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Tumor mutation burden (TMB) is a useful biomarker for predicting the prognosis and efficacy of immune checkpoint inhibitor (ICIs). In this study, we aimed to explore the prognostic value of TMB and TMB-related PRLHR immune genes as prognostic markers in patients with gliomas. We downloaded MAF files, RNA-seq data, and clinical information from the Cancer Genome Atlas (TCGA) database. The TMB of glioma was calculated and its correlation with clinical features and prognosis was analyzed. We found that TMB was statistically correlated with the grade and age of patients with gliomas. Kaplan-Meier curve analysis showed that low TMB was associated with better clinical outcome in patients with gliomas. Additionally, a predictive model based on five HUB genes (FABP5, VEGFA, SAA1, ADM, and PRLHR) was constructed to predict OS in patients with gliomas. Receiver operating characteristic curve analysis shows that the model is reliable in predicting the risk of survival and prognosis. Immune microenvironment analysis revealed a correlation between TMB and infiltrating immune cells. The clinical-related immune gene, PRLHR, can be used as an independent prognostic factor for patients with brain glioma, and it is negatively correlated with the grade of glioma and age of patients with glioma. We found that the higher the tumor grade and the older the age, the lower the PRLHR expression, which was verified by CGGA database and independent experimental data. These results suggest that PRLHR may be a tumor suppressor for the progression of glioma and might provide a new therapeutic target for the treatment and improvement of survival rate in patients with glioma.
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Introduction

Glioma is an intractable intracranial tumor with high mortality and recurrence rate (1). Gliomas are highly invasive, making them difficult to be completely removed by neurosurgery. Traditionally, gliomas are classified into grades I to IV, including astrocytoma, oligoastrocytoma, oligodendroglioma, and glioblastoma (GBM) (2, 3). The term “low-grade glioma” (LGG) refers to grades I and II gliomas. However, LGGs include WHO grade II and III astrocytomas, oligodendrogliomas, and oligoastrocytomas. High-grade gliomas are grade III and IV gliomas (4, 5). LGG can evolve into high-grade glioma and become resistant to chemotherapy. These factors lead to the observed high mortality rate of glioma, so it is urgent to find a therapeutic target for glioma treatment (1, 6, 7).

Tumor mutation burden (TMB), or tumor mutation load, is a new biomarker of immunotherapy. TMB is defined as the number of somatic cells, codes, base substitutions, and insertion mutations per trillion bases (8). It is generally believed that TMB plays a vital role in the occurrence and development of cancer (9). In one study, cancer patients with high TMB levels showed stronger immunotherapy responses than did cancer patients with low TMB levels (10). Therefore, it is important to explore the expression of genes closely related to the TMB level. Moreover, TMB is related to the prognosis of cancer (11). Previous studies have shown that high TMB is associated with more effective immunotherapy in patients with pancreatic ductal adenocarcinoma (PDAC) and can predict patient survival (12). Results of clinical trials of immunologic drugs for non-small-cell lung cancer (NSCLC) also showed that high TMB was associated with an increase in the overall cancer response rate (ORR) and prolonged progression-free survival (PFS) (13). However, there has been less research on the role of TMB in glioma. Therefore, there is an urgent need to identify potential TMB-related gene markers to predict the prognosis of patients with gliomas.

In this current study, we identified differentially expressed genes (DEGs) using RNA sequencing data from The Cancer Genome Atlas (TCGA) based on TMB. Then, functional enrichment analysis was further used to analyze the biological effects of these DEGs. Lastly, we identified five gene markers of glioma using the TCGA data set and bioinformatics analysis. Independent prognostic analysis showed that PRLHR could be used as an independent prognostic factor for patients with glioma, and clinical correlation analysis showed that it was significantly different from age and tumor grade. Transcriptional group data, downloaded from the Chinese Glioma Genome Atlas (CGGA) database, and external experimental data were used to verify our results. Functional enrichment analysis was used to assess the biological function of PRLHR. A flow chart of this study is shown in Figure 1.




Figure 1 | The flow chart of the study.





Materials and Methods


Public Data Acquisition

The Somatic mutation data for glioma were obtained from the publicly available TCGA database through the GDC data portal (https://portal.gdc.ancer.gov/), including 393 GBM samples and 508 LGG samples. The “MaskedSomaticMutation” data set for glioma contains four types of data files; we used the “mutect” data type for the next step. The R package “maftools” (14) was used to calculate the total number of somatic cells and non-synonymous point mutations in each sample. In addition, we downloaded 703 transcriptome maps of glioma samples from TCGA, including 169 GBM samples, 529 LGG samples, and five normal brain tissues. We obtained relevant clinical information from the GDC portal, including age, sex, tumor grade, and survival outcome. mRNA data and clinical information of glioma samples were downloaded from the CGGA database (http://www.cgga.org.cn/). All data used in this part of our study are from public databases, so no informed consent was required and there are no ethical or moral conflicts to declare.



Sample and Quantitative Real-Time Polymerase Chain Reaction Analysis

From August 2018 to May 2020, we collected frozen tissues of 71 patients who had gliomas surgically removed at the Xiangya Hospital of Central South University. RNA was extracted from cells or tissues using TRIzol Reagent (Invitrogen, CA, USA) and was reverse transcribed into cDNA using the PrimeScriptRT kit (Takara, Japan). The SYBR Green PCR MasterMix kit (Takara) and ABI7500 system (Applied Biosystems, CA, USA) for qRT-PCR. PCR amplification conditions were: initial denaturation for 30 s at 95°C, and 40 cycles at 95°C for 10 s and 60°C for 30 s. GAPDH was used as a control. The following primer sequences were used: PRLHR Forward: 5′-CCACGCCATCGACCCTTAC-3′, Reverse: 5′-CCAAGCGACCAACAGTTTGC-3′; GAPDH Forward, 5′-CCAGGTGGTCTCCTCTGA-3′ and Reverse 5′-GCTGTAGCCAAATCGTTGT-3′. PRLHR expression level was calculated by the 2−ΔΔCT method. This study was approved by the Institution Evaluation Committee of Xiangya Hospital of Central South University. All patients and their families (where appropriate) provided written informed consent to participate.



TMB Score Calculation, Prognosis Analysis, and Clinical Correlation Analysis

TMB is defined as the total number of coding errors, base substitutions, insertions or deletions of somatic genes detected per million bases. In our study, we determined the TMB score for each sample by calculating the mutation frequency and the number of mutations/exon length (38 million). Based on the median data value, glioma samples can be divided into low and high TMB groups. We downloaded glioma clinical samples including GBM and LGG from TCGA. We excluded samples with incomplete clinical information and/or follow-up time of less than 30 days, to ensure that reliable survival time and survival status data were available, leaving 442 samples. Then, we used Perl software to merge the glioma TMB data and the corresponding survival information by searching for the appropriate sample ID. Kaplan-Meier analysis was used to compare survival differences between the low and high TMB groups, and the P value of the logarithmic rank sum test was calculated. Additionally, we evaluated the relationship between TMB levels and clinical characteristics(age, gender, and grade)using the Wilcoxon rank sum test.



Differentially Expressed Genes

We combined the downloaded glioma transcriptional group data with sample id and TMB data, and divided glioma patients into low and high TMB groups using the median TMB value as the cut-off. The Limma software package was used to analyze the False Discovery Rate (FDR) < 0.05, | log (Folding change)| > 1) to compare TMB-related differentially genes between the two subtypes.



Immune Cellular Infiltration Estimates

The abundance of immune cell infiltration between different populations was estimated using CIBERSORT (15). CIBERSORT is a new method widely used to characterize the cellular composition of complex tissues using the gene expression information from solid tumors (16, 17). These characteristics are highly consistent with the actual estimates of different cancers (15). When we use CIBERSORT, to assess the feasibility of leukocyte deconvolution from bulk tumors, Newman AM et al. designed and validated a leukocyte gene signature matrix, termed LM22 (15). It contains 547 genes that distinguish 22 human hematopoietic cell phenotypes, and can distinguish 22 immune cell subtypes including seven kinds of T cells (CD8+T cells, immature CD4+T cells, resting memory CD4+T cells, activated memory CD4+T cells, follicular helper T cells, regulatory T cells, and γ δ T cell), B cell types (primordial B cells, memory B cells, and plasma cells), NK cells (resting NK cells and activated NK cells), and various myeloid cells (monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, activated dendritic cells, resting mast cells, activated mast cells, eosinophils, and neutrophils). In this study, the CIBERSORT online platform (http://cibersort.stanford.edu/) was used to complete the calculation, and each sample was assigned a p value. The samples with CIBERSORT output values p < 0.05 were selected for further analysis (18). The Wilcoxon rank sum test was used to compare differences abundance in immune infiltration between low group and high TMB groups. The R package “violet” is used to show the difference between the high and low TMB groups.



Immune Related Genes

The obtained differentially expressed genes were intersected with immune genes in the ImmPortSharedData database (https://www.immport.org/) (19), and 21 immune-related differentially expressed genes were obtained (| logFC | > 2).



Construction of Cox Proportional Hazard Model

Univariate Cox proportional hazard regression analysis and multivariate Cox regression analysis were used to analyze the differential genes related to immunity in gliomas. mRNA with P < 0.05 was screened out. On the basis of this analysis, we constructed a prognostic prediction model and obtained a comprehensive prognosis scoring system based on these differentially expressed mRNAs (DEmRNAs). The risk score was calculated as follows: Riskscore = βi × expRNAi, where expRNA is the expression level of RNA and β is the regression coefficient derived from the multivariate Cox regression model.

Based on the risk score obtained using this approach and the specific differential genes we identified, patients with glioma were divided into high risk and low risk groups. There was a difference in the overall survival (OS) rate between the two groups. The higher the risk score, the worse the prognosis of patients with glioma. Unless otherwise stated, P < 0.05 was considered statistically significant. The “Survival ROC” software package in R was used to construct 3- and 5-year time-dependent subject working characteristic (ROC) curves to evaluate the sensitivity of DEmRNAs in predicting survival. OS prediction of the DEmRNAs was analyzed by Kaplan-Meier analysis. All of these analyses were performed in R software (version 3.6.3).



Independent Prognostic Analysis and Clinical Correlation Analysis of Prognostic Genes

To screen out independent prognostic genes in patients with glioma, we constructed a clinical model to predict survival rate. We used univariate Cox analysis and multivariate Cox regression models combined with the five prognostic genes and clinical information (including age, sex, tumor grade, and tissue type) to evaluate independent risk predictors in patients with glioma. The clinical correlation between independent prognostic genes was analyzed, and the expression of independent prognostic genes in different ages, tumor grades, and gender groups were compared. At the same time, it was verified by the CGGA database and 71 frozen specimens of glioma collected in Xiangya Hospital (independent data).



Functional Enrichment Analysis

We combined the downloaded glioma transcriptome data with sample id and TMB data, and divided patients with glioma into low and high PRLHR subtypes based on median PRLHR expression. The Limma software package was used to compare the PRLHR-related differentially expressed genes between the two subtypes. Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) analyses were used to evaluate the functional role of PRLHR-related differential genes in the prognosis of gliomas. The clusterProfiler package of R software was used for these feature rich analyses. The ggplot2 package of R software was used to display the KEGG and GO analysis results. P < 0.05 was set as the critical value.



Statistical Analysis

All statistical analyses were performed in R software (version 3.6.3) and using GraphPad Prism 8. Unless otherwise stated, P < 0.05 was considered to be statistically significant.




Results


Analysis of Prognosis and the Clinical Correlation Between TMB and Patients With Glioma

Downloaded 901 somatic mutation data from GDC data portal (https://portal.gdc.ancer.gov/) We determined the TMB score for each sample by calculating the mutation frequency and the number of mutations/exon length (38 million). Samples with incomplete clinical information and/or follow-up time less than 30 days were removed, which left 442 samples remaining (Supplementary Data 1). Kaplan-Meier analysis was used to compare survival differences between the low and high TMB groups (Figure 2). The OS rate of the low TMB group was significantly higher than that of the high TMB group (Figure 2A). Examination of the relationship between clinical information and TMB revealed a significant difference between TMB and age and tumor grade (P < 0.001), but between TMB and gender (Figures 2B–D). The TMB was higher in patients in the > 45 year age group than in those in the ≤ 45 year age group, suggesting that the tumor mutation load was higher and the survival prognosis was poorer in patients older than 45 years of age. TMB was higher in the GBM group than in the LGG group, suggesting that the tumor mutation load of patients with GBM is high and that their survival prognosis is poor.




Figure 2 | Prognosis of tumor mutation burden (TMB) and associations with risk and clinical characteristics. (A) Higher TMB levels correlated with poor survival outcomes with P = 5.32e-07; (B, D) higher TMB level is associated with age > 45 years and higher tumor grades; (C) no significant differences were observed for gender. Red: high-TMB, blue: low-TMB.





Comparison of Gene Expression Profiles Between Low and High TMB Groups

We downloaded the transcriptome map and somatic mutation data of 698 cases of gliomas from TCGA database, and obtained TMB data for 684 (low TMB group n = 429, high TMB group n = 255). We used the limma package for difference analysis, with FDR < 0.05, | log (folding change) > 1 as the screening conditions. Using this approach we identified 2325 DEGs and, consistent with the heat map results, saw that the gene expression level was generally lower in the high TMB group than in the low TMB group (Figure 3A).




Figure 3 | Comparison of gene expression profiles in low- and high-TMB samples. (A) Top 40 differentially expressed genes (DEGs) are shown in a heatmap plot (red: low-TMB, cyan: high-TMB); (B, C) GO (biological process [BP], cellular component [CC], and molecular function [MF]) and KEGG pathway enrichment results, respectively, revealed that these genes are involved in immune-related pathways (top 10); (D) identification of tumor mutation burden (TMB)-related immune-genes.



We then performed GO enrichment and KEGG pathway analyses. GO enrichment analysis results showed that the DEGs were mainly involved in humoral immune response, leukocyte migration, circulating immunoglobulin-mediated humoral immune response, humoral immune response regulation, and other immune-related functions (Figure 3B). In addition, KEGG pathway analysis results included immune-related PI3K-Akt signal pathway and the tumor-related p53 signal pathway(Figure 3C). Since TMB is related to immune signals or immune pathways in gliomas, we further downloaded 2498 immune-related genes from the Immport database to intersect with the DEGs (| logFC | > 2), and selected 21 immune-related genes for follow-up analysis (Figure 3D and Table 1).


Table 1 | Immune-related genes differentially expressed in low and high TMB groups.





Differential Abundance of Immune Cells in the Low and High TMB Groups

We predicted that the primary function of the DEGs is related to immunity, so we wanted to compare immune components in the high and low TMB groups. The immunocyte content of the data from 684 transcriptional groups was calculated using the CIBERSORT software package. After screening with P < 0.05, 266 immune cell content samples were obtained. These included 102 low TMB group cases and 164 high TMB group cases. The abundance of 22 different immune cells was assessed in each glioma sample (Figure 4A). The Wilcoxon rank sum test showed that the infiltration levels of CD8+T cells, helper T cells, γ δ T cells (T cells gamma delta), M0, M1, M2, and neutrophils in the high TMB group were higher than those in the low TMB group. The levels of activated NK cells, monocytes, and activated mast cells were higher in the low TMB group than in the high TMB group (Figure 4B).




Figure 4 | The proportion of 22 important immune cells in low- and high-tumor mutation burden (TMB) groups. (A) The specific 22 immune fractions represented by various colors in each sample are shown in a bar plot. (B) Wilcoxon rank sum test showed that the infiltration of CD8+T cells, helper T cells, γ δ T cells (T cells gamma delta), M0, M1, M2, and neutrophils was greater in the high-TMB group than in the low-TMB group. Activated NK cells, monocytes, and activated mast cells were higher in the low-TMB group than in the high-TMB group. Red: high-TMB, blue: low-TMB.





Five Immune Genes Related to the Prognosis of Gliomas

To determine the relationship between the 21 differentially expressed immune-related genes and the prognosis of patients, we screened 354 transcriptional progenitor data from 698 gliomas for further analysis. The screening criteria were the presence of complete clinical data and a follow-up time of more than 30 days (Table 2). Each immune gene was subjected to univariate Cox proportional hazard regression. Using this approach, we found that 15 differentially expressed immune-related genes had significant prognostic value (P < 0.05; Table 3). Then, prediction models were constructed based on the coefficients of five differentially expressed genes identified by multivariate Cox proportional hazard regression analysis: FABP5, VEGFA, SAA1, ADM, and PRLHR (P < 0.05; Table 4). The formula used to calculate the risk score was: (0.0153071550563824*exp(FABP5)) + (0.0139157402582103*exp(VEGFA)) + (0.00245933668114062*exp(SAA1)) + (-0.0183653661586793*exp(ADM)) + (-0.0996621554743428*exp (pPRLHR)).


Table 2 | Analysis of the clinical characteristics of patients from multiple institutions.




Table 3 | Univariate Cox analysis of 15 differentially expressed immune-related genes.




Table 4 | Multivariate Cox analysis of 5 differentially expressed immune-related genes.



Additionally, we used time-dependent ROC analysis to assess the prognostic significance of the five DEmRNAs. ROC analysis indicated that the system showed promising prognostic prediction (3-year AUC = 0.717, 5-year AUC = 0.726) (Figure 5A).




Figure 5 | There is a significant difference in overall survival rate among glioma patients when assessed with the five DEmRNAs. (A) Time-dependent receiver operating character curve of the prognosis model constructed using 5-DEmRNA. (B) Overall survival rate of two groups of patients. (C–G) Kaplan–Meier analysis estimates of the overall survival rate using the 5-DEmRNAs in both groups of patients. red, high risk; blue, low risk.



Based on risk score, 354 patients with glioma were divided into low and high risk groups. There was a significant difference in OS between the two groups. The higher the risk score, the shorter the OS time and the higher the mortality (p < 0.05, Figure 5B). The relationship between the five DEmRNAs and OS was analyzed in the two groups (P < 0.05). Significant differences in OS rate were observed between the low and high expression groups. FABP5, VEGFA, SAA1, and ADM survival analysis showed that the higher the risk score, the higher the risk of death. PRLHR Kaplan-Meier analysis showed that the lower the risk score, the higher the risk of death (P < 0.05) (Figures 5C–G). These results suggested that PRLHR may inhibit tumor progression in gliomas.



Analysis of the Clinical Correlation Between Five Prognostic Related Immune Genes and Glioma

The expression values of five prognosis-related immune genes were integrated with clinical information (age, gender, and tumor grade)(Supplementary Data 2). Univariate and multivariate independent prognostic analysis showed that PRLHR and SAA1 were the independent predictor of glioma (univariate and multivariate analysis P < 0.05, Figures 6A–J). PRLHR expression is negatively correlated with survival. PRLHR may be a tumor suppressor in gliomas. So we selected PRLHR as the focus of our next research.




Figure 6 | 5-DEmRNAs are analyzed separately with age, gender, and tumor grade for independent prognostic analysis. (A, C, E, G, I) Single factor Cox regression analysis. (B, D, F, H, J) Multivariate Cox regression analysis. PRLHR can be used as an independent prognostic factor for patients with glioma.



Our results showed that PRLHR expression is lower in patients aged > 45 years than in those aged ≤ 45 years, suggesting that prognosis may be worse in patients older than 45 years. There is no difference in PRLHR with gender. PRLHR expression in patients with LGG is higher than that in patients with GBM. This suggests that the prognosis of GBM is worse, which is consistent with clinical observation. Taken together, these results show that PRLHR can be used as a marker to predict the prognosis of patients with glioma (Figures 7A–C).




Figure 7 | Clinical correlation (age, gender and grade) analysis of PRLHR in TCGA, CGGA, and independent data. (A–C) Analysis of clinical correlation of PRLHR in TCGA (D, E). PRLHR expression is related to OS of patients with glioma in CGGA and independent data (F–K). Clinical correlation analysis of PRLHR in CGGA and independent data. *p < 0.05, **p < 0.01, ****p < 0.0001, ns (not significant) p > 0.05.





CGGA and Independent Sample Verification

Survival analysis showed that PRLHR expression was negatively correlated with survival (Figures 7D, E), which was verified by CGGA data and independent sample data (Table 2). Clinical correlation analysis of PRLHR expression showed reduced PRLHR expression in the > 45 years age group, suggesting that prognosis of the patients in this age group may be worse (Figures 7F, I). There was no difference in the expression of PRLHR in gender groups (Figures 7G, J). Expression of PRLHR in patients with low-grade gliomas (WHO I-II) is higher than that in patients with high-grade gliomas (WHO III-IV), including GBM, suggesting that the prognosis of patients with high-grade gliomas is worse (Figures 7H, K and Supplementary Data 3, 4). It can be concluded that PRLHR can be used as a marker to predict the prognosis of patients with glioma.



GO and KEGG

The transcriptome data of 698 glioma tissues was downloaded from TCGA database and divided into two groups based on PRLHR expression. After screening using the limma package, 5145 DEGs were identified(|log2FC|>2 and P < 0.001). GO enrichment and KEGG pathway analyses were performed on these 5145 DEGs. GO enrichment analysis results show that these DEGs are mainly involved in antigen processing and foreign antigen presentation, antigen processing and presentation, antigen processing and peptide antigen presentation, antigen processing and exogenous peptide antigen presentation, neutrophil mediated immunity, neutrophil activation involved in immune response, neutrophil degranulation, and other immune-related functions (Figure 8A). In addition, KEGG pathway analysis included glioma-related signal pathway, and tumor-related p53 signal pathway (Figure 8B).




Figure 8 | PRLHR functional enrichment analysis. (A) The function of PRLHR in GO (biological process [BP], cellular component [CC], and molecular function [MF]) enrichment (top 10, p < 0.05); (B) KEGG pathway enrichment (top 30, p < 0.05).






Discussion

Glioma is a malignant tumor characterized by multiple immune cell infiltration and complicated immune response. Identification of prognosis-related immune genes to benefit patients with glioma is important as the prognosis of these patients remains poor. Traditionally, it was thought that the blood-brain barrier prevented immunotherapy from working in the central nervous system. However, more recent reports suggest that immunotherapy may be beneficial in the treatment of central nervous system cancers (20). Immunotherapy, including vaccine therapy, checkpoint inhibitors, chimeric antigen TCR, and viral immunotherapy, can improve the prognosis and OS in patients with gliomas (21). Immune regulation between immune cells or between tumor cells and immune cells promotes tumor progression (22). Therefore, it is important to identify immune target genes related to the prognosis to improve the survival rate of patients with gliomas.

TMB is an important biological marker that reflects the degree of tumor mutation. Alexandrov and Lawrence et al. found significant differences in TMB among different tumor samples, ranging from 0.001–400/Mb. There were also significant differences in TMB among different patients with the same tumor type. TMB has been reported as a biomarker that correlates with tumor immunotherapy efficacy (23). The reason that TMB has become a marker of immunotherapy stems from the biological mechanism of somatic mutation and immune response. Somatic mutations in tumors include synonymous mutations and non-synonymous mutations. Non-synonymous mutations produce abnormal proteins by changing the amino acid sequence. The immunogenicity of abnormal proteins in tumors is the basis of the tumor immune response. If abnormal proteins are eventually recognized by immune cells, they will become new antigens, and the immune response can subsequently develop (24). Therefore, when the TMB of the tumor sample is high, mutations that produce a new immunogenic antigens in the tumor are also increased. This makes it easier for the immune system to identify and clear tumor cells, and the patient survival rate will be relatively improved. Consistent with this, the OS of glioma patients in the high TMB group was significantly higher than that in the low TMB group in our study. In addition, we also identified a statistical correlation between TMB and glioma grade and age.

We obtained 2325 DEGs, related to TMB, and performed GO enrichment and KEGG pathway analyses. The results showed that these DEGs were mainly involved in immune-related functions, including humoral immune response, leukocyte migration, and circulating immunoglobulin-mediated humoral immune response. Based on univariate and multivariate cox regression analysis, we identified five genes, FABP5, VEGFA, SAA1, ADM, and PRLHR, for prognosis prediction in patients with glioma. ROC curve analysis showed that this model is reliable in predicting the prognosis of patients with glioma. However, more clinical trials are required to verify these results.

Immune cells may play different roles in the development of tumors (25). In our study, we calculated the proportion of 22 different immune cells in gliomas. Patients with glioma were divided into two groups based on their TMB score. The infiltration levels of CD8+T cells, helper T cells, γ δ T cells (T cells gamma delta), M0, M1, M2, and neutrophils were higher in the high TMB group than in the low TMB group. Meanwhile, the proportion of activated NK cells, monocytes, and activated mast cells were higher in the low TMB group than in the high TMB group. Recent studies reported that CD8+T cells, helper T cells, γ δ T cells, and cytoskeletal M2 cells play important roles in anti-tumor immunity (26–28). We speculate that high TMB can induce anti-tumor activation of immune cells and improve the prognosis of glioma patients.

PRLHR (prolactin releasing hormone receptor), or G protein coupled receptor 10, is the receptor for prolactin releasing peptide (PrRP). PRLHR is associated with feeding and the regulation of energy balance (29). Additionally, PRLHR mutation is a protective factor in Chinese Han patients with colorectal cancer (30). Some studies have shown a negative correlation between the PRLHR expression levels and immune cells infiltration in LGG, but the role of PRHLR in glioma remains unclear (31). We integrated the expression of five prognosis-related immune genes with clinical information (age, sex, and tumor grade). Univariate and multivariate independent prognostic analysis showed that PRLHR was the only independent predictor of glioma. Our results show that PRLHR expression is negatively correlated with survival, and that the survival rate of patients with low PRLHR expression is decreased. Therefore, PRLHR may be a suppressor of glioma tumorigenesis. We also found that PRLHR expression is lower in patients in the > 45 year age group than that in patients in the ≤ 45 year age group, suggesting that the prognosis of patients with over 45 years of age may be worse. PRLHR expression in patients with low-grade gliomas is higher than that in patients with high-grade gliomas, including GBM, suggesting that the prognosis of high-grade gliomas is worse. There was no observed difference between gender and high-grade gliomas. Some studies have shown that the grade of glioma increases with increased age, and the survival rate of I~IV grade glioma decreases with the increased grade (32). Therefore, PRLHR may be a protective factor for the occurrence of gliomas and can be used as an independent prognostic marker for patients with gliomas.

We used GO and KEGG enrichment analyses to predict the role of PRLHR in glioma. The results show that PRLHR may inhibit the occurrence and development of glioma by regulating immune cells and their ability to participate in the immune response. However, further verification of cellular function is still needed.



Conclusion

PRLHR is an immune gene related to TMB, and significantly differs from tumor grade and age of patients with glioma. Moreover, PRLHR is related to the prognosis and survival rate of patients with glioma. PRLHR can be used as a tumor inhibitory factor for the development of glioma, and has important guiding significance for the prognosis and immunotherapy of glioma.



Data Availability Statement

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.



Ethics Statement

The studies involving human participants were reviewed and approved by Ethics Committee of Xiangya Hospital of Central South University. The patients/participants provided their written informed consent to participate in this study.



Author Contributions

YL designed the experiment, collected and analyzed the data, YL and JX wrote the manuscript, and CF S and GP checked the manuscript. All authors contributed to the article and approved the submitted version.



Funding

This study was supported by the National Natural Science Foundation of China Youth Fund Project (no. 81801908), Hunan Provincial Natural Science Committee Project (no. 2021JJ70074) and Hunan Province Science and Technology Major Project(no.2019SK1010).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2022.620190/full#supplementary-material



References

1. Jiang, T, Mao, Y, Ma, W, Mao, Q, You, Y, Yang, X, et al. CGCG Clinical Practice Guidelines for the Management of Adult Diffuse Gliomas. Cancer Lett (2016) 375(2):263–73. doi: 10.1016/j.canlet.2016.01.024

2. Chen, R, Smith-Cohn, M, Cohen, AL, and Colman, H. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics (2017) 14(2):284–97. doi: 10.1007/s13311-017-0519-x

3. Ma, Q, Long, W, Xing, C, Chu, J, Luo, M, Wang, HY, et al. Cancer Stem Cells and Immunosuppressive Microenvironment in Glioma. Front Immunol (2018) 9:2924. doi: 10.3389/fimmu.2018.02924

4. Zeng, WJ, Yang, YL, Liu, ZZ, Wen, ZP, Chen, YH, Hu, XL, et al. Integrative Analysis of DNA Methylation and Gene Expression Identify a Three-Gene Signature for Predicting Prognosis in Lower-Grade Gliomas. Cell Physiol Biochem (2018) 47(1):428–39. doi: 10.1159/000489954

5. Eckel-Passow, JE, Lachance, DH, Molinaro, AM, Walsh, KM, Decker, PA, Sicotte, H, et al. Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors. N Engl J Med (2015) 372(26):2499–508. doi: 10.1056/NEJMoa1407279

6. Cancer Genome Atlas Research N. Comprehensive Genomic Characterization Defines Human Glioblastoma Genes and Core Pathways. Nature (2008) 455(7216):1061–8. doi: 10.1038/nature07385

7. Cancer Genome Atlas Research N, Brat, DJ, Verhaak, RG, Aldape, KD, Yung, WK, Salama, SR, et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med (2015) 372(26):2481–98. doi: 10.1056/NEJMoa1402121

8. Chalmers, ZR, Connelly, CF, Fabrizio, D, Gay, L, Ali, SM, Ennis, R, et al. Analysis of 100,000 Human Cancer Genomes Reveals the Landscape of Tumor Mutational Burden. Genome Med (2017) 9(1):34. doi: 10.1186/s13073-017-0424-2

9. Chan, TA, Yarchoan, M, Jaffee, E, Swanton, C, Quezada, SA, Stenzinger, A, et al. Development of Tumor Mutation Burden as an Immunotherapy Biomarker: Utility for the Oncology Clinic. Ann Oncol (2019) 30(1):44–56. doi: 10.1093/annonc/mdy495

10. Endris, V, Buchhalter, I, Allgauer, M, Rempel, E, Lier, A, Volckmar, AL, et al. Measurement of Tumor Mutational Burden (TMB) in Routine Molecular Diagnostics: In Silico and Real-Life Analysis of Three Larger Gene Panels. Int J Cancer (2019) 144(9):2303–12. doi: 10.1002/ijc.32002

11. Wang, X, and Li, M. Correlate Tumor Mutation Burden With Immune Signatures in Human Cancers. BMC Immunol (2019) 20(1):4. doi: 10.1186/s12865-018-0285-5

12. Lawlor, RT, Mattiolo, P, Mafficini, A, Hong, SM, Piredda, ML, Taormina, SV, et al. Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Pancreatic Cancer: Systematic Review and Still-Open Questions. Cancers (Basel) (2021) 13(13):3119. doi: 10.3390/cancers13133119

13. Bravaccini, S, Bronte, G, and Ulivi, P. TMB in NSCLC: A Broken Dream? Int J Mol Sci (2021) 22(12):6536. doi: 10.3390/ijms22126536

14. Mayakonda, A, Lin, DC, Assenov, Y, Plass, C, and Koeffler, HP. Maftools: Efficient and Comprehensive Analysis of Somatic Variants in Cancer. Genome Res (2018) 28(11):1747–56. doi: 10.1101/gr.239244.118

15. Newman, AM, Liu, CL, Green, MR, Gentles, AJ, Feng, W, Xu, Y, et al. Robust Enumeration of Cell Subsets From Tissue Expression Profiles. Nat Methods (2015) 12(5):453–7. doi: 10.1038/nmeth.3337

16. Gentles, AJ, Newman, AM, Liu, CL, Bratman, SV, Feng, W, Kim, D, et al. The Prognostic Landscape of Genes and Infiltrating Immune Cells Across Human Cancers. Nat Med (2015) 21(8):938–45. doi: 10.1038/nm.3909

17. Ceccarelli, M, Barthel, FP, Malta, TM, Sabedot, TS, Salama, SR, Murray, BA, et al. Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell (2016) 164(3):550–63. doi: 10.1016/j.cell.2015.12.028

18. Chen, B, Khodadoust, MS, Liu, CL, Newman, AM, and Alizadeh, AA. Profiling Tumor Infiltrating Immune Cells With CIBERSORT. Methods Mol Biol (2018) 1711:243–59. doi: 10.1007/978-1-4939-7493-1_12

19. Bhattacharya, S, Andorf, S, Gomes, L, Dunn, P, Schaefer, H, Pontius, J, et al. ImmPort: Disseminating Data to the Public for the Future of Immunology. Immunol Res (2014) 58(2-3):234–9. doi: 10.1007/s12026-014-8516-1

20. Preusser, M, Lim, M, Hafler, DA, Reardon, DA, and Sampson, JH. Prospects of Immune Checkpoint Modulators in the Treatment of Glioblastoma. Nat Rev Neurol (2015) 11(9):504–14. doi: 10.1038/nrneurol.2015.139

21. Khansur, E, Shah, AH, Lacy, K, and Komotar, RJ. Novel Immunotherapeutics for Treatment of Glioblastoma: The Last Decade of Research. Cancer Invest (2019) 37(1):1–7. doi: 10.1080/07357907.2018.1479414

22. Kamran, N, Alghamri, MS, Nunez, FJ, Shah, D, Asad, AS, Candolfi, M, et al. Current State and Future Prospects of Immunotherapy for Glioma. Immunotherapy (2018) 10(4):317–39. doi: 10.2217/imt-2017-0122

23. Alexandrov, LB, Nik-Zainal, S, Wedge, DC, Aparicio, SA, Behjati, S, Biankin, AV, et al. Signatures of Mutational Processes in Human Cancer. Nature (2013) 500(7463):415–21. doi: 10.1038/nature12477

24. Chen, DS, and Mellman, I. Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature (2017) 541(7637):321–30. doi: 10.1038/nature21349

25. Chen, DS, and Mellman, I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity (2013) 39(1):1–10. doi: 10.1016/j.immuni.2013.07.012

26. van Wilpe, S, Gerretsen, ECF, van der Heijden, AG, de Vries, IJM, Gerritsen, WR, and Mehra, N. Prognostic and Predictive Value of Tumor-Infiltrating Immune Cells in Urothelial Cancer of the Bladder. Cancers (Basel) (2020) 12(9):2692. doi: 10.3390/cancers12092692

27. Hollern, DP, Xu, N, Thennavan, A, Glodowski, C, Garcia-Recio, S, Mott, KR, et al. B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models of Breast Cancer. Cell (2019) 179(5):1191–206.e21. doi: 10.1016/j.cell.2019.10.028

28. Sousa, S, Brion, R, Lintunen, M, Kronqvist, P, Sandholm, J, Monkkonen, J, et al. Human Breast Cancer Cells Educate Macrophages Toward the M2 Activation Status. Breast Cancer Res (2015) 17:101. doi: 10.1186/s13058-015-0621-0

29. Varghese, BV, Koohestani, F, McWilliams, M, Colvin, A, Gunewardena, S, Kinsey, WH, et al. Loss of the Repressor REST in Uterine Fibroids Promotes Aberrant G Protein-Coupled Receptor 10 Expression and Activates Mammalian Target of Rapamycin Pathway. Proc Natl Acad Sci U S A (2013) 110(6):2187–92. doi: 10.1073/pnas.1215759110

30. Su, Q, Wang, Y, Zhao, J, Ma, C, Wu, T, Jin, T, et al. Polymorphisms of PRLHR and HSPA12A and Risk of Gastric and Colorectal Cancer in the Chinese Han Population. BMC Gastroenterol (2015) 15:107. doi: 10.1186/s12876-015-0336-9

31. Yin, W, Jiang, X, Tan, J, Xin, Z, Zhou, Q, Zhan, C, et al. Development and Validation of a Tumor Mutation Burden-Related Immune Prognostic Model for Lower-Grade Glioma. Front Oncol (2020) 10:1409. doi: 10.3389/fonc.2020.01409

32. Rasmussen, BK, Hansen, S, Laursen, RJ, Kosteljanetz, M, Schultz, H, Norgard, BM, et al. Epidemiology of Glioma: Clinical Characteristics, Symptoms, and Predictors of Glioma Patients Grade I-IV in the the Danish Neuro-Oncology Registry. J Neurooncol (2017) 135(3):571–9. doi: 10.1007/s11060-017-2607-5




Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.


Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Liu, Xiang, Peng and Shen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.


OEBPS/Images/fonc-12-620190-g001.jpg
GDC database

Clinical correlation
analysis of TMB
TMB score (age, gender and grade)
(High VS Low) |

Immune cells infitration

(CIBERSORT analysis)
2325 differentially

expressed genes
(|log2(fold change)|>1
and p<0.05)

ImmPortSharedData

21 immune-related

GO function and
KEGG pathway

enrichment analysis

DEmRNAS

Univariate Cox and multivariate
Cox regression analysis
(P<0.05)

Construct a risk prognostic model of 5
prognostic-related genes (FABPS,
VEGFA, SAA1, ADM, and PRLHR)

Independent prognostic

GO function and

PRLHR as a protective
factor for glioma
(TCGA-training set)

KEGG pathway

enrichment analysis

Clinical correlation analysis
of PRLHR in CGGA and
independent data

clinical correlation
analysis
(age, gender and grade)

(OS, age, gender and grade)

(validating set)






OEBPS/Images/fonc-12-620190-g006.jpg
ADM

grade

age

gender

FABPS

grade

age

gender

PRLHR

grade

age

gender

sAA1

grade

gender

VEGFA

grade

age

gender

pvalue

0.005

<0.001

<0.001

0317

palue

<0.001

<0.001

<0.001

0317

pvalue

<0.001

<0.001

<0.001

0317

pualue

<0.001

<0.001

<0.001

0317

pvalue

<0.001

<0.001

<0.001

0317

Hazard ratio

1.013(1.004-1.022)

0.208(0.205-0.433)

1.029(1.017-1.042)

1.205(0.836-1.737)

Hazard ratio

1.019(1.013-1.025)

0.298(0.205-0.433)

1.029(1.017-1.042)

1.205(0.836-1737)

Hazard ratio

0.864(0.805-0.927)

0.298(0.205-0.433)

1.029(1.017-1.042)

1.205(0.836-1.737)

Hazard ratio

1.004(1.002-1.008)

0.298(0.206-0.433)

1.029(1.017-1.042)

1.205(0.836-1.737)

Hazard ratio

1.011(1.005-1.018)

0.298(0.205-0.433)

1.029(1.017-1.042)

1.205(0.836-1.737)

e —

(S S——

0.0

0.0

05 1.0
Hazard ratio

15

05 1.0
Hazard ratio

i

—_——

15

————t—

0.0

0.0

0.0

05 1.0
Hazard ratio

o e

05 1.0
Hazard ratio

i

e S

15

15

15

ADM

grade

age

gender

FABPS

grade

age

gender

PRLHR

grade

age

gender

sAA1

grade

age

gender

VEGFA

grede

gender

pvalue

0.627

<0.001

0.050

0.168

pualue

0.153

0.002

0138

0.114

pvalue

0.004

0.002

0.104

0.058

pvalue

0.048

<0.001

0.037

0.101

palue

0831

<0.001

0.052

0.120

Hazard ratio

0.997(0.985-1.009)

0.354(0.216-0.581)

1.015(1.000-1.030)

1.304(0.894-1.903)

Hazard ratio

1.007(0.998-1.016)

0.446(0.266-0.749)

1.012(0.996-1.027)

1.351(0.931-1.961)

Hazard ratio

0.908(0.851-0.969)

0.490(0.310-0.774)

1.012(0.998-1.027)

1.437(0.988-2.089)

Hazard ratio

1.002(1.000-1.004)

0.422(0.264-0.676)

1.016(1.001-1.031)

1.365(0.941-1.979)

Hazard ratio

1.001(0.992-1.010)

0.383(0.234-0.625)

1.015(1.000-1.029)

1.337(0.919-1.945)

0.0

0.0

05

10
Hazard ratio

B R

[T S—
05 1.0

Hazard ratio

15

0.0 05 1.0 15 20
Hazard ratio
.
H
H
'
'
H
H
'
-

'
'
'
H
'
'

[T —

0.0 05 1.0 15
Hazard ratio

H
-—
H
H
H
H
H

[ —

0.0 05 1.0 15

Hazard ratio





OEBPS/Text/toc.xhtml


  

    Table of Contents



    

		Cover



      		

        PRLHR Immune Genes Associated With Tumor Mutation Burden can be Used as Prognostic Markers in Patients With Gliomas

      

        		

          Introduction

        



        		

          Materials and Methods

        

          		

            Public Data Acquisition

          



          		

            Sample and Quantitative Real-Time Polymerase Chain Reaction Analysis

          



          		

            TMB Score Calculation, Prognosis Analysis, and Clinical Correlation Analysis

          



          		

            Differentially Expressed Genes

          



          		

            Immune Cellular Infiltration Estimates

          



          		

            Immune Related Genes

          



          		

            Construction of Cox Proportional Hazard Model

          



          		

            Independent Prognostic Analysis and Clinical Correlation Analysis of Prognostic Genes

          



          		

            Functional Enrichment Analysis

          



          		

            Statistical Analysis

          



        



        



        		

          Results

        

          		

            Analysis of Prognosis and the Clinical Correlation Between TMB and Patients With Glioma

          



          		

            Comparison of Gene Expression Profiles Between Low and High TMB Groups

          



          		

            Differential Abundance of Immune Cells in the Low and High TMB Groups

          



          		

            Five Immune Genes Related to the Prognosis of Gliomas

          



          		

            Analysis of the Clinical Correlation Between Five Prognostic Related Immune Genes and Glioma

          



          		

            CGGA and Independent Sample Verification

          



          		

            GO and KEGG

          



        



        



        		

          Discussion

        



        		

          Conclusion

        



        		

          Data Availability Statement

        



        		

          Ethics Statement

        



        		

          Author Contributions

        



        		

          Funding

        



        		

          Supplementary Material

        



        		

          References

        



      



      



    



  



OEBPS/Images/fonc.2022.620190_cover.jpg
, frontiers ‘ Frontiers in Oncology

PRLHR Immune Genes Associated
With Tumor Mutation Burden can
be Used as Prognostic Markers in

Patients With Gliomas





OEBPS/Images/crossmark.jpg
©

2

i

|





OEBPS/Images/fonc-12-620190-g005.jpg
A B Survival curve(p<0.001)
=] o
= —— High risk
—— Low risk
3 o |
S
o
ER =
=z
¥
2 <
- | a o
o
2
S
- = AUC of 3 year survival: 0.717 T T T T
2.4, —— 'AUC of 5 year survival: 0.726 ° 5 10 15
00 02 04 06 08 10 Time (year)
1-Specificity
c ADM level == high = low D FABPS level == high == low
1.00 56
5
]
8
2
5050
]
2
2
3025
@ <0.001
P p<0.001
0.00
000
0 1 2 3 45 6 7 8 9 1011 1213 14 15 16
Time(years) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time(years)
2 2
8 hign| 17712870 50 28 1913 © 6 3 3 3 2 2 1 1 1 3
= low{ 17712681 452921 1812 7 7 6 5 2 1 1 1 1 phen] 17712879 42 25 1711 6 3 2 2 2 1 1.0 00
) T 3 3 4 5 & 3 5 5 T B s e & 'w{17712881 533223201510 8 7 6 3 2 2 2 2
Time(years) < 0 1 2 3 4 5 6 7 68 9 1011 12 13 14 15 16
Time(years)
E SAAT level = high == low F VEGFA level == high == low
1.00 100
Zors
3
8
F]
2
4 0.50
T
&
S0z
@ p=0.003
000 000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 1 2 3 4 56 7 8 9 101 1213 14 15 16
Time(years) Time(years)
= ]
2 3
L high] 17713378 46 26 17 13 9 6 4 4 3 2 2 1 1 1 < highy 17713283 51 31 22 14 9 6 4 4 4 3 2 1 1 1
gluw 17712382 49 31 23 1812 7 6 5 5 2 1 1 1 1 & low] 17712477 44 26 18 17 12 7 6 5 4 1 1 1 1 1
) 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 g 0 12 34667 8 9 10111213 14 16 16
- Time(years)
G PRLHR lovol = high = low
1.00:
p<0.001
000
§ 1 2 35 356 7 6 6 foft1z1 141510
Time(years)
whioh] 177128180 47 27 21 18 12 7 5 5 4 2 2 2 2 2
T low{ 17712880 48 30 1913 9 6 5 4 4 2 1 0 0 0
z 0 1 2 3 45 6 7 8 9 101112 13 14 15 16

Time(years)





OEBPS/Images/table2.jpg
Characteristic

TCGA n = 354

CGGA n =278

Independent n = 71

Age, year

Gender
Male
Female
Grade
-l

-V

OS state
Alive
Dead

<=45y (183 51.69%)
> 45y (171,48.31%)
189 (53.38%)
165 (46.61%)

297 (83.89%)
57 (16.1%)

165 (46.61%)
189 (63.38%)

<=45y (173, 62.23%)
> 45y (105, 37.77%)
116 (41.72%)
162 (58.27%)

104 (37.41%)
174 (62.59%)

98 (35.25%)
180 (64.75%)

<=45y (33,46.48%)
> 45y (38, 53.52%)
34 (47.89%)

37 (52.11%)

30 (42.25%)
41 (67.75%)

49 (69.01%)
22 (30.99%)






OEBPS/Images/fonc-12-620190-g003.jpg
#M
\ H ‘“

A

ki’ wr w|

'[ H H

PCOHGB
SLC2AIEPS
LNCOIOT
MYOD1

Mg
HepPT
W
A
PSUERS
5

g

HR
ACI03701
RNTSKP28
RIS
el

Neuroaciive igand-receptor nteracon |

PI3K At signaling pahway <

Cytokine-cytokine receptor interaction+

Focal adhesion <

Cellcyce:

ECH-receptor interaction

Hematopoietic cel neage 1

Complement and coagulation cascades+

953 signalng patway 1

0.050 0075
GeneRatio

0100

lm
| 2o

| qualve

0005
00050

Count
L]
Y

Q0

B

extracellular structure organization:
extracellular matrix organization-

leukocyte migration-

‘embryonic organ development:

humoral immune response-

skeletal system morphogenesis:

cartlage development-

embryonic skeletal system development:
mitofic sister chromatid segregation
‘embryonic skeletal system morphogenesis

collagen-containing extracellular matrix-
endoplasmic reticulum lumen:

chromosomal region

condensed chromosome-

chromosome, centomeric region
kinetochore:

blood micropartice:

‘condensed chromosome, centromeric region
condensed chromosome kinetochore-

extracellular matrix component{

channel activity

passive ransmembrane transporter actvity
substrate-specific channel activity

ion gated channel activty-

gated channel actvity

extracelular matrix structural constituent:
glycosaminoglycan binding

heparin binding:

qrowth factor binding

neurotransmitter receptor activty-

ki
.

i
&

.

* H
3

.
002 004 006
GeneRatio
21
logFCp2





OEBPS/Images/table4.jpg
Gene

FABP5
VEGFA
SAAT
ADM
PRLHR

Coef

0.015307155
0.01391574
0.002459337
-0.018365366
-0.099662155

HR

1.01542491
1.014013015
1.002462363
0.98180225
0.905143164

P value

<0.001

0.003
<0.001
<0.001
<0.001





OEBPS/Images/table3.jpg
Gene

HR

HR.95L

HR.95H

coxPvalue

PI3
MMP9
LTF
FABP5
VEGFA
PLA2G2A
SAAT
SAA2
ADM
AREG
GDF10
NPPB
PRLHR
TRAV36DV7
TRDC

1.00277051565192
1.02122749891129
1.00060844267178
1.01884063827592
1.01124572728486
1.00486128892917
1.00393194187812
1.06948724207434
1.01309575802278
1.15228153362982
0.914163568928172
2.36004859792531
0.863557965961011
1.379826478417
1.01009889884043

1.00070938690889
1.00968426177984
1.00021957682276
1.01266789347514
1.0048390137748
1.00248020458543
1.00209007915377
1.03380613246787
1.00401048188133
1.00009117873219
0.863920066213302
1.14250502450986
0.804719804318929
1.08945823081344
1.00006235299744

1.00483588963512
1.03290270435057
1.00099745970425
1.02505100921122
1.01769328910736
1.00724802880869
1.00577718998506
1.10639986070631
1.02226324669493
1.32763168097079
0.978657211396111
4.8751027479802
0.926698158256296
1.74758522786055
1.02023617065532

0.00840217130095769
0.000292730264886043
0.00216209422991424
1.74465272373071e-09
0.000563430807949492
6.16319158733888e-05
2.80893024223731e-05
0.00010429614932004
0.00464327452818587
0.0498527220218426
0.00987378028301774
0.0203467392385079
4.61393863957881e-05
0.00756932250949694
0.0485865710437049






OEBPS/Images/fonc-12-620190-g007.jpg
>

Relative expression PRLHR =

Relative expression FRLAR

Relative expression of PRLHR —

2

ity
o
3
a

Survival probabil
o
&

0.00

high
low

PRLHR level

*hrx

-~

o]

Relative expression PRLHR

<=45y(n=183) >45y(n=171) female(n=165) male(n=189)
TCGA-age TCGA-gender
E
PRLHR level =& nigh = low
" 10
2
)
[
Q
g
- 05
[
2
4
3
(7]
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time(years) 0.0
0.0
139113 88 76 66 59 56 52 49 42 36 29 13 1 1 0
139 99 62 52 43 35 34 30 28 26 24 22 10 0 0 O
6 1 2 3 4 5 6 7 & & 10 11 12 13 14 15
Time(years)
CGGA
G
* ns
. .
’ .
.

v42

<=45y(n=173) >45y(n=105)
CGGA-age

0.5

0.0

<=45y(n=33)

>45y(n=38)

Independent-age

Relative expression PRLHR

female(n=116) male(n=162)

CGGA-gender

[

Relative expression of PRLHR

female(n=37)

male(n=34)

Independent-gender

0.5

Relative expression PRLHR

*rkk

LGG(n=297)  GBM(n=57)
TCGA-grade
== low-PRLHR
== high-PRLHR
1.0 15 20
time(years)
Independent
H

Relative expression PRLHR

Relative expression PRLHR

o

=3

o
o

o
=

S
o

HI(n=104)  M-Mn=174)
CGGA-grade

HI(n=30)

lll-IV(n=41)

Independent-grade





OEBPS/Images/logo.jpg
& frontiers | Frontiers in Oncology





OEBPS/Images/fonc-12-620190-g008.jpg
A neutrophil activation * B Alzheimer disease:
neutrophil mediated immunity . Huntington disease
neutrophil degranulation . Parkirison disease
neutrophil activation involved in immune response . Human papilomavirus infection
response {0 oxygen levels . 3 Shigelosis
response to decreased oxygen levels . Proteoglycans incancer
antigen processing and presentation . Focal adhesion
‘antigen processing and presentation of peptide antigen . Saimonela nfection
antigen processing and presentation of exogenous peptide antigen . . Human cylomegaloius nfection
antigen processing and presentation of exogenous antigen . aualve Eosten-Bart i ifecton
cell-substrate adherens junction . 506-07 Regulation of actin cytoskeleton
cell-substrate junction: . i Pathogenic Escherichia coli infection
focal adhesion . Phagosome:
cell leading edge . i Protein processing in endoplasic reticulum:
vesicle lumen . o 20608 Tuberculosis-
cytoplasmic vesice lumen . i Non-alcoholic aty iver disease (NAFLD)
postsynaptic specialization . Count Ribosome
glutamatergic synapse bl L. Oxidative phosphorylation
secretory granule lumen . o0 Toxoplasmosis-
ficoln=1-rich granule { o .o @ Fe gamma R-mediated phagocytosis
cell adhesion molecule binding | . ® 20 AGE-RAGE signaling pathway in diabetic complications:
actinbinding | A Bacterial invasion of epithelial cells
cadherin binding { . Leishmaniasis
GTP binding { . Glioma:
GTPase activity{ . = Pancreatic cancer
ubiquitin-ike protein ligase binding { . i Chronic myeloid leukemia
protein C-terminus binding . 53 signaling pathway.
integrin binding 1 . Viral myocarditis:
'SH3 domain binding { . Proteasome:
collagen binding{ + Vibrio cholerae infection:

001 002 003 004 005

GeneRatio

0.02

003

0.04
GeneRatio

0.05 0068 007





OEBPS/Images/fonc-12-620190-g002.jpg
Survival rate

0.1 02 03 04 05

0.0

T™B

TMB(p=0.657)

—— High TMB
—— Low TMB
T T T
10 15 20
Time (year)
gender
p=0.082

TMB

TMB

<=45 >45

GBM LGG






OEBPS/Images/table1.jpg
Gene symbol Low group High group logFC P value FDR
IGLV3-25 0.595280902 2.656306995 2157779376 2.75E-07 5.20E-07
FABP5 4.493339423 27.16374463 2.595822423 2.71E-38 3.84E-36
PI3 3.61878267 17.09016606 2.239590042 5.28E-20 2.95E-19
AREG 0.247854173 1.015805753 2.035061096 5.13E-15 1.79E-14
CAMP 0.084737702 0.623194362 2.878606276 7.86E-12 2.12E-11
IGHG4 0.763233722 45624695111 2.567623761 3.87E-15 1.36E-14
SAAT 4.901877373 38.0663075 2.957108334 1.55E-34 7.57E-33
LTF 16.30287517 105.648794 2.696077974 1.59E-30 3.81E-29
TRAV36DV7 0.099436409 0.400656279 2.010518986 1.37E-23 1.16E-22
PLA2G2A 1.851061719 25.36095834 3.776184359 4.64E-35 2.58E-33
NPPB 0.067783111 0.431452502 2.67020399 4.68E-05 7.38E-05
TRDC 0.942699545 6.519541447 2.789900559 8.53E-29 1.53E-27
ADM 3.826489992 15.40912532 2.00969144 1.71E-30 4.05E-29
IGHD 0.100028925 0.5642879429 2.440214577 2.74E-05 4.42E-05
PRLHR 4.782234971 0.742983801 -2.686282355 9.70E-44 9.14E-41
GDF10 4.539535808 1.084341077 -2.065726157 1.40E-33 5.83E-32
VEGFA 5.077718004 22.2783962 2.133393197 1.78E-32 5.90E-31
GRP 2.468911159 0.46263386 -2.415932157 6.59E-05 0.000102575
SAA2 0.420412631 2.788398825 2.729559005 3.52E-24 3.24E-23
MMP9 3.113564813 13.0472534 2.067106918 9.31E-30 1.96E-28
GLP1R 0.737232225 0.119682776 -2.622903593 6.18E-27 8.21E-26
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