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Introduction: Ovarian cancer (OC) is the leading cause of gynecological

cancer-related death. Of the main OC histologic subtypes, invasive

mucinous carcinomas (MC) account for only 3% of OC cases and are

frequently associated with favorable prognosis. Nevertheless, MCs differ

greatly from the other OC histotypes in clinical, pathological, and biological

behavior. However, the origin and molecular pathogenesis of MC are not yet

fully understood. Therefore, identification of novel diagnostic markers could

potentially facilitate early diagnosis of OC, particularly the MC histotype,

thereby leading to the development of histotype-specific treatment regimens

and improved survival rates.

Methods: In the present study, Trefoil factor gene family members (TFF1, TFF2

and TFF3) were identified as MC histotype-specific biomarkers using RNA

sequencing (RNA-seq) data for 95 stage I-II OCs. The diagnostic value of

TFF1, TFF2 and TFF3 was then evaluated by immunohistochemistry on 206

stage I-II OCs stratified by histotype (high-grade serous carcinoma [HGSC],

endometrioid carcinoma [EC], clear cell carcinoma [CCC], and MC).

Results: We showed significantly elevated intracytoplasmic protein expression

levels for TFF1, TFF2 and TFF3 in MC samples, thereby revealing an association

between expression of Trefoil factor gene family members and the MC

histotype. Taken together, these findings suggest that the TFF proteins may

play a pivotal role in tumor initiation and progression for the MC histotype.

Conclusion: Taken together, these findings suggest that the TFF proteins may

play a pivotal role in tumor initiation and progression for the MC histotype.

Moreover, these novel histotype-specific diagnostic biomarkers may not only
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improve patient stratification of early-stage ovarian carcinomas but may also

be candidates for the development of molecular targeted therapies.
KEYWORDS

mucinous ovarian carcinoma, molecular classification, trefoil factor gene family,
histotype, biomarkers
Introduction

The multipotent cells in the ovary allow for tumor formations

of a highly variable nature. However, the vast majority (>90%) of

malignant ovarian tumors are of epithelial origin and designated as

epithelial ovarian cancer (EOC, or simplified OC), thereby true

carcinomas (1–3). According to the current World Health

Organization (WHO) classification (2, 3), the five main EOC

histological subtypes include high-grade serous carcinoma

(HgSC), endometroid (EC), mucinous (MC) and clear cell

(CCC), followed by low-grade serous carcinoma (LgSC). It is a

well-established fact that the different histological subtypes of EOC

are separate diseases in terms of epidemiologic risk factors,

morphologic precursors, biomarker expression, genotype,

responsiveness to standard treatment modalities, and clinical

outcomes (4–7). EOCs have the highest mortality rate among

gynecological cancers (non ASR, age-standardized rate, >60%)

(8). Combined factors, e.g. greater awareness of symptoms,

optimization of surgical procedures and disease-specific treatment

regimens, strongly contributed to a delicate but notable decline in

death rates, thereby improving patient clinical outcome (9).

Mucinous carcinoma is the least common epithelial

histotype, with an estimated prevalence of only 3% (10).

However, MCs differ in many aspects from the other OC

histotypes, with respect to their molecular signatures,

pathological characteristics, mode of tumor progression and

clinical behavior (4–6, 10–13). The 5-year survival rates for

MC patients with early-stage disease (stage I – II) receiving

surgical therapy alone are excellent (90%), particularly for

tumors with invasive expansile growth patterns. In contrast,

the significantly lower response rate to conventional

carboplatin-based therapy compared to stage III – IV OC

disease confers a considerably inferior outcome for late-stage

MC. Besides optimized surgery, alternative treatment options for

advanced MC are fairly sparse (6, 14–17). The limited curative

potential for therapeutic chemotherapy highlights the relevance

of a correct primary diagnosis. When carefully weighed together

with established clinical parameters (e.g., tumor size, laterality,

etc.), the routine morphologic evaluation of OC tissue by a

pathologist still applies as the diagnostic gold standard (18, 19).

Although accurate subtype classification is straightforward for

an experienced pathologist, unexpected perplexities in tumor
02
constituents still have the potential to cause debate and

assessment difficulties. For these cases, immunohistochemical

algorithms that were developed for several of the EOCs have

greatly improved decision making in OC histotyping (20–25).

However, the existing immunopanels lack reliable positive

indicators for MC (6). Hence, diagnosis of MCs relies on

routine morphology and/or exclusion of fulfilling criteria for

other histotypes, metastatic disease or a borderline tumor.

Therefore, the development of easily accessible screening tools

and MC-specific diagnostic biomarkers would fulfill a long-

standing need (26–29). Novel biomarkers with potential to

facilitate OC subtyping could be used to develop a reliable and

simple algorithm that in turn could lead to revised consensus

treatment guidelines (6, 22, 25, 27, 28, 30–32), optimized

selection conditions for targeted therapies (15, 32, 33) as well

as avoid over treatment.

The trefoil factor family (TFF) consists of a group of three

small peptides (TFF1 – 3) with a rather unique appearance

comprised of a high amino acid content and disulfide bonds

giving the peptide a clover leaf-like or trefoiled domain.

Immunohistochemical analysis has demonstrated cytoplasmic

expression of these peptides in normal gastrointestinal mucosa

including goblet cells (TFF1 especially). Moreover, these

expression patterns have also been observed in the mucosal

lining of virtually all tissues containing mucus-secreting cells,

including the respiratory tract (TFF3), ocular epithelium,

prostate, and female reproductive organs like cervix uteri.

Detection of TFF proteins secreted in certain body fluids such

as saliva, blood, urine, and breast milk are thought to reflect

para-, auto- and/or endocrine functions (34, 35). Data suggests

that trefoil peptides exert multiple functions, including influence

of angiogenesis, proliferation, antiapoptotic properties and

differentiation. Several studies show that TFF proteins interact

with oncogenic signaling pathways as well as play a role in cell

migration. For example, via the HIF-1-alpha pathway, TFF1 is

involved in mucosal repair under normal conditions and exerts

auto induced EMT-like transition, which is favorable in hypoxic

malignant condition (35, 36). Thus, altered TFF expression levels

drives tumorigenesis (34, 35). A role in tumor progression via

stimulation of cell migration, survival, invasiveness, and distant

spread is further supported by detection of elevated levels of

TFF1 in pancreatic, colonic, and ovarian tumor tissues (36, 37).
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Members of the TFF protein family have also been included in

immunohistochemistry (IHC) algorithms for characterizing

both special histotypes, e.g. TFF3 as a biomarker for ovarian

carcinoma subtyping, as well as identifying carcinomas of

unknown primary origin (CUP) (31, 38).

Here we identified genes in the TFF family as potential

diagnostic biomarkers for the MC histotype using RNA

sequencing data for 95 early-stage (stage I – II) OCs which were

validated with immunohistochemistry for 206 early-stage OCs

stratified by histotype. Consequently, the present study highlights

TFF1 as a novel biomarker for the MC histotype that can easily be

incorporated in routine histopathological diagnostic testing, thereby

improving our understanding of MC histotype biology.
Materials and methods

Patients and tumor samples

Full-face formalin-fixed paraffin-embedded (FFPE) specimens

were obtained from the Departments of Clinical Pathology at

hospitals in Western Sweden for 206 early-stage (stage I and II,

according to the International Federation of Gynecology and

Obstetrics, FIGO, 2014 system) primary invasive OC patients

diagnosed between 1994 and 2006, as previously described (39).

Samples represented only by microinvasive disease or mucinous

borderline tumors were excluded. Of the 206 cases analyzed by

immunohistochemistry, 95 tumors were previously analyzed by

RNA-seq as a training cohort in addition to the 111 tumors in the

validation cohort. Clinical data were retrieved from the Swedish

Quality Registry for Gynecological Cancer (SQRGC; Stockholm,

Sweden) and the Cancer Registry at the National Board of Health

and Welfare (Stockholm, Sweden; Table 1). Each FFPE sample was

reclassified according to the current WHO histotype criteria (2, 3)

with regard to histotype and histological grade by three independent

board-certified pathologists with competence in gynecological

pathology (EWR, AK, CM) using 4 µm full-face FFPE sections

stained with hematoxylin and eosin. National treatment guidelines

with contemporary protocols for standard surgery procedures

(staging and adequate debulking cytoreductive surgery) were

followed for all 206 patients. The study procedures were

performed in accordance with the Declaration of Helsinki and

approved by the Regional Ethical Review Board (Gothenburg,

Sweden; S 164-02, 767-14 and T530-16). Due to the retrospective

study design, the Regional Ethical Review Board approved a waiver

of written consent to use the tumor specimens.
Selection of histotype-specific
candidate biomarkers

To identify novel biomarkers associated with specific OC

histotypes, RNA sequencing (RNA-seq) data reported in our
Frontiers in Oncology 03
previous work (40) were re-evaluated and correlated with

clinicopathologic features. In brief, a series of one vs all other

logistic regression classifiers were performed for each histotype

using RNA-seq FPKM (fragments per kilobase of exon per million

fragments mapped) values. For each histotype, tumors belonging

to the analyzed subtype were given a value of 1, otherwise a value

of 0 was given. Thereafter, 100 genes for each histotype with

statistically significant Odds ratios (P < 0.05) were selected for

further analysis. Due to a slight overlap in the number of

significant genes identified in more than one histotype (i.e. for

HGSC vs all others and EC vs HGSC), a total of 393 genes were

identified. These 393 genes were then used to assess the

classification possibility of the histotypes. Random Forest (RF)

was used as a classification tool, which requires the user to specify

the number of genes that are randomly selected to grow each

classification tree. To identify the ideal number of genes, grid

search was used with Kappa statistics as an accuracy

measurement. The search for statistically significant genes in the

training cohort (n=95) was performed in repeated runs in the RF

model with selection based on construction of trees of 1000 splits,

each with 7 variables respectively. For further analysis, candidate

biomarkers specific for each histotype with the highest fold change

and variation in expression levels (arbitrary set level of raw RNA-

seq counts >150), and commercial antibodies available were then

selected for subsequent immunohistochemical analysis.
Immunohistochemistry and data analysis

Tissue microarrays (TMA) were constructed using three

1.0 mm cores per tumor sample. Four micrometer FFPE sections

(full-face and/or TMA slides) were prepared on Dako FLEX IHC

microscope slides (Agilent Technologies) and dried in an oven for 1

hour at 60°C. Optimal antibody dilutions were achieved using an

optimization panel consisting of 15 full-face FFPE ovarian

carcinomas representing varying histotypes (HGSC, EC, MC,

CCC) and International Federation of Gynecology and Obstetrics

(FIGO) stages (Supplementary Figure 1). Immunostaining was

performed for rabbit anti-TFF1 (Sigma-Aldrich HPA003425,

1:1000 dilution), rabbit anti-TFF2 (Sigma-Aldrich HPA036705,

1:100 dilution), and rabbit anti-TFF3 (Sigma-Aldrich

HPA035464, 1:1000 dilution) on a Dako Autostainer Plus

(Agilent Technologies) using Dako EnVision FLEX visualization

systems. Full-face slides were used to perform initial IHC for TFF1

and TFF3 (n=206). TFF2 expression was scored using TMA

samples (n=206). TFF1 and TFF3 expression were then scored on

TMAs containing the MC and EC histotypes (n=103, including 29

MCs, 46 ECs and 28 of the 94 HGSC samples). Deparaffinization

and antigen retrieval were performed using EnVision FLEX high

pH target retrieval solution (pH 9). Staining and counterstaining

were performed using liquid DAB (3,3′-diaminobenzidine) 2-

component system and EnVision FLEX hematoxylin (link),

respectively. After immunostaining, the sections were rinsed with
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TABLE 1 Clinicopathological features for the 206 ovarian cancer patients in the training and validation cohorts.

Number of patients (%)

Training cohort (n=95) Validation cohort (n=111)

HGSC EC MC CCC HGSC EC MC CCC

All 50 (53) 17 (18) 11 (12) 17 (18) 44 (40) 29 (26) 18 (16) 20 (18)

Patient age

Mean 64 64 61 63 65 61 60 66

Range 32-86 25-83 39-80 42-84 22-88 29-81 30-82 51-84

Overall Survival

0-2y 2 (4) 1 (6) 3 (27) 2 (12) 5 (11) 2 (7) 3 (17) 3 (15)

2-5y 17 (34) 5 (29) 2 (18) 3 (18) 9 (20) 4 (14) 1 (6) 7 (35)

5-10y 18 (36) 5 (29) 3 (27) 7 (41) 10 (23) 2 (7) 4 (22) 1 (5)

>10y 13 (26) 6 (35) 3 (27) 5 (29) 20 (45) 21 (72) 10 (56) 9 (45)

Cause of death

Ovarian carcinoma 37 (74) 3 (18) 2 (18) 10 (59) 21 (48) 4 (14) 3 (17) 9 (45)

Other cancer 7 (14) 3 (18) 3 (27) 0 (0) 1 (2) 3 (10) 2 (11) 2 (10)

Other 5 (10) 6 (35) 4 (36) 6 (35) 5 (11) 4 (14) 5 (28) 1 (5)

Not available 0 (0) 0 (0) 0 (0) 1 (6) 2 (5) 1 (3) 1 (6) 0 (0)

Alive 6 (12) 5 (29) 2 (18) 0 (0) 15 (34) 17 (59) 7 (39) 8 (40)

Stage

I 29 (58) 11 (65) 9 (82) 14 (82) 22 (50) 21 (72) 13 (72) 17 (85)

II 21 (42) 6 (35) 2 (18) 3 (18) 22 (50) 8 (28) 5 (28) 3 (15)

Tumor grade EC

FIGO grade I NA 2 (12) NA NA NA 9 (31) NA NA

FIGO grade II NA 9 (53) NA NA NA 18 (62) NA NA

FIGO grade III NA 6 (35) NA NA NA 2 (7) NA NA

Dualistic model

Type I 0 (0) 17 (100) 11 (100) 17 (100) 0 (0) 29 (100) 18 (100) 20 (100)

Type II 50 (100) 0 (0) 0 (0) 0 (0) 44 (100) 0 (0) 0 (0) 0 (0)

CA125

<35 8 (16) 7 (41) 5 (45) 6 (35) 9 (20) 6 (21) 5 (28) 8 (40)

35-65 29 (58) 0 (0) 2 (18) 1 (6) 31 (70) 7 (24) 6 (33) 7 (35)

>65 13 (26) 10 (59) 4 (36) 10 (59) 4 (9) 15 (52) 7 (39) 5 (25)

Not available 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 1 (3) 0 (0) 0 (0)

Ploidy

near diploid 15 (30) 7 (41) 2 (18) 1 (6) 7 (16) 10 (34) 5 (28) 4 (20)

aneuploid 35 (70) 9 (53) 8 (73) 16 (94) 34 (77) 17 (59) 11 (61) 14 (70)

Not available 0 (0) 1 (6) 1 (9) 0 (0) 3 (7) 2 (7) 2 (11) 2 (10)

(Continued)
F
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deionized water, dehydrated in an ethanol series (comprised of 70,

95 and 100% ethanol), cleared in xylene and finally mounted. To

facilitate histological assessment, FFPE sections were also stained

with hematoxylin and eosin.

Analysis of the immunostained tissue sections was performed

by independent board-certified pathologists (EWR and AK, blinded

to histopathological and clinical data) using an Olympus BX45 light

microscope. Assessment of tumor cell staining was executed with

the modified histochemical score (H-score). By using the formula

([1 x %1+] + [2 x %2+] + [3 x %3+]), the semi-quantitative H-score

(ranging from 0 to 300) was calculated based on the estimated

percentage and intensity of positively stained tumor cells (no

staining: 0 = negative, light yellow to yellow staining: 1+ = weak

positive, light – medium brown staining: 2+ = moderate positive,

and dark brown staining: 3+ = strong positive staining) (41). Cases

containing less than 1% positively stained tumor cells were defined

as negative. Full-face sections without representative tumor were

excluded and another representative slide was selected. If one or

more TMA punches were missing and/or if no tumor was present,

the mean H-score was calculated. Although the intracellular

distribution and sub-cellular staining compartment (e.g.

cytoplasm, cell membrane, nucleus) was identified and recorded,

only the intensity and percentage of immunostaining in the tumor

population was included in the H-score. The TMAs were scanned

(40x magnification) with a Leica SCN400 scanner and visualized

using the Leica SCN400 Image Viewer software (v 2.2.0.3789) with

up to 80x magnification.
Statistical analysis

Statistical analyses were performed using a 0.05 p-value cutoff

in R/Bioconductor (version 3.5.1). All p-values are two-sided. To

compare expression levels for the TFF genes/proteins between the

different histotypes, log2-transformed RNA-seq counts or H-score

values were used to construct box plots using the ggpubr (version

0.2.1.999) R package (42) with the Kruskal-Wallis test and

Benjamini-Hochberg adjusted p-values. Protein (H-score) and

RNA expression levels (RNA-seq counts) were compared using
Frontiers in Oncology 05
log2-transformed expression values with a 95% confidence interval.

To assess the relationship between TFF1, TFF2, and TFF3 protein

expression patterns, pairwise Pearson correlation coefficients

(interpretated according to Device Mapper statistics, dmstat1 (43)

weak correlation for r between 0 and 0.3 [0 and -0.3], moderate

correlation for r between 0.3 and 0.7 [-0.3 and -0.7], and strong

correlation for r between 0.7 and 1 [-0.7 and -1]) were calculated

using the corrplot (version 0.88) R package (44–46), as well as

cor.test R function and visualized for each protein pair using

scatterplots with the ggplot2 (version 3.3.3) R package (47).
Results

Random forest classification of RNA-seq
data identifies candidate genes
associated with the ovarian cancer
mucinous invasive histotype

To identify gene expression patterns associated with specific

OC histotypes (CCC, EC, HGSC, and MC), RNA sequencing data

from our previous work (44) were re-evaluated using Random

Forest (RF) classification. Consequently, the RF classification

identified 393 genes for CCC (n = 98), EC (n = 97), HGSC (n =

103), andMC (n = 97) with a discriminating accuracy harboring an

error rate of 11.6% (Table 2). The highest individual error rate was

found for EC (6/17, 35%; Figure 1A and Table 2). Most of the

misclassified EC samples (n = 5) were interpreted as HGSC. On the

contrary, the majority of HGSCs were correctly matched (2%

error rate).

Compared to the other histotypes (CCC, EC, and HGSC),

the TFF1 and TFF3 genes were among the 20 top ranking

protein-coding genes associated with the MC histotype

(Supplementary Table 1) and thus selected for further analysis.

As the TFF gene family is comprised of three protein-coding

genes (TFF1, TFF2, and TFF3), TFF2 was also included in the

study despite not being represented among the 97 MC-

associated genes. All three TFF genes revealed significantly

higher gene expression levels in MC samples than the other
TABLE 1 Continued

Number of patients (%)

Training cohort (n=95) Validation cohort (n=111)

HGSC EC MC CCC HGSC EC MC CCC

Chemotherapy

Yes 49 (98) 17 (100) 11 (100) 17 (100) 42 (95) 25 (86) 16 (89) 20 (100)

No 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Not available 1 (2) 0 (0) 0 (0) 0 (0) 2 (5) 4 (14) 2 (11) 0 (0)
front
na, not applicable.
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histotypes (Figures 1B–D). However, expression in some MC

samples was found to be very low (i.e. TFF1 and TFF2 RNA-seq

raw counts less than 10) or not detected at all (TFF1 and TFF2;

Supplementary Table 2A). TFF2 clearly exhibited the least MC-

pure features by demonstrating both lower RNA-seq raw count

values in general (i.e. five samples less than 10 RNA raw counts)

as well as more non-MC samples with expression and, moreover,
Frontiers in Oncology 06
fewMCs showing high TFF2 expression patterns. The TFF3 gene

demonstrated comparably high expression levels in all MC

samples. However, it was also frequently detected in samples

of the EC subtype. In contrast, TFF1 expression was, when

present, in general more specific to MC. Additionally, the RNA

sequencing analysis revealed several previously well-known

human mucin-associated genes (MUC2, MUC3A, MUC5AC,
TABLE 2 Confusion matrix demonstrating Random Forest classification of ovarian carcinoma histotypes using RNA sequencing data (training
cohort, n=95).

Histotype CCC
(n = 17)

EC
(n = 17)

HGSC
(n = 50)

MC
(n = 11)

Class Error Rate

CCC 15 0 2 0 0.12

EC 0 11 5 1 0.35

HGSC 1 0 49 0 0.02

MC 0 1 1 9 0.18
Bold numbers symbolize concordance. Horizontal: Histotypes as determined by histopathological evaluation. Vertical: RF classification. CCC, Clear cell carcinoma; EC, Endometroid
carcinoma; HGSC, High-grade serous carcinoma; MC, Mucinous carcinoma.
A B

C D

FIGURE 1

Gene-specific expression in mucinous ovarian cancer cell component. (A) MDS (multidimensional scaling) plot illustrating the specificity of the
393 identified genes classifying the different ovarian carcinoma histotypes. (B–D) Box plots showing the distribution of TFF1, TFF2, and TFF3
gene expression levels in relation to the different histotypes with the Kruskal-Wallis test and Benjamini-Hochberg adjusted p-values. Expression
levels were found to be elevated in MC ovarian carcinomas and small populations in the EC and HGSC histotypes; in EC samples showing
mucinous differentiation (an attribute also seen in the HGSC histotype). TFF1 and TFF3 gene expression levels were shown to be significantly
elevated for MC compared to other histotypes. CCC, Clear cell carcinoma; EC, Endometroid carcinoma; HGSC, High-grade serous carcinoma;
and MC, mucinous carcinoma.
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MUC13, and MUC17) with expression in the MC histotypes

samples (Supplementary Tables 2A, B).
TFF protein validation by
immunohistochemistry confirms TFF1 as
a highly specific marker for MC

The immunohistochemical analysis of TFF1 and TFF3 protein

expression showed positive staining patterns with predominance in
Frontiers in Oncology 07
the MC histotype (Figures 2A–C and Table 3). Specifically, TFF1

expression was even more specific for the MC histotype than TFF3,

which was consistent with results from RNA seq. On average, TFF1

expression were significantly higher in MCs than the other

histotypes in both full-face (TFF1 H-score in MC vs non-MC

samples, mean: 179 vs 3, median: 220 vs 0, range: 0-285 vs 0-220; H-

score values ≥100 in 76% [22/29] vs 0.6% [1/177]) and TMA

samples (TFF1 H-score MC vs non-MC samples, mean: 156 vs 6;

median: 193 vs 0; range: 0-297 vs 0-280; H-score values ≥100 in

62% [18/29] vs 1% [1/74]; Figures 2A–C, Table 3, Supplementary
A

B

C

FIGURE 2

TFF1, TFF2, and TFF3 protein expression correlates with the MC histotype. Box plots illustrating protein expression in (A) full-face samples
(n=206) for TFF1 and TFF3, (B) Immunohistochemical staining of TFF1 and TFF3 respectively presented in the different histotypes (to note the
intraluminal secret sometimes was diffusely stained [TFF3], but left tumor cellular compartment negative), and (C) all three proteins (TFF1-TFF3)
in TMA samples (n=103 for TFF1, n=102 for TFF3, and n=204 for TFF2) with the Kruskal-Wallis test and Benjamini-Hochberg adjusted p-values.
CCC, Clear cell carcinoma; EC, Endometroid carcinoma; HGSC, High-grade serous carcinoma; and MC, mucinous carcinoma.
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Table 3, and Supplementary Figure 2). Subsequently, TFF1

expression was focused to the MC histotype, frequently with

moderate and high TFF1 H-score values (i.e. ≥50 and ≥100).

Moderate and high TFF1 expression was otherwise only observed

in a single non-MC sample (EC, sample 6193 from the validation

cohort), which reached H-scores 220 and 280 in the TMA and full-

face samples (Table 3). This sample exhibited cytoplasmic staining

of variable intensity; however, goblet vacuoles were present and,

hence, a sample including mucinous features. Unambiguous TFF1

expression was detected in a few additional EC samples (i.e. H-score

≥50 in the TMA- and/or full-face evaluation for 2 EC samples [H-

score 52/90 and 32/75, respectively]). Notably however, only a few

of the remaining ECs exceeded H-score level 10, leaving the vast

majority as negative (80% of the 46 TMA samples and 85% of the
Frontiers in Oncology 08
46 full-face samples). Of the 15 full-face ECs with any TFF1

positivity, mucinous features, including goblet vacuoles, was

found in 3 samples, with cytoplasmic apical accentuation

(features recorded from full-face slides) in an additional 2 samples.

TFF3 expression patterns were found to be quite similar to

TFF1. However, the TFF3 protein was not exclusive to the MC

histotype, but was also detected in several CCC, EC, and HGSC

samples. In addition, although slightly more than half of the EC

samples (26/46 TMA and 25/46 full-face) showed TFF3-

positivity to some extent (i.e. H-score >1), the majority were

of weak or moderate staining intensity (40/46 [87%] with H-

scores ≤50, Table 3). TFF3 H-scores ≥100 was only found in 4

TMA/3 full-face scored EC samples. Consistent with TFF1, the

strongest TFF3 expression was detected in EC sample 6193 (full-
TABLE 3 Frequency of protein expression in different OC (ovarian cancer) histotypes according to arbitrary H-score cut-off values.

Biomarker CCC, n (%) EC, n (%) HGSC, n (%) MC, n (%)

TFF1 (TMA), n=103 0 46 28 29

H-score >1 9 (20) 0 (0) 26 (90)

H-score ≥10 6 (13) 0 (0) 25 (86)

H-score ≥50 2 (4) 0 (0) 24 (83)

H-score ≥100 1 (2) 0 (0) 18 (62)

TFF2 (TMA), n=204 37 46 93 28

H-score >1 15 (41) 27 (59) 42 (45) 26 (93)

H-score ≥10 10 (27) 17 (37) 18 (19) 25 (89)

H-score ≥50 5 (13) 6 (13) 5 (5) 19 (68)

H-score ≥100 1 (3%) 6 (13) 2 (2) 12 (43)

TFF3 (TMA), n=102 0 46 28 28

H-score >1 26 (57) 7 (25) 27 (96)

H-score ≥10 15 (33) 3 (11) 26 (93)

H-score ≥50 6 (13) 2 (7) 23 (82)

H-score ≥100 4 (9) 0 (0) 19 (66)

TFF1 (Full-face), n=206 37 46 94 29

H-score >1 0 (0) 7 (15) 0 26 (90)

H-score ≥10 0 (0) 6 (13) 0 25 (86)

H-score ≥50 0 (0) 3 (7) 0 24 (83)

H-score ≥100 0 1 (2) 0 22 (76)

TFF3 (Full-face), n=206 37 46 94 29

H-score >1 4 (11) 25 (54) 9 (10) 28 (97)

H-score ≥10 2 (5) 20 (43) 5 (5) 28 (97)

H-score ≥50 1 (3) 6 (13) 2 (2) 22 (76)

H-score ≥100 0 (0) 3 (7%) 0 (0) 18 (62)
f

TMA, tissue microarray; TFF1, trefoil factor 1; TFF2, trefoil factor 2; TFF3, trefoil factor 3; CCC, clear cell carcinoma; EC, endometroid carcinoma; HGSC, high grade serous carcinoma;
MC, mucinous carcinoma; n, number.
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face H-score 300; 5 in TMA). In HGSC, moderate and

cytoplasmic staining intensity with scoring values ≥ 50 was

detected in a few (n=3) samples (#1: validation cohort sample

5679, H-score TMA: 78/full-face 2; #2: training cohort sample

5048, H-score TMA: N/A [not tested]/full-face 60; #3: training

cohort sample 342, TMA 51/full-face 50). The remaining TFF3-

positive non-MC histotype cases all had lower expression (i.e.H-

score < 50; Figures 2A–C, Table 3, and Supplementary Table 3).

The TFF2 antibody was evaluated in 204/206 TMA hybridized

samples (99%; 2 samples [MC sample 110 and HGSC sample 5353]

were not assessed due to missing tumor and/or core N/A [not

available]) and displayed a more heterogeneous staining pattern

(Figure 2B and Table 3). Although all except two of the 28 MC

samples exhibited positive staining to some extent (i.e. H-score >1,

scoring range of all MC 0-300), TFF2 expression in the MC cohort

was in general lower than TFF1 and TFF3 expression (i.e. H-score

mean, H-score median both lower than 100 [mean: 97, median: 92,

Supplementary Table 3]). Moreover, in the non-MC samples

(n=176, H-score range 0-267) both moderate to intense TFF2

staining was not only more commonly observed but also intense

in a few samples. Strong staining (i.e. H-score ≥ 100) was found in

9/176 (5%) samples and moderate (i.e. H-score ≥ 50) in 16/176

samples (9%; Table 3). Except ECs, high TFF2 expression levels
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were detected in one CCC (H-score level 150) and two HGSC

samples (H-score level 163 and 140 respectively). This was

contrasting to the expression patterns of TFF1 or TFF3 in the

entire cohort (i.e. full-face assessment of all histotypes, n=206)

which more clearly expressed the biomarkers in a) the MC cohort

and b) ECs with mucinous features. TFF2 expression in the EC

histotype was observed with moderate expression with the same

frequency (6/46, 13%; Table 3) as TFF3. However, high TFF2 H-

score levels from 100 were more common in 6 (13%) EC samples as

well (H-score 100: n=3; 110: n=2; and 267: n=1, sample 6193). To

summarize, TFF2 did not characterize the non-MCs by higher

median or mean H-score values (mean: 14, median: 0,5, range: 0-

267; Supplementary Table 3), but by displaying a higher number of

CCCs and HGSCs with a higher range of expression. Additionally,

fewer MCs presenting a convincing expression pattern, thereby

symbolizing the biomarker with the least discrimination potential.
Trefoil factor family members display
intracytoplasmic staining patterns

Briefly, IHC assessment of the TMA slides revealed

intracytoplasmic staining of the TFF1, TFF2 and TFF3
A B

C

FIGURE 3

Comparison of TFF1, TFF2, and TFF3 protein expression in ovarian carcinoma samples (n=103) using pairwise Pearson correlation. Pearson
correlation density plot comparing immunohistochemistry (IHC) scoring in full-face vs TMA samples for (A) TFF1 and (B) TFF3. (C) Using TMAs,
TFF1 expression was found to be positively correlated with TFF2 (strong correlation, r > 0.7) and TFF3 (moderate correlation, r > 0.6) expression.
No significant co-expression was found for TFF2 and TFF3.
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proteins. Additionally, TFF2 protein expression was also

observed in the cell membrane. Nuclear protein positivity was

rare and generally weak. TFF expression was most prevalent in

the MC population, where protein staining was focused to the

cytoplasm and intracytoplasmic vacuoles (including goblet cell

morphology). When present, the vacuolar staining was generally

more intense than other cytoplasmic components. Pure cell

membrane or pure nuclear staining was not found in the MC

cohort. An accentuated intracytoplasmic TFF1 and/or TFF3

staining pattern was found in a few non-MC samples, most

frequently in the ECs (Table 3). As previously discussed, this was

particularly found in ECs with mucinous differentiation

including a few with vacuolar (goblet cell) morphology.

Moreover, when stronger staining detected, an apical cellular

localization was frequently found. The remaining EC samples

showed a cytoplasmic or a non-specific combined cytoplasmic

and membranous expression, mainly with hybridization with

TFF3 and TFF2 (Figures 2A, B; Table 3). When present, the

squamous component was negative.

More specifically, TFF3 nuclear staining was found in a few

non-MC samples (n=10, Supplementary Table 4). Weak nuclear

TFF2 IHC response (TMA only) was exclusively found in one

CCC case. For TFF1, this pattern was not observed at all.

Interestingly, TFF2 staining (H-score was frequently (78/204

samples) observed in the cell membrane, either in combination

with (n=61) or without (n=17) cytoplasmic positivity. Besides

one EC sample showing very weak membranous TFF1 staining,

this IHC phenomena was primarily shown for TFF2 staining.

Membranous involvement was, however, found in all histotypes

specifically involving 14 CCCs, 13 ECs, 36 HGSCs, and 15 MCs

(Supplementary Table 5). Exclusive membranous expression

was commonly present in the CCC histotype, all with the

glycogen rich, optic vacuolated clear cellular cytoplasmic

morphology (8/14 samples, H-score range 3-85). In contrast,

membranous positivity was always combined with cytoplasmic

staining in the MC cohort. However, of the samples having

selective membranous TFF2 positivity (H-score range 2-85), the

corresponding RNA sequencing data available for 9 non-MC

samples showed very low expression (TFF2 RNA-seq count

range 0-10, median: 0, mean: 1.6). In comparison, samples

having protein expression levels exceeding H-score 10 in

combination with low RNA-seq detection levels of TFF1 or

TFF3 counts (low as an arbitrary set level of RNA-seq count < 5)

were rare, i.e. n=2 for TFF1 (n=2 EC samples [#1: EC H-score

TMA 5/full-face 40, RNA counts 0; #2: EC H-score TMA 32/full-

face N/A; RNA counts 5]) and n=2 also for TFF3 (n=2 non-MC,

non-EC samples [1 CCC: H-score TMA N/A/full-face 50, RNA

counts 0; 1 HGSC H-score TMA 26/full-face 0, RNA counts 1]),

N.B. none of these cases with membranous positivity).

Remarkably, no staining was detected in the corresponding

full-face slides for the TFF3-expressing HGSCs.
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Concordance of IHC scoring on TMA
and full-face samples

Pearson correlation was then used to compare TFF1 and

TFF3 protein expression patterns on the full-face sections and

TMAs. This analysis revealed a strong correlation (r > 0.7) and

high concordance between both sample types (Figures 3A, B).

Moreover, pairwise Pearson correlation demonstrated the

strongest correlation in protein expression patterns between

TFF1 and TFF2 (r = 0.74), followed by TFF1 and TFF3 (r =

0.63; Figure 3C), thereby demonstrating frequent co-expression

between TFF1 with both TFF2 and TFF3 (Figure 3C).
Discussion

The present study aimed to identify novel histotype-specific

biomarkers for early-stage OC using RNA sequencing and IHC

technology. Of the 393 candidate genes, TFF1 and TFF3 gene

expression was confirmed to stratify samples with mucinous

differentiation and distinctly elevated TFF1 and TFF3 levels were

found in the MC subtype exclusively. Moreover, expression was

detected in ECs with mucinous features. While TFF3 was

frequently expressed regardless of histotype, TFF1 was

primarily expressed in MC. Validation of our RNA-seq results

using IHC demonstrated concordance between RNA and

protein expression patterns for TFF1, TFF2, and TFF3.

Consequently, strong (H-score values ≥ 100) and moderate

(H-score values ≥ 50) TFF1 and TFF3 was shown in most MC

samples. Although some non-MC samples occasionally

exhibited TFF protein positivity, very few reached staining

intensities comparable to those found in the MC cohort.

Further, we demonstrated high concordance in expression

using full-face sections and TMAs, thereby justifying only

examining TFF2 expression using TMAs. Despite displaying

distinct protein expression patterns in ovarian carcinoma,

Pearson correlation analysis revealed recurrent co-expression

between TFF1/TFF2 and TFF1/TFF3.

Several biomarkers have been studied and implemented to

facilitate the diagnostic evaluation of primary OC vs metastatic

tumors, as well as a means of differentiating the epithelial OC

histotypes (11, 19–23, 25, 30, 48–50). Herein, IHC analysis of the

TFF-family was performed with antibodies that were validated in a

TMA optimization panel consisting of four of the main OC

histotypes (CCC, EC, MC, and HGSC) in tumor stages I-IV. In

our study cohort, the specificity of the antibodies was thereby

proven to agree with the algorithm-based ranking from RNA data.

TFF1 specificity in mucinous ovarian cancer was previously

explored using an in silico analysis of transcriptomics data (51).

Moreover, our data are supported by gene expression analysis in

studies where among several dysregulated genes, TFF1 and TFF3
frontiersin.org

https://doi.org/10.3389/fonc.2022.1112152
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Werner Rönnerman et al. 10.3389/fonc.2022.1112152
have been upregulated exclusively in the MC histotype (31, 52, 53).

Interestingly, hierarchical clustering of the expression profiles

showed that the MC histotype and normal surface epithelium of

the ovary clustered separately from all other OC histotypes.

However, of all histotypes the highest number of dysregulated

genes was found by comparing normal epithelium of the ovary

and MC (52).

Previous studies have demonstrated the clinical value of the

TFF protein family for ovarian carcinoma subtyping and

immunohistochemistry algorithms to identify carcinomas of

unknown origin (30, 31, 38). Identification of elevated TFF1

protein levels in diverse cancers such as pancreatic, colonic, and

ovarian tumor tissues indicate a universal function in tumor

progression via stimulation of cell migration, survival,

invasiveness, and distant spread (36, 37). The TFF3 gene has

been shown to be an estrogen-regulated oncogene with

prognostic value in estrogen-positive breast cancer and

important contributor to gastric cancer progression (54). In

addition, high TFF3 levels are associated with poor survival,

recurrence and distant metastasis in colorectal cancer (55).

Elevated expression levels of TFF1 and TFF3 have been shown

to correlate with changes in Ca125 (progression) and endocrine

therapy response rates in ovarian cancer (56). Moreover, TMA-

based studies demonstrated a correlation between elevated TFF3

expression, better prognosis, and lower recurrence rates in OC,

but these studies were not stratified by histotype (54, 57). In a

study by Kalloger et al. on OC histotyping, the TFF3 gene was

used to separate different epithelial ovarian cancer subtypes (31).

The TFF3 gene was further identified as highly expressed in the

mucinous subtype of borderline ovarian tumors, suggesting

specificity for mucinous differentiation (58).

Mucinous ovarian carcinoma is defined by large amounts of

mucin in >90% of tumor cells (2, 3). In normal physiological

conditions, mucins are large heavily glycosylated proteins

secreted by epithelial cells constituting a physical barrier and

providing protection and healing of epithelial tissues in the

mucosal membranes. Few studies have explored the

significance of the mucinous component in this cancer

histotype. In the present study, the TFF-family genes were

found to be up-regulated for MC. The TFF1 and TFF3 protein

expression patterns were clearly connected to the presence of

intracellular mucus or mucinous differentiation in epithelial

cells. On the subcellular level, expression was localized to the

intracytoplasmic compartment with/without the shape of

intracytoplasmic mucin vacuoles and morphology of goblet

cells, thereby enhancing the mucus component. Expression of

TFF1, TFF2, and TFF3 was confirmed on the protein level with

immunohistochemistry using antibodies validated by

standardized protocols according to The Human Protein Atlas.

Both TFF1 and TFF3 presented single peaks in protein arrays

indicating an interaction with their antigens only (enhanced

specificity), whereas the antibody for TFF2 passed specificity

testing but was deemed to have low specificity. Only the TFF1
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antibody had a single, distinct band using Western blot.

Corresponding bands at predicted protein size of TFF2 and

TFF3 were however not detected, hence defined as uncertain.

Based on our results, the TFF2 protein demonstrated the poorest

biomarker potential as non-specific, accentuated TFF2 staining

was generally found in all histotypes. Membranous expression

was also frequently found. Due to the demonstrated slight

inferior specificity of the antibody, we suggest further testing

in future studies before any final conclusions of both the

usefulness and expression pattern can be ascertained.

In our study, several of the secreted genes of the well-studied

MUC (mucin) gene family were discovered among the 97

identified MC-related genes. Of these, MUC2, MUC5A, and

MUC6 have been found to be frequently co-expressed with

TFF3, TFF1, and TFF2 (35). Moreover, the membrane bound

mucin MUC13 was co-expressed in all our mucinous samples.

MUC13 has previously been found to have aberrant expression

in ovarian cancer compared to normal ovarian tissue, especially

in MC samples both compared to other histological OC types as

well as adjacent normal tissues (59). True MC, as a rare disease,

has a quite undefined origin and not fully understood molecular

background (6, 10). Lack of normal mucin-secreting cells in the

ovary challenges the elucidation of the cell of origin. Previous

findings indicate that MC development is a multistep process

with similarities to tumor development in colorectal carcinoma

(52). Using GWAS analysis, Kelemen and colleagues identified

specific MC histotype associated gene susceptibility loci and

SNPs detected in other OC histotypes, which implies common

features in the OC biological background (60).

Previous studieshave implementeduseful immuno-histochemical

algorithms with antibodies to distinguish between ovarian carcinoma

histotypes with 90% accuracy (e.g. the 8-protein panel p53, p16, PR,

WT1, ARID1A, HNF1B, VIM, and TFF3) (20, 22, 23, 25, 26, 30, 49).

Nevertheless, routine histology should still be used as a baseline to

determine a final diagnosis . For ambiguous cases ,

immunohistochemistry can be helpful as a diagnostic tool. The

possibility of using specific proteins as serum biomarkers, circulating

tumor cells (CTCs) or liquid biopsies has recently been successfully

developed for several cancer types. Both TFF1 and TFF3mRNA have

been demonstrated to be elevated in patients with metastatic breast

cancer (61). Moreover, high serum levels of TFF3 in gastrointestinal

cancer correlated with more advanced disease and poor therapeutic

response (54, 55). In breast tumor tissue, TFF1 and TFF3 expression

levels were inversely related to proliferation index (Ki67) and tumor

grade. Expression of TFF3 was more related to malignant tumors

compared to the presence ofTFF1.A correlationwithTFF2 levels was

not found (62). In comparison with other histotypes, the CA125

(MUC16) serum-marker is known to be a relatively weak predictor of

relapse for MCs. Use of a new biomarker in combination with a well-

known serum-marker e.g.Ca125 (MUC16) orHE4, was suggested for

REG4,aproteinwithmucin-likestainingpatternswhichwasstudied in

OC with mucinous differentiation by Lehetinen et al. in 2015 (51).

Therefore, the TFF1 and TFF3 biomarkers may provide healthcare
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professionals with tools to better subclassify OC by histotype, more

efficiently predict patient clinical outcome, and improve the treatment

decision-making process for ovarian cancer.

A recent study showed that the CK7 (KRT7), CK20 (KRT20),

and SATB2 immunohistochemical markers could assist in

differentiating primary MCs from metastatic tumors (49).

Although the present study could have been improved by

including one or more of these markers, especially on the protein

level, only KRT20 was identified among the MC-associated genes

based on our RNA-seq data. However, KRT7 were present in most

samples with expression levels exceeding RNA-seq count levels of

100 (all histotypes) and in some cases exceeding or reaching levels

of 1000. In comparison, in our cohort SATB2 results diverged

having three-digit values in a minority of samples (all histotypes)

but also, for both HGSCs, ECs as well as MCs, exhibiting single

samples with contrastingly very high expression. The significance of

this variation has not been further investigated. Moreover, the

patients included in the study were diagnosed with ovarian

carcinoma between 1993 and 2006, thus imposing the risk of

suboptimal conditions for immunohistochemistry using FFPE

samples (e.g. time of fixation, differences in batches and chemical

conditions for tissue preparation, storage, etc.). Nevertheless, we

found high concordance between our RNA (fresh-frozen tissue

samples) and protein (FFPE samples) data. The present study has a

number of other limitations, including small sample size,

particularly for each specific histotype, and general

immunopositivity of the TFF proteins in the mucinous

component (e.g. in ECs), which might reduce the potential of the

TFF-family to be used as sole discriminator of the MC histotype.

The included patients were operated for their ovarian cancer

between 1993 and 2006, before implementation of the first

national guidelines for ovarian cancer in Sweden (2012), in which

appendectomies were routinely carried out when removing an

ovarian cancer of suspected or confirmed mucinous origin. To

minimize confusion with metastatic events, complete clinical data,

macro- and microscopic evaluation of the tumor, as well as the

combination of immunohistochemistry and gene expression data is

preferable. However, the medical records for the MC cohort were

also scrutinized for the presence of meta- and/or synchronous

tumors (especially gastro-pancreatic-intestinal), the intraoperative

status of the abdominal cavity, and any data for the appendix

(previously/simultaneously performed appendectomy was available

for 5 patients). Therefore, future studies should be performed using

larger cohorts using both gene expression and IHC data for known

discriminating markers to further minimize the risk that metastatic

events are included and validate TFF1 and TFF3 expression as

stratifiers of different OC histotypes (26, 52, 60).

The TFF protein family has previously been linked to tumor

malignancy, progression, and classification. In the present study,

we demonstrate overexpression of the TFF1 and TFF3 genes in

early-stage ovarian MC histotype, with mainly intracytoplasmic

localization. For the individual patient, prognosis and disease-free

survival rely on a correct and early diagnosis (6). The
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identification of biomarkers for early OC disease could lead to

more patients being diagnosed at an early stage and use of

histological subtyping for precision medicine. This, in turn, may

result in improved patient survival (1, 6, 63–65). The nature of a

study population (OC stage I-II) enables a reflection of the TFF-

family in a perspective of early events of malignant

transformation. Future studies should address the role of the

TFF protein family both in tumor progression by analyzing

expression in late stage (stage III and IV) OC, as well as more

deeply investigate their presence in other malignant tumors. This

in turn would allow us to elucidate their potential role as disease-

specific biomarkers, enabling their inclusion in established IHC

algorithms for ovarian carcinoma histotyping as well as tool to

monitor an already diagnosed patient with OC disease.
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