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Gliomas are the most common primary malignant intracranial brain tumors. Their
proliferative and invasive behavior is controlled by various epigenetic mechanisms. 5-
hydroxymethylcytosine (5-hmC) is one of the epigenetic DNA modifications that employs
ten-eleven translocation (TET) enzymes to its oxidation. Previous studies demonstrated
altered expression of 5-hmC across gliomagenesis. However, its contribution to the
initiation and progression of human gliomas still remains unknown. To characterize the
expression profiles of 5-hmC and TET in human glioma samples we used the EpiJET 5-
hmC and 5-mC Analysis Kit, quantitative real-time PCR, and Western blot analysis. A
continuous decline of 5-hmC levels was observed in solid tissue across glioma grades.
However, in glioblastoma (GBM), we documented uncommon heterogeneity in 5-hmC
expression. Further analysis showed that the levels of TET proteins, but not their
transcripts, may influence the 5-hmC abundance in GBM. Early tumor-related
biomarkers may also be provided by the study of aberrant DNA hydroxymethylation in
the blood of glioma patients. Therefore, we explored the patterns of TET transcripts in
plasma samples and we found that their profiles were variously regulated, with significant
value for TET2. The results of our study confirmed that DNA hydroxymethylation is an
important mechanism involved in the pathogenesis of gliomas, with particular reference to
glioblastoma. Heterogeneity of 5-hmC and TET proteins expression across GBM may
provide novel insight into define subtype-specific patterns of hydroxymethylome, and thus
help to interpret the heterogeneous outcomes of patients with the same disease.

Keywords: epigenetics, 5-hydroxymethylcytosine, ten-eleven translocation enzymes, brain tumors, glioblastoma

INTRODUCTION

The vast majority (80%) of malignant brain tumors is represented by gliomas (1). They have been
classified by the World Health Organization into four grades, with Grade IV glioblastoma (GBM) as
the most aggressive form. From 2016 the WHO grading is based on histological and molecular
characteristics that are observed amongst various stages of gliomas (2). Many studies focused on
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genomic or transcriptomic profiles of human gliomas
demonstrated that although histologically similar, they constitute
distinct subtypes (3-5) that are associated with different survival
outcomes (6, 7). Therefore, systematic molecular analysis of
human gliomas is essential for their comprehensive
understanding. Aberrations in genes and molecular pathways,
include IDHI1/IDH2 and H3.1/H3.3 mutation or loss of TP53
tumor suppressor gene, can be used together with
histopathological findings for gliomas classification (8, 9).

However, dysregulation of epigenomes seems to be the
primary molecular mechanism involved in the pathogenesis of
human gliomas. Epigenetic alterations, such as modifications of
DNA (10, 11) and histones (12, 13), nucleosome remodeling (14,
15) and RNA-mediated silencing (16-18) are pointed out as a
source of gliomas phenotypic heterogeneity. DNA methylation is
the best-studied epigenetic change in this field (19-21), but some
reports revealed the existence of other modifications in
DNA methylome.

The ten-eleven translocation (TET) enzymes can alter DNA
methylation status by converting 5-methylcytosine (5-mC) to 5-
hydroxymethylcytosine (5-hmC), and later to 5-formylcytosine
(5-fC) and 5-carboxylcytosine (5-caC) (22). 5-hmC may act as a
transient intermediate in the process of 5-mC demethylation, as
well as, may epigenetically regulate gene expression. Several
reports found the relationship between 5-hmC level and
glioma grades (10, 23-26). However, 5-hmC modification and
its direct effect on gliomas biology need to be investigated.

Here, we picture the TET-dependent hydroxymethylation
patterns in human gliomas. Using solid tumor tissues samples
we demonstrate heterogeneity in 5-hmC expression across
glioblastoma which can provide novel insight into define
subtype-specific patterns of 5-hmC, and thus help to interpret
the heterogeneous outcomes of patients with the same disease.

MATERIALS AND METHODS

Clinical Samples

34 pairs of matched glioma tissues and blood samples were
collected during standard neurosurgical tumor removals at the
Department of Neurosurgery, Institute of Psychiatry and
Neurology (Warsaw, Poland). Additionally, five independent
random controls of blood samples were obtained from healthy
volunteers. All solid tissues were submerged in the stayRNA
solution (A&A Biotechnology) and stored at —80°C. Blood was
collected into EDTA-treated tubes and centrifuged at 3500 rpm
(MPW, Centrifuge MPW-350R, Rotor 1236B) for 10 min at 4°C.
Then supernatant (plasma) was immediately transferred into the
clean Eppendorf tubes and stored at —80°C.

5-hmC Quantification

The absolute level of 5-hmC in genomic DNA, previously
extracted from 34 glioma tissues, was estimated with the
EpiJET 5-hmC and 5-mC Analysis Kit (ThermoFisher
Scientific). Briefly, 100 ng of DNA was glucosylated by T4
phage B-glucosyltransferase (T4 BGT), followed by subsequent
digestion with Epi Mspl and Epi Hpall enzymes. Then the

percentage of cytosine modifications within CCGG sites was
determined by quantitative real-time PCR (qRT-PCR) with a
primer pair flanking recognition sequence. Primer sequences
were as follows:

primerl_forward 5'-CTGTCATGGTGACAAAGGCATC-3’,

primer2_reverse 5'-CAGGATTTCTCTATTATGAAGACCT
TG-3".

The experiment was run in triplicate and the amount of 5-
hmC was calculated as a percentage based on controls included
in the kit.

Quantitative Real-Time PCR

Following Chomczynski's protocol (27), total RNA of glioma
tissues was extracted by TRIzol Reagent (Life Technologies),
whereas Total RNA Mini Concentrator Kit (A&A
Biotechnology) was used for the extraction of RNA from
plasma samples. The concentration and purity of RNA samples
were assessed by measuring the 260/280 ratio of absorbance
values with the Synergy H4 spectrophotometer (BioTek). cDNA
was synthesized from 500 ng of RNA using random hexamers
and TaqMan Reverse Transcription Reagents (ThermoFisher
Scientific) according to the manufacturer's instructions.
Transcript levels of TET family genes were determined by the
quantitative real-time PCR using 5x HOT FirePolEvaGreen
qPCR Mix (Solis Biodyne) and primer sets for TET1, TET2,
TET3, and the housekeeping gene GAPDH. The primer
sequences are listed in Supplementary Table S1. All samples
were run in triplicate, and data were normalized to the
expression of GAPDH (28), according to the ACt method.
While the AACt method was applied for relative quantification
in blood samples.

Western Blot

Thirty-four human glioma tissues were homogenized with
TissueLyser LT homogenizer (Qiagen) in lysis buffer containing 2%
SDS, pH 6.8 and protease inhibitors (Sigma). According to the
protocol of Ericsson et al. (29), homogenates were incubated at
70°C and shaking at 1400 rpm (BioSan, Thermo-Shaker TS-100)
for 10 min and then centrifuged at 12000 rpm (Eppendorf, Centrifuge
5415R, Rotor F45-24-11) for 5 min. The concentration of protein
extracts was determined with the Bradford protein assay (Sigma). 15
pug of each protein sample was separated with 7% SDS-
polyacrylamide gels and transferred onto nitrocellulose membranes
using the Bio-Rad MINI Protean system. Immunoblotting with
primary antibodies against TET1, TET2, TET3 (1:3000,
ThermoFisher Scientific) and GAPDH (1:5000, Millipore) was
performed overnight at 4°C, whereas secondary antibodies (a-
mouse and a-rabbit, Vector) diluted 1:10000 were incubated with
the membranes for one hour at room temperature. Blots were
visualized with the WesternBright Quantum detection system
(Advansta) on the UVITEC Cambridge scanner. Densitometry
analysis was conducted using GelAnalyzer 2010 software.

Statistical Analysis

GraphPad Prism 7.02 software was used to analyze the data.
Statistical significance of differences between groups was
determined by One-way ANOVA or nonparametric Kruskal-
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Wallis tests followed by post hoc Tukey or Dunn analysis, as well
as with Mann-Whitney U test (*p < 0.05, **p < 0.01, **p <
0.001). The results are presented as the mean + standard
deviation of the mean (SD).

RESULTS

Global Changes in 5-hmC Abundance

in Gliomas

So far, decreased 5-hmC levels have been presented in a variety of
tumors (30-32), suggesting that the loss of 5-hmC may be
considered as an epigenetic hallmark of the disease. To
evaluate the global changes in 5-hmC abundance in human
brain tumors, we selected DNA of 34 glioma samples represented
by different WHO grades and analyzed them with EpiJET 5-hmC
and 5-mC Analysis Kit and quantitative real-time PCR. Clinical
and epigenetic characteristics of glioma samples are shown
in Table 1.

As can be seen in Figure 1 and Table 1, gliomagenesis has
generated the changes of DNA hydroxymethylation. The 5-
hmC expression correlated negatively with WHO grading,
ranged from 8.2% in Grade II gliomas to 3.0% in Grade IV-
lows pmc GBM. Significant differences were observed between
Grades II and III (p < 0.01), as well as Grades II and IV-lows.
hmc (p < 0.01). While we observed a decreasing trend in 5-hmC
expression with a higher tumor stage, we documented a strong
elevation in 5-hmC level in around 30% of Grades IV GBM
(Grade IV-highs ,,c). In this study group, the 5-hmC level was
20% and was significantly higher than in Grade IV-lows ¢
samples (3%, p < 0.001). To our knowledge, this is one of the

few reports describing high variability in 5-hmC abundance at
the tumor mass (10, 24). To clarify observed diversity, the
GBMs samples were categorized according to their IDHI, and
developmental status. The results had not revealed molecular
differences between both categories in this scope. A great
majority of samples (95%) were primary glioblastomas, while
all of them demonstrated the absence of mutation in
IDH]I gene.

Recognized differences might be a consequence of alterations
in the expression of TET enzymes that catalyze the conversion of
5-mC to 5-hmC.

TET Expression in Gliomas

To define the impact of TET enzymes on changes in DNA
hydroxymethylation, we analyzed their expression at the gene
and protein levels in solid tumor tissues. Quantitative real-time
PCR was performed to examine the mRNA expression of TET
family genes (TET1, TET2, and TET3) in 34 samples, including 6
Grade II gliomas, 7 Grade III gliomas and 21 Grade IV GBM. We
found that the relative mRNA levels of all three TET genes were
strongly reduced during glioma grades (Figures 2A, C, E). Their
downregulation was significantly higher in Grade IV GBM in
comparison with Grade II gliomas (TETI and TET3 p < 0.001,
TET2 p <0.01) and Grade III gliomas (TET1 p < 0.001, TET2 and
TET3 p < 0.01). As the decline in TET mRNA was associated
with glioma grades and 5-hmC expression, we determined the
levels of TET transcripts in two groups with high variability in
total 5-hmC abundance across GBM (Grade IV-lows ¢ and
Grade IV-highs ¢, Figure 1). There were no significant
differences in TET1 (p = 0.1322), TET2 (p = 0.2434) and TET3
(p = 0.8208) mRNA levels between glioblastoma Grade IV-lows_

TABLE 1 | Characteristics of glioma patients.

Total cases = 34

WHO grade 1] 1] IV-Iow 5.hmc IV-high 5.hmc
Number of patients 6 15 6
Age at diagnosis (years)

Mean 39.3 41.4 65.9 63.2
Range 24 -54 26 - 59 53 -77 52-77
Gender

Male/Female 3/3 4/3 9/6 3/3
Hemisphere

Left/Right 1/5 4/3 8/7 1/5
Location

Frontal 2 2 5 -
Temporal 3 5 4 4
Pariental 1 - 2 -
Occipital - - 4 2
Tumor status

Primary/Recurrent 51 6/1 15/0 5/1
IDH1 status

IDH1 wild-type 6 6 15 6
IDH1 mutant 0 1 (R132G) 0 0
5-hmC (%) 8.2 3.5 3.0 20.0
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FIGURE 1 | Global 5-hmC abundance (%) in gliomas. Increasing WHO
grades of glioma are associated with a continuous decline in 5-hmC
levels, except for glioblastoma (IV-lows_nmc and IV-highs_nmc). Differences
among group means were evaluated by one-way ANOVA test (**p < 0.01,
***p < 0.001).

nmc and Grade IV-highs ¢ (Figures 2B, D, F). Next, we
evaluated the levels of TET proteins in the same samples by
Western blot. Expression levels of each TET proteins are shown
in Supplementary Table S2. Immunoblotting revealed the
absence of TET1 isoform at 235 kDa, which is mainly detected
in embryonic stem cells. But, two additional bands at 162 kDa
and 150 kDa were found in the majority of instances. TET2 and
TET3 isoforms were discovered at 224 and 194 kDa, respectively
(Figure 3A). As in the case of TET transcripts expression
(Figures 2A, C, E), levels of TET proteins were negatively
associated with advanced stages of gliomas. From Grade II
gliomas to Grade IV GBM, we noticed 2-, 4- and 6-fold
reduction in TET1162 and 150 kDa> TET2224 kDa and TET3194 kDa
levels, respectively. Interestingly, in Grade IV samples, we
observed high variability in TET isoforms expression pattern,
which could affect 5-hmC abundance. Quantification of
normalized values showed significant differences in TET1,6,
and 150 kpa (P < 0.01, p < 0.05), TET2554 wpa (p < 0.001) and
TET3104 kpa (p < 0.05) protein levels between GBM Grade IV-
lows pmc and Grade IV-highs ¢ (Figures 3B-E). These
findings suggested the potential role of TET proteins patterns
in setting the 5-hmC level in Grade IV glioblastoma.

TET Transcripts Profiling in

Plasma Samples

The prospect of distinguishing the aberrant DNA
hydroxymethylation in the blood of glioma patients may
indicate a powerful tool for early cancer detection or
monitoring its progress. To explore the potential diagnostic
features of TET transcripts profiling, we performed the
quantitative real-time PCR on 34 plasma samples obtained

from patients with Grade II or IIT or IV gliomas, and 5 healthy
controls. Expression of TET genes was observed in the
majority of examined samples, followed by specific numbers
for TET1 (control: 80% vs. Grade: 11-83%, III-57%, IV-70%),
TET2 (control: 80% vs. Grade: 11-83%, III-71%, IV-91%) and
TET3 (control: 80% vs. Grade: II-50%, III-86%, IV-91%)
transcript. Our results confirmed that the employed method
was sensitive to low-input mRNA presented in plasma samples.
The further analysis evaluated the relative mRNA levels of TET
genes in plasma samples obtaining from patients with different
WHO grades gliomas and compared them to healthy controls
(Figures 4A-C). The results displayed various profiles for each
transcript. While TETI characterized slightly lower expression
than control, TET3 was similar to control values. The expression
of both transcripts was unaffected by WHO grading
(Figures 4A, C). Whereas, the level of TET2 was significantly
increased in plasma samples derived from patients with Grade II
gliomas compared to controls (p < 0.01, Figure 4B). Validation
of our preliminary results in a larger population of patients is
needed to evaluate their use as potential biomarkers for early-
stage gliomas diagnostics.

DISCUSSION

Currently, the molecular landscape of brain tumors is described
by epigenetic mechanisms include DNA methylation and
hydroxymethylation (10, 11), histone modifications (12, 13),
nucleosome remodeling (14, 15) and RNA-mediated silencing
(16-18), that may clarify their etiologic evolution. Recently
rediscovered, oxidized form of 5-methylcytosine (5-hmC) may
act as a transient intermediate in the process of 5-mC
demethylation or may epigenetically mark the cellular state
itself with different biological roles.

In the present study, we characterize the epigenetic profile of
DNA hydroxymethylation in human gliomas. Decreased level of 5-
hmC was observed in glioma patients compared to healthy controls
(33-35), but also it was related to glioma grades (10, 23-26). Our
results confirm that the loss of 5-hmC is a hallmark of high-grade
gliomas. However, we documented a significant increase of global 5-
hmC abundance in almost a third of Grades IV GBM. This is one of
the few findings that demonstrated heterogeneity in 5-hmC
expression across the bulk of the glioblastoma (10, 24). According
to recent research, the intra-tumoral diversity of 5-hmC levels
among single GBM cells, that represent the proliferative, stem-like
and tumorigenic states, could clarify unexpected results (36). But,
dysregulation of TET enzymes function may be a possible biological
explanation for the observed variability as well. The influence of
TETs, including their genetic alterations and subcellular
localization, on 5-hmC status in glioma cells, was described by
several studies (23-25, 37, 38). Recently, epigenetic repression of
histone marks (H4K16ac, H3K4me3, H3K9ac, H3K36me3,
H3K4mel, H3K27ac) in TET3 gene has been postulated as a
driver of glioblastoma development via genome-wide alteration of
5-hmC (39). Generally, it is believed that the decline in TET genes
expression causes a widespread reduction of 5-hmC and poorer
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FIGURE 2 | Quantitation of TET transcripts in gliomas. gRT-PCR analysis of TET mRNA (A-F). The expression of TET1 (A), TET2 (C), TET3 (E) mRNA significantly
decreased at a higher WHO grade of glioma. Differences among group means were evaluated by one-way ANOVA test (*p < 0.01, **p < 0.001). High variability in
5-hmC abundance across glioblastoma (Grade IV-lows_nmc and Grade IV-highs-nmc) was not linked with levels of TETT (B), TET2 (D), TET3 (F) transcripts.

prognosis in glioma patients. We found that TET1, TET2, TET3
mRNA, and 5-hmC levels were decreased during glioma grades.
However, similarly to Jin and Glowacka results (40, 41), there was
no correlation between expression of TET transcripts and variability
in 5-hmC abundance across the bulk of the glioblastoma. To define
the complete impact of TETs on changes in DNA
hydroxymethylation, we evaluated their protein levels in the same
samples. Proteins produced by the TET2 and TET3 isoforms were
expressed as expected bands at 224 kDa and 194 kDa. Instead of the

235 kDa canonical TET1 protein, we found two short isoforms (162
kDa and ~150 kDa). According to previous reports, they are
exclusively activated from an alternate promoter in somatic
cancer cells (42, 43). The levels of TET proteins, just as TET
transcripts, were negatively associated with high-grade gliomas.
However, Grade IV GBM samples were more variable in this
field. Significant heterogeneity in the expression of TET2 protein
in glioblastoma was also noted by Briand (44). We furthermore
pointed out the relation between variable levels of TET proteins and
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High variability in protein levels of TET1 (B, C), TET2 (D) and TET3 (E) correlated with 5-hmC abundance across glioblastoma (Grade IV-lows_nmc and Grade IV-
highs.nmc). Differences between two groups were evaluated by Mann-Whitney U test ("p < 0.05, **p < 0.01, **p < 0.001).

5-hmC abundance across glioblastoma. Our findings suggest that
the regulation of TET transcription and translation can be made in a
different way. For example, this observed imbalance may be a result
of different actions of transcription factors, RNA binding proteins,
miRNAs targeting mRNA or post-translational modifications (like
phosphorylation, acetylation, glycosylation, etc.). Based on the
patient-derived glioma stem cells (GSCs) model, the transcription
factor (SOX2)-oncomiR (miR-10b-5p)-TET2 axis was identified,
which plays an important role in promoting GBM oncogenesis (45).

However, it is one of many potential mechanisms involved in
glioblastoma growth.

In summary, we demonstrated that expression patterns of
TET proteins and the 5-hmC abundance are changed in Grade
IV GBM, but the molecular mechanism of this process still needs
to be clarified.

Recently, many studies on gliomas indicated the presence of
circulating cell-free coding and non-coding nucleic acids in
blood or other biofluid samples (46-48). Therefore, liquid
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biopsy has become a new diagnostic tool that may establish and
track the stage of cancer with particular biomarkers. Cai’s group,
for example, has developed a noninvasive 5-hmC detection
method in circulating cell-free DNA of glioma patients, which
was able to distinguish the difference between GBM and lower-
grade gliomas regardless of IDHI mutation status (49). Here, we
explore the potential diagnostic features of TET transcripts in
plasma samples obtained from patients with gliomas. All three
TET transcripts were detected in plasma, but their profiles
differed from those in solid tissue. We showed that the plasma
relative mRNA level for TET1 was decreased in every stage of
glioma, while the TET3 level remained unchanged. The most

promising results were provided by TET2 gene that was
significantly increased in Grade II glioma. Validation of our
preliminary results in a larger population of patients is needed to
evaluate their use as potential biomarkers for glioma diagnostics.

To conclude, we found that global abundance of 5-hmC was
negatively correlated with glioma WHO grades and variable
across the bulk of the glioblastoma. It was followed by various
TET proteins patterns in solid tumor tissues. In contrast, profiles
of TET transcripts in plasma samples displayed its heterogeneity.
However, significant overexpression of TET2 in Grade II gliomas
might ofter a new tool for effective diagnosis of lower-grade
glioma patients. Our findings provide novel information about
the potential role of TET epigenetic regulation in human
gliomas, with particular reference to glioblastoma.
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