

of stigmasterol.

Stigmasterol combination therapy has also attracted much

attention from researchers. Compared with traditional drugs,

drugs based on nanomaterials have incomparable advantages of

free chemotherapeutic drugs, such as good biocompatibility,

reduce the toxic effect on cells, target to the tumor

microenvironment, achieve sustained release of drugs and

prolonged blood circulation time (126, 127). Torres et al. (128)
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used solid lipid nanoparticles coated with stigmasterol and found

that it had good performance in the treatment of lung cancer.

Stigmasterol has also shown great potential in immunotherapy

(129). A study has found that stigmasterol combined with b-
sitosterol can inhibit the stimulatory effect of the known

stimulator lymphocyte mitogen-induced stimulatory effect,

resulting in the activation of immune cells and the reduction of

cytokine secretion, thus playing an immunomodulatory role

(130). Stigmasterol combined with chemotherapy is also one of

the directions worth studying. Gautam et al. (131) have shown

that polyethylene glycol nanohybrid plant liposomes combined

with chemotherapy have shown good effects in the treatment of

breast cancer.

Although stigmasterol has been extensively studied for its

anti-tumor mechanisms, current studies are still premature. It

remains elusive about the specific targets and signaling pathways

involved in the anti-tumor effect of stigmasterol, and the

underlying molecular mechanism is speculated as an interplay

between multiple signaling pathways. The current mechanistic

studies mostly focus on one or more targets of stigmasterol,

whereas systemic study is missing. Therefore, in-depth research

from multiple aspects and levels is required to promote the

application of stigmasterol in the field of tumor treatment.

Moreover, most of the current findings are derived from in

vitro or in vivo animal experiments but have rarely been

clinically translated, requiring clinical trials to explore the

practical applications of stigmasterol in human bodies. In the

future, more targets and signaling pathways with implications in

the anti-tumor effect of stigmasterol are expected to

be identified.
5 Future perspectives

Diet has been identified as an important and modifiable risk

factor for cancer. Therefore, dietary modification, including the

inclusion of functional food ingredients with chemopreventive

properties, has been identified as a potential strategy to stop or

reverse the early stages of malignancy before its manifestation.

Research have proved that functional dietary components can be

used effectively for the treatment, especially for the prevention of

diseases. In terms of anticancer therapy, dietary phytochemicals have

attracted increasing attention due to their high efficiency and low

toxicity in regulating key intracellular signaling pathways.

Stigmasterol are a class of bioactive dietary phytochemicals. Studies

have found that stigmasterol can promote tumor cell apoptosis,

inhibit tumor cell proliferation, metastasis and invasion, and induce

autophagy in a variety of malignant tumors such as breast cancer,

lung cancer, liver cancer and ovarian cancer. However, the research

on stigmasterol is still not in-depth.

In the future, we still have many problems about stigmasterol

to explore. Firstly, researchers should substitute in vivo and in

vitro experiments into clinical trials to fully explore the potential
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of stigmasterol in tumor treatment. Secondly, Whether derivatives

or analogues of stigmasterol also play a similar role in cancer.

Third, stigmasterol is poorly soluble in water, and there are few

studies on novel formulations of stigmasterol. Fourth, the optimal

dose of stigmasterol in the treatment of tumors needs to be

studied. Fifth, whether stigmasterol, as a potent anticancer

agent, will promote the therapeutic effect when combined with

other anticancer methods still remains to be seen.

Stigmasterol exerts anti-tumor effects by promoting tumor

cell apoptosis, inhibiting proliferation and metastasis, and

inducing autophagy in tumor cells.
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Barón M, et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev (2004)
30(2):193–204. doi: 10.1016/j.ctrv.2003.07.007

113. Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K, et al.
Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications.
Cancer Sci (2017) 108(3):283–9. doi: 10.1111/cas.13155
Frontiers in Oncology 12
114. Jang K, Kim M, Gilbert CA, Simpkins F, Ince TA, Slingerland JM, et al.
VEGFA activates an epigenetic pathway upregulating ovarian cancer-initiating
cells. EMBO Mol Med (2017) 9(3):304–18. doi: 10.15252/emmm.201606840

115. Tang L, Han X. The urokinase plasminogen activator system in breast
cancer invasion and metastasis. BioMed Pharmacother (2013) 67(2):179–82. doi:
10.1016/j.biopha.2012.10.003

116. Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-
treating fields: A fourth modality in cancer treatment. Clin Cancer Res (2018) 24
(2):266–75. doi: 10.1158/1078-0432.CCR-17-1117

117. O'Callaghan Y, McCarthy FO, O'Brien NM. Recent advances in
phytosterol oxidation products. Biochem Biophys Res Commun (2014) 446
(3):786–91. doi: 10.1016/j.bbrc.2014.01.148

118. Ramu R, Shirahatti PS, Nayakavadi S, R V, Zameer F, Dhananjaya BL, et al.
The effect of a plant extract enriched in stigmasterol and b-sitosterol on glycaemic
status and glucose metabolism in alloxan-induced diabetic rats. Food Funct (2016)
7(9):3999–4011. doi: 10.1039/C6FO00343E

119. Goodman A. HPV testing as a screen for cervical cancer. Bmj (2015) 350:
h2372. doi: 10.1136/bmj.h2372

120. Levrero M, Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular
carcinoma. J Hepatol (2016) 64(1 Suppl):S84–s101. doi: 10.1016/j.jhep.2016.02.021

121. Amieva M, Peek RMJr. Pathobiology of helicobacter pylori-induced gastric
cancer. Gastroenterology (2016) 150(1):64–78. doi: 10.1053/j.gastro.2015.09.004
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Glossary

PI3K phosphatidylinositol-3-kinase

AKT protein kinase B

CDK cyclin-dependent kinase

Bax Bcl-2-Associated X

Bcl-2 B-cell lymphoma-2

MAP2K6 mitogen-activated protein kinase 6

FOS Fos proto-oncogene (AP-1 transcription factor subunit)

MYC MYC proto-oncogene

BHLH Transcription Factor

RAS rat sarcoma

PIM-1 Pim-1 proto-oncogene, serine/threonine kinase

MET mesenchymal-epithelial transition factor

REL REL proto-oncogene (NF-kB subunit)

NF-2 neurofibromatosis type 2

ROS reactive oxygen species

RORC retinoic acid-related orphan receptor C

NSCLC non-small cell lung cancer

LUAD lung adenocarcinoma

PPARg peroxisome proliferator activated receptor gamma

DYm mitochondrial membrane potential

CDK2 cyclin-dependent kinase 2

CDK4 cyclin-dependent kinase 4

CDK6 cyclin-dependent kinase 6

SIRT1 Sirtuin 1

Z-DEVDFMK predominantly Caspase-3 inhibitor

HUVECs human umbilical vein endothelial cells

CCA cholangiocarcinoma

Src sarcoma gene

FAK focal adhesion kinase

TNF-a tumor necrosis factor alpha

mTOR mechanistic target of rapamycin

JAK the Janus kinases

STAT signal transducer and activator of transcription

BMT bone marrow transplantation

EGFR epidermal growth factor receptor

MM malignant melanoma

NMSC non-melanoma skin cancer

DMBA dimethylbenz[a]-anthracene

AST aspartate aminotransferase

ALT alanine aminotransferase

AP alkaline phosphatase

SODs superoxide dismutases

Bcl-xL B-cell lymphoma-extra-large

VEGF vascular endothelial growth factor

Nrf2 nuclear factor erythroid 2-related factor 2

ER endoplasmic reticulum

PLAU plasminogen activator urokinase

MMPs matrix metalloproteinase
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VEGFA vascular endothelial growth factor A

SG steryl glycoside

MMP2 matrix metalloproteinase 2

MMP9 matrix metalloproteinase 9

MMP14 matrix metalloproteinase 14

HPV human papilloma virus

HBV hepatitis B virus

IL-1 interleukin 1

IL-6 interleukin 6

SMT2 sterol-C24-methyltransferase 2

SMO2 Sterol-4 a, Methyl oxidase

SC5D1 sterol C5 desaturase 1

7-DR1 sterol D, 7-Reductase1

SSR1 sterol side chain reductase1

22-SD sterol C22-desaturase
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