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Exosomes as drug delivery system
in gastrointestinal cancer

Fangyuan Xie †, Yueying Huang †, Yangyang Zhan and Leilei Bao*

Department of Pharmacy, Third Affiliated Hospital of Naval Medical University, Shanghai, China
Gastrointestinal cancer is one of the most common malignancies with relatively

high morbidity and mortality. Exosomes are nanosized extracellular vesicles

derived from most cells and widely distributed in body fluids. They are natural

endogenous nanocarriers with low immunogenicity, high biocompatibility, and

natural targeting, and can transport lipids, proteins, DNA, and RNA. Exosomes

contain DNA, RNA, proteins, lipids, and other bioactive components, which can

play a role in information transmission and regulation of cellular physiological and

pathological processes during the progression of gastrointestinal cancer. In this

paper, the role of exosomes in gastrointestinal cancers is briefly reviewed, with

emphasis on the application of exosomes as drug delivery systems for

gastrointestinal cancers. Finally, the challenges faced by exosome-based drug

delivery systems are discussed.
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1 Introduction

Gastrointestinal cancer is one of the most common and aggressive malignancies with

relatively high morbidity and mortality in the world (1). According to the statistics of the

International Agency for Research on Cancer (IARC), gastrointestinal cancer accounts for

45% of cancer-related deaths in China. At present, the therapeutic strategies for

gastrointestinal cancer mainly include surgery, endoscopy, radiotherapy, chemotherapy,

targeted therapy, and immunotherapy (2, 3). However, the prognosis of gastrointestinal

cancer is still poor because early symptoms are occultic or asymptomatic and are detected at

an advanced stage. Therefore, promising therapeutic strategies are needed to reduce the

mortality of gastrointestinal cancer.

Recently, numerous studies have demonstrated that exosomes can be used as drug delivery

systems and have the potential to improve the therapeutic effect on tumors (4–7). Exosomes are

nanosized extracellular vesicles with a diameter of 40 - 100 nm, composed mainly of lipids,

proteins, and genetic material. They are secreted by a variety of cells and widely distributed in

body fluids, so they are biosafe, stable, and have good targeting specificity (8). In addition,

exosomes as nanocarriers have the advantages of small size, negative charge, immune escape, and

deep tissue penetration (9). Therefore, exosomes can be used as ideal natural nanocarriers for drug

delivery. In this review, we briefly outline the role of exosomes in gastrointestinal cancers, focusing

on the potential and challenges of exosomes as drug delivery systems for gastrointestinal cancers.
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2 The role of exosomes in
gastrointestinal cancers

Exosomes may be involved in multiple processes of

gastrointestinal progression, including proliferation, invasion and

metastasis, angiogenesis, drug resistance, and immune escape

(Figure 1). In 2009, it was first reported that gastric cancer cell-

derived exosomes can promote the proliferation of SGC7901 and

BGC823 cells through PI3K/AKT and MAPK/ERK activation (10).

Subsequently, numerous studies have found that not only exosomes

produced by tumor cells, but also exosomes secreted by mesenchymal

stem cells (MSCs), fibroblasts, and other cells can also release contents

to regulate the proliferation and metastasis of gastrointestinal cancers

(11, 12). Exosomes can promote epithelial-mesenchymal

transformation (EMT), improve the invasion and metastasis ability

of receptor cells, and participate in matrix remodeling and metastasis

formation. The important role of exosomes in gastrointestinal cancer

metastasis is also manifested by their involvement in angiogenesis.

Tumor cell-derived exosomes can promote angiogenesis and tumor

progression in many ways (13, 14). Tumor-induced increased

vascular permeability and angiogenesis are also important features

of the formation of pre-metastatic niches, which in turn are closely

related to distant metastasis of tumors. In addition, exosomes are

involved in drug resistance, mediating drug resistance transfer

between resistant and sensitive cells, as well as between tumor and

stromal cells (15–18). Another important feature of gastrointestinal

cancer-derived exosomes is their ability to modulate tumor

immunity. Exosomes from different tumors carry different
Frontiers in Oncology 02
substances and information. They are specific to tumor cells and

contain a variety of immunosuppressive molecules, which can inhibit

the activity of NK cells and T cells, transform T cells into Treg-like

cells, transform the phenotype of neutrophils and macrophages,

promote the transformation of fibroblasts into cancer-associated

fibroblasts (CAFs), and induce the proliferation of myeloid-derived

suppressor cells (MDSCs), and play an important role in the

suppression of tumor immune response (19, 20). In conclusion,

tumor-derived exosomes contain a variety of proteins and miRNA,

which bind to different targets to induce immunosuppression,

forming a pre-metastasis microenvironment, and promoting tumor

growth, differentiation, invasion, and metastasis.
3 Exosomes as drug delivery
systems for the treatment of
gastrointestinal cancers

Exosomes, as natural drug carriers, have been widely used and

studied. It has many advantages over traditional nanocarriers in terms

of drug and gene delivery. First, exosome delivery can improve the

stability of drugs. For example, exosomes can protect nucleic acids

from degradation during transport (21, 22). At the same time,

exosomes can directly enter the cell fluid to avoid metabolic

elimination, thus extending the drug circulation time. Second,

exosomes have natural targeting capabilities based on parental cells.

As drug delivery carriers, exosomes can target specific cell types and

are suitable for targeted therapy. Moreover, exosomes from different
FIGURE 1

The role of exosomes in gastrointestinal cancers.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1101823
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2022.1101823
cell sources express different molecules on the surface, so they have

certain selectivity to the recipient cells, and thus are more

advantageous in therapy (23). In addition, exosomes are nanoscale

molecules that carry cell surface substances, so they have a strong

ability to penetrate various biological barriers (24). Therefore,

exosomes have a good application prospect in the field of drug

carriers. Next, we will focus on the application of exosomes as drug

delivery systems in gastrointestinal cancers (Table 1).
Frontiers in Oncology 03
3.1 Exosomes-based drug delivery systems
inhibit tumor proliferation and metastasis in
gastrointestinal cancers

Exosomes are natural nanocarriers containing many active

components. Therefore, they can be used to deliver a variety of

components, including proteins, nucleic acids, and small molecules

drugs. Trastuzumab emtansine (T-DM1) is an antibody-drug-
TABLE 1 Exosomes as drug delivery systems for the treatment of gastrointestinal cancers.

Function Cancer type Exosomes source Engineering Loading content Ref

Inhibit tumor proliferation and
metastasis

Gastric cancer HER2-positive cancer cells None T-DM1 (25)

U937 macrophages None miR-21 inhibitor (26)

HEK 293T cells None HGF siRNA (27)

Liver cancer HEK 293T cells Apo-A1 miR-26a (28)

Colorectal
cancer

Human umbilical cord MSCs None miR-3940-5p (29)

Bone marrow MSCs None miR-34a-5p (30)

Human cord blood MSCs iRGD-Lamp2b anti-miRNA-221 (31)

Milk GE11 peptide Oxaliplatin (32)

HEK 293 cells AS1411 aptamer Doxorubicin (33)

Bone marrow MSCs MUC1 aptamer Doxorubicin (34)

A33-positive human colorectal cancer
cells

A33 antibody Doxorubicin (35)

Pancreatic
cancer

Human umbilical cord MSCs None miR-145-5p (36)

Pancreatic cancer cells None siPAK4 (37)

Pancreatic cancer cells RGD Paclitaxel (38)

Overcome drug resistance Gastric cancer HEK 293T cells None anti-miR-214 (39)

HEK 293T cells None si-c-Met (40)

Colorectal
cancer

HEK 293T cells HER2-LAMP2
5-FU and miR-21 inhibitor
oligonucleotide

(41)

HEK 293T cells None si-ciRS-122 (16)

FHC cell None miR-1915-3p (42)

FHC cells None Circular RNA FBXW7 (43)

HEK 293T cells None Oxaliplatin and PGM5-AS1 (44)

Pancreatic
cancer

Melanoma cells None Survivin T34A (45)

Bone marrow MSCs None
Paclitaxel and gemcitabine
monophosphate

(46)

Liver cancer Adipose tissue-derived MSCs None miR-122 (47)

Adipose tissue-derived MSCs None miR-199a (48)

Immunotherapy Colorectal
cancer

Colorectal cancer cells None miR-34a (49)

M1-like macrophage None Zinc phthalocyanine (50)

Pancreatic
cancer

Immunogenically dying tumor cells
MART-1
peptide

CCL22 siRNA (51)

Pancreatic cancer cells None Dendritic cells (52)

Bone marrow MSCs None
Oxaliplatin prodrugs and galectin-9
siRNA

(53)

Liver cancer Dendritic cells None Alpha-fetoprotein (54)
frontiers
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conjugates (ADC) that binds the tubulin inhibitor emtansine to

trastuzumab. The drug targets HER2-positive tumor cells and

induces mitotic arrest and apoptosis through the intracellular

release of the cytotoxic drug emtansine. It was found that exosomes

derived from HER2+ cancer cells delivered T-DM1 to cancer cells and

induce apoptosis (25).

miRNA is a class of highly conserved endogenous non-coding

single-stranded small RNA that plays a vital role in gene regulation

and tumor development. However, the successful delivery of miRNA

is hampered by the difficulty of developing sustainable and efficient

delivery systems. miRNA-21, one of the earliest miRNAs found in

human cells, is highly expressed in a variety of cancers such as gastric

cancer, and is closely related to the incidence of cancer. It has shown

that exosomes derived from macrophages can be used as vectors to

deliver exogenous miR-21 inhibitors into BGC-823 gastric cancer

cells and regulate their proliferation (26). Moreover, exosome-

mediated miR-21 inhibitor delivery has less cytotoxicity and more

effective inhibition than conventional transfection methods. Liang

et al. used engineered exosomes to target miR-26a to liver cancer cells

expressing scavenger receptor class B type 1, down-regulating Cyclin

D2, Cyclin E2, and CDK6 levels, inducing cell cycle arrest and

inhibiting cell proliferation and metastasis in hepatocellular

carcinoma (28). MSCs are ideal sources of exosomes for drug

delivery because they are easy to isolate, have self-repair and

multidirectional differentiation capabilities, as well as immune and

specific homing properties. miR-3940-5p was significantly down-

regulated in colorectal cancer. When it was loaded into MSCs

derived exosomes and transfected into colorectal cancer cells, it

inhibited EMT and invasion in vitro and inhibited tumor growth

and metastasis in vivo (29). Similarly, MSCs-derived exosomes

transfected with miR-34a-5p suppressed the growth of colorectal

cancer cells and the tumorigenesis of colorectal cancer (30). In

addition, functionalizing exosomes with targeting molecules can

effectively enhance tumor-targeting ability. The anti-miRNA-221

oligonucleotide was delivered by human cord blood MSCs-derived

exosomes, which were modified by the fusion gene iRGD-Lamp2b

and were specifically taken up by tumor cells through their interaction

with NRP-1 protein. The modified exosomes were significantly

enriched at tumor sites and could significantly inhibit tumor

growth both in vitro and in vivo (31). Human umbilical cord

MSCs-derived exosomes can also effectively deliver miR-145-5p to

pancreatic ductal adenocarcinoma cells, inhibits cell proliferation and

invasion, and reduce tumor growth (36).

RNA interference has emerged as a promising clinical therapeutic

tool that can lead to specific gene silencing. However, there are some

limitations in the application of siRNA, including its poor cellular uptake

and degradation by nucleases. Many vectors, such as viral vectors and

cationic liposomes, have been used to deliver siRNA, but all have some

limitations. Studies have shown that cell-derived exosomes are effective

carriers of siRNA and can effectively inhibit tumor growth and

angiogenesis in gastric cancer by delivering HGF siRNA (27). SiRNA

(siPAK4) is encapsulated into pancreatic cancer-derived exosomes by

electroporation for pancreatic ductal adenocarcinoma therapy. It can

induce obvious tissue apoptosis and prolong the survival time of tumor-

bearing mice (37). Pancreatic cancer-derived exosomes as an in vivo

RNAi transfection agent showed efficacy comparable to that of

polyethyleneimine (PEI), a commercial transfection agent, but was safer.
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In addition to proteins and nucleic acids, exosomes can also be

used to deliver small-molecule drugs, increase the stability and

prolong the circulation time, thus improving the efficacy of drugs.

To enhance the therapeutic effect, reduce the toxicity to normal cells,

and expand the targeted drug delivery ability of exosomes, targeted

modifications were made to endow them with cell and tissue

specificity. Extracellular vesicles containing oxaliplatin bound to the

GE11 peptide inhibit EGFR-expressing cancers through GE11

peptide-mediated EGFR targeting anticancer drug delivery. It

showed that the engineered extracellular vesicles have the greatest

therapeutic effect on tumor progression in colorectal cancer (32).

Moreover, RGD and magnetic nanoparticles were conjugated to the

surface of extracellular vesicles derived from human pancreatic cancer

cells and loaded with paclitaxel for pancreatic cancer therapy. It can

effectively penetrate and internalize tumor cells, and eventually cause

tumor regression (38). Aptamer is an oligonucleotide sequence that

can bind to target molecules with high affinity and specificity. It has

the advantages of a wide range of target molecules, high stability,

safety and economy, and simple preparation methods. Doxorubicin-

loaded exosomes derived from HEK293 can target colorectal cancer

by modifying with AS1411 aptamer (33). MSCs-derived exosomes

loaded with doxorubicin can effectively target colorectal cancer and

significantly inhibit tumor growth by covalently modifying carboxylic

acid-end MUC1 aptamers (34). In recent years, the application of

superparamagnetic nanoparticles in tumor therapy has attracted

extensive attention. Exosomes were isolated from A33-positive

human colorectal cancer cells and loaded with doxorubicin. Then,

surface carboxylated superparamagnetic iron oxide nanoparticles

coated with A33 antibodies bind to A33-positive exosomes and

target A33-positive colorectal cancer cells. The results showed that

A33 antibody-functionalized exosomes had the obvious tumor-

targeting ability and have been confirmed to inhibit tumor growth

(35). In conclusion, target-modified functional exosomes have proved

to be novel and effective targeted drug delivery systems for

gastrointestinal cancer therapy.
3.2 Exosomes-based drug delivery
systems overcome drug resistance in
gastrointestinal cancers

Drug resistance in tumor cells is usually identified as intrinsic (or

innate) and extrinsic (or acquired) resistance. The former refers to cancer

cells that are not sensitive to drugs at the beginning of treatment, while

the latter refers to cancer cells that are originally sensitive to drugs, which

developed drug resistance after repeated treatment and exposure to

drugs. Once the tumor develops drug resistance, the drug cannot play

an anti-cancer role. Even if the majority of the tumor is killed, the small

number of drug-resistant cancer cells will continue to grow, causing

cancer recurrence and rendering future anti-cancer chemotherapy

ineffective. Therefore, drug resistance of cancer cells is one of the

major challenges in cancer therapy. There are many factors leading to

drug resistance, including abnormal gene expression, overexpression of

transporters such as P-glycoprotein, and metabolic detoxification (55).

However, the use of nanocarriers (such as exosomes) to deliver drugs can

effectively overcome these factors, reverse drug resistance, and then exert

good antitumor activity.
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Cisplatin is an anti-cancer drug, which is widely used to treat a

variety of cancers, including gastric cancer, colorectal cancer, and

lung cancer. It inhibits tumor cell proliferation and induces apoptosis

mainly by targeting DNA replication (56, 57). Although cisplatin has

extensive anticancer activity, its use is limited due to its drug

resistance and toxicity to untargeted tissues. The molecular

mechanism of cisplatin resistance is complex and is mainly related

to the abnormal expression of transporters, blocked apoptosis,

enhanced intracellular detoxification, and enhanced DNA damage

repair ability, as well as genetic and epigenetic changes (58, 59). miR-

214 is an essential molecule in the process of drug resistance and is

overexpressed in many malignant tumors. Exosomes containing anti-

miR-214 can reverse cisplatin resistance and inhibit tumor growth in

gastric cancer (39). In addition, c-MET, also known as hepatocyte

growth factor receptor (HGFR), a protein with tyrosine kinase

activity, is abnormally expressed or mutated in a variety of solid

tumors and plays an important role in tumor proliferation, invasion,

and metastasis. Transfecting HEK293T cells with si-c-Met and

isolating exosomes can reverse the cisplatin resistance in gastric

cancer, and inhibit the invasion and migration of gastric cancer

cells and tumor growth (40).

5-fluorouracil (5-FU) is a first-line standardized chemotherapeutic

drug for colorectal cancer, and the acquisition of 5-FU resistance often

affects the therapeutic efficiency (60, 61). Exosome-delivered

circ_0000338 enhances 5-FU resistance in colorectal cancer by

negatively regulating miR-217 and miR-485-3p (62). Functional

exosomes have been used to overcome drug resistance. Her2, a specific

tumor-homing polypeptide, fuses with LAMP2, a protein found

abundantly in exosome membranes. The HER2-LAMP2 fusion

protein is expressed on the exosome surface and promotes the uptake

of targeted cells through EGFR receptor-mediated endocytosis,

effectively targeting colon cancer-resistant cells. The results showed

that engineered exosomes loaded with 5-FU and miR-21 inhibitor

oligonucleotides could effectively reverse colorectal cancer resistance

and improve cancer therapeutic efficacy (41).

In addition, oxaliplatin-based chemotherapy is also one of the

effective strategies for the therapy of colorectal cancer. Similarly,

oxaliplatin resistance appears significantly in colorectal cancer,

leading to treatment failure (63). Oxaliplatin-resistant colorectal

cancer cells transfer ciRS-122 to oxaliplatin-sensitive cells via

exosomes, thereby enhancing glycolysis and drug resistance.

Exosome delivery of ciRS-122 siRNA enhances drug response (16).

EMT refers to the transformation of epithelial cells into mesenchymal

cells. The series of changes that occur after EMT activation

contributes to the spread, invasion of surrounding tissues, and

distant metastasis of tumor cells. EMT plays a key role in tumor

invasion, metastasis, and drug resistance (64–66). More and more

studies have shown that EMT markers can be used as prognostic

indicators and potential therapeutic targets for colorectal cancer (67,

68). Exosome delivery of miR-1915-3p can downregulate the EMT-

promoting oncogenes PFKFB3 and USP2, thereby improving the

chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells (42).

Similarly, exosome delivery of circ-FBXW7 can inhibit EMT and

oxaliplatin efflux by directly binding to miR-128-3p, increase

oxaliplatin-induced apoptosis, and improve the sensitivity to

oxaliplatin in colorectal cancer (43). Recently, the role of lncRNA

in chemical resistance has been extensively studied. lncRNA PGM5
Frontiers in Oncology 05
antisense RNA 1 (PGM5‐AS1) inhibits proliferation, migration, and

acquired oxaliplatin tolerance in colon cancer cells. Exosomes co‐

delivery of oxaliplatin and PGM5‐AS1 reverse drug resistance (44).

Gemcitabine is the current first-line treatment for pancreatic

cancer. However, although gemcitabine has shown significant

benefits in clinical application, its drug resistance severely limits its

use. The transport, activation, and metabolism of gemcitabine are

regulated by a variety of enzymes, and thus the development of

resistance is regulated by a variety of factors (69). To overcome

gemcitabine resistance in pancreatic cancer, survivin T34A was

delivered by melanoma-cell-derived exosomes to restore the

sensitivity of gemcitabine to pancreatic cancer cell lines. Compared

with gemcitabine alone, apoptotic cell death is significantly increased

(45). Moreover, exosomes from bone marrow-MSCs were used as

homing carriers of pancreatic ductal adenocarcinoma to deliver

paclitaxel and gemcitabine monophosphate as intermediates of

gemcitabine metabolism. The results showed good penetration,

anti-matrix, and anti-chemoresistance (46).

Exosome-based drug delivery systems have also shown promising

therapeutic effects against drug resistance of other drugs in

gastrointestinal cancers. miR-122 can promote the chemosensitivity

of hepatocellular carcinoma cells. Delivery of miR-122 through

adipose tissue-derived MSC exosomes can significantly improve the

efficacy of sorafenib against hepatocellular carcinoma (47). Moreover,

adipose tissue-derived MSC exosomes can effectively mediate the

transfer of miR-199a to hepatocellular carcinoma cells and improve

the sensitivity of hepatocellular carcinoma to doxorubicin (48). Taken

together, this ability to deliver drugs and nucleic acids, along with

other advantages such as low immunogenicity, biocompatibility, and

natural targeting, make exosomes a promising and effective strategy

for overcoming drug resistance in cancer therapy.
3.3 Exosomes-based drug delivery
systems for immunotherapy in
gastrointestinal cancers

Cancer immunotherapy is a therapeutic approach to control and

eliminate tumors by modulating the immune system to activate anti-

tumor immune responses or overcome tumor immune escape (70,

71). In recent years, the application of exosomes in cancer

immunotherapy has been revealed. Numerous studies have shown

that tumor and dendritic cells (DCs)-derived exosomes can express

abundant tumor markers such as heat shock protein (HSP) and major

histocompatibility complex (MHC). These molecules play a key role

in antigen presentation and activation of T cells and have been

demonstrated to provoke CD8+ T cell-mediated anti-tumor

responses (72–75). Therefore, the application of exosomes in

immunotherapy is of great significance to the progression of

tumors, as the carrier of stimulating anti-tumor immune responses.

Tumor-derived exosomes are ideal antigen carriers, carrying

many molecules and factors from tumor cells, and therefore easy to

be recognized and taken up by immune cells. miR-34a is a major

tumor suppressor that interferes with various colorectal cancer

processes, including tumor proliferation, migration, and

angiogenesis. Exosomes isolated from colorectal cancer cells and
frontiersin.org
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loaded with miR-34a mimic can reduce the expression of immune-

evasion-related genes and induce cytotoxic T cells, significantly

reducing the tumor size and prolonging the survival time of

colorectal cancer mice (49). In addition, exosomes from

immunogenically dying tumor cells modified with MART-1 peptide

showed immunogenicity and were able to amplify CD8+ T cells for

adoptive T cell therapy. The modified exosomes can enhance the anti-

tumor immune response, and loaded with CCL22 siRNA can inhibit

the expansion of Treg. The results showed that it was an effective

preventive vaccine to delay tumor growth and a good adjuvant for

pancreatic ductal adenocarcinoma chemotherapeutic drugs (51).

In addition to tumor-derived exosomes, DC-derived exosomes

also have a promising application in tumor immunotherapy. DCs

have unique antigen-presentation and activation properties of

acquired and innate immune responses. DC-derived exosomes

appear to act as antigen carriers, revealing their potential as cancer

immunotherapy. Studies have shown that alpha-fetoprotein-rich DC-

derived exosomes can induce effective antigen-specific anti-tumor

immune responses and reshape the tumor microenvironment of

hepatocellular carcinoma (54). Although DC-derived exosomes

have a promising application prospect in tumor immunotherapy.

However, the production of enough DC-derived exosomes remains a

barrier to its widespread application in immunotherapy. Genetic

engineering K562 has been used to produce artificial antigen-

presenting cells, which secrete exosomes expressing HLA-A2 and

costimulatory molecules that can enhance the anti-tumor immune

effect of CD8+T cells, and these exosomes have a similar stimulative

capacity as DC-derived exosomes (76).

Immunogenic cell death (ICD) is a kind of regulatory cell death,

which can stimulate the immune system to produce immune

responses through the release of tumor-associated antigens and

tumor-specific antigens. It can be driven by different pressures,

including intracellular pathogens, traditional chemotherapy drugs,

targeted anti-cancer drugs, and a variety of physical therapies,

such as radiotherapy and photodynamic therapy (77–79). The

photosensitizer zinc phthalocyanine was added to exosomes from

multiple cellular sources, such as immune cells, cancer cells, and

external sources, to compare the antitumor effects of exosome-

mediated photodynamic therapy. The results showed that M1-like

macrophage-derived exosomes loaded with zinc phthalocyanine

could initiate ICD, induce DC maturation, effectively inhibit colon

cancer, and induce immune memory (50). These results indicate that

the cell type and immune status from which exosomes are derived

have a great influence on the therapeutic efficacy.

Cancer vaccines aim to stimulate the release and presentation of

cancer antigens, immune cell initiation, and immune cell activation in the

anti-cancer immune cycle. Once the immune cells are activated, they still

need to complete the remaining steps: peripheral mobilization,

infiltration to the tumor site, recognition of cancer cells, and activation

of cytotoxicity against the cancer cell. Therefore, resistance mechanisms

of anti-cancer immunity, especially in the tumor microenvironment, still

reduce the efficiency of cancer vaccines, and to enhance cancer vaccines

are being explored (80, 81). The combination of pancreatic cancer-

derived exosome-loaded DCs vaccination with drugs that inhibit

MDSCs, such as gemcitabine, sunitinib, and all-trans retinoic acid, can

significantly inhibit the spread of metastasis, and prolong the survival

time of mice due to the presence of more activated T cells in the tumor
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(52). Zhou et al. constructed a dual-delivery biosystem based on

exosomes, which could significantly improve the tumor-targeting effect

and thus increase the accumulation of drugs at the tumor site. This

delivery system is composed of bone marrow MSC (BM-MSC)

exosomes, surficially modified with oxaliplatin prodrugs and

electroporation-loaded galectin-9 siRNA. The combination therapy can

induce ICD in tumor cells, initiate DC maturation and antigen

presentation, reverse immunosuppression, recruit anti-tumor cytotoxic

T lymphocytes, and activate innate and adaptive anti-pancreatic ductal

adenocarcinoma immunity (53).
4 Challenges for exosome-based
drug delivery systems

As natural intercellular information carriers, exosomes have

become one of the ideal drug delivery systems due to their

nanoscale size, biocompatibil ity, permeability, and low

immunogenicity. Although exosome-based drug delivery systems

have been extensively studied, there still exist limitations in clinical

application. First of all, it is difficult to obtain natural pure exosomes.

Currently, exosomes are separated by a variety of methods, including

ultracentrifugation, ultrafiltration, size-exclusion chromatography,

polymer precipitation, immunoaffinity capture, and microfluidics-

based techniques. Each method has advantages and limitations (8,

82). Ultracentrifugation is the current gold standard and the most

commonly used exosome isolation approach. The resulting exosomes

have a large volume but insufficient purity and the exosomes can be

found to aggregate into blocks during electron microscopy

identification, which is not conducive to subsequent experiments.

Ultrafiltration is relatively simple and time-saving and is mostly used

for the separation of exosomal RNA. However, exosomes may block

the filtration pore, resulting in a shortened membrane life and low

separation efficiency. Size-exclusion chromatography can obtain

exosomes with high purity to ensure their integrity and activity.

However, it is not suitable for amplification and only suitable for

medium sample processing capacity. Polymer precipitation is simple

and fast, but there are false positives (impurity protein or polymer),

and mechanical forces or chemical additions will destroy exosomes.

The immunoaffinity capture has the advantages of high specificity,

simple operation, and no influence on the morphological integrity of

exosomes. However, it has low efficiency and the biological activity of

exosomes is easily affected by pH and salt concentration, which is not

conducive to downstream experiments and difficult to be widely

popularized. Microfluidics-based techniques are easy to automate

but lack standardized and large-scale clinical sample testing and

methodological validation. At present, no method can fully meet

the demand, not only to maintain the integrity, high yield, and purity

of exosomes but also to control the quality of exosomes. Therefore,

the production of GMP-grade medicinal exosomes remains a major

challenge, and the continuous optimization of the process will take a

long time. Secondly, some researchers believe that exosomes are

vesicles secreted by autologous cells and have the natural targeting

ability based on donor cells, which can avoid phagocytosis by the

mononuclear phagocyte system (MPS). Moreover, the expression of

CD47 on the surface of exosomes is also conducive to avoiding
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clearance of MPS and prolonging blood circulation time (83, 84).

However, some studies have shown that exosomes have a certain

natural targeting ability but are not strong, and are easily recognized

and quickly absorbed by MPS after systematic administration (85–

87). Therefore, further research should reveal whether the clearance

of exosomes by MPS is actually due to their intrinsic properties or

exogenous characteristics acquired from in vitro culture. At present,

to avoid rapid clearance and improve the targeting of exosomes,

researchers have made various modifications to the exosome surface.

However, although targeted modification methods have made

progress in experiments, the in vivo environment is complex, and it

is uncertain whether the modified exosome still has the expected

targeting ability after entering the body. Therefore, targeted

modification of exosomes is still the key point to be overcome. In

addition, whether the modified exosomes induce immune responses

should be further investigated in the future. Next, compared with

conventional nanocarriers, common exosome loading strategies (such

as passive mixing, electroporation, and exogenous loading) usually

have low loading efficiency (<30%). These and other factors present

significant challenges to the large-scale manufacturing of exosomes

for drug delivery that, if overcome, could be translated into

nanomedicine. Finally, the selection of the cellular sources of

exosomes is also very important. Exosomes from different cellular

sources have different components, and their potential biological

functions are also significantly different. For example, exosomes

derived from tumor cells as drug delivery systems can be well-

homed to the tumor site, but at the same time have the risk of

promoting tumor growth and immunosuppression (88). Exosomes

derived from macrophages have a good inflammatory tendency and

can cross the blood-brain barrier for the therapy of brain diseases

(89). Exosomes derived from DCs have good immune effects (90).

Therefore, selecting the cellular sources of exosomes is the premise of

achieving the best therapeutic effect.
5 Conclusions

As extracellular nanovesicles, exosomes can deliver bioactive

substances such as miRNA, lncRNA, and protein between cells,

playing an extremely important role in the occurrence and
Frontiers in Oncology 07
development of gastrointestinal cancers. In addition, it can be used

as a drug delivery system for the transportation of tumor therapeutic

agents to inhibit tumor proliferation and metastasis, reverse drug

resistance, and induce an anti-tumor immune response in

gastrointestinal cancers. Although exosomes as drug delivery

systems have potential advantages such as biocompatibility,

stability, and intrinsic targeting, the research on exosomes as drug

delivery systems is still insufficient, and many problems remain to be

solved. The research aimed at clinical transformation should make

continuous efforts to improve the production, purity, targeting, and

bioactivity of exosomes. In conclusion, the clinical successful

application of exosomes as drug delivery systems will take some

time, but it is believed that it will benefit the majority of patients soon.
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