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The CHAIMELEON project aims to set up a pan-European repository of health imaging
data, tools and methodologies, with the ambition to set a standard and provide resources
for future AI experimentation for cancer management. The project is a 4 year long, EU-
funded project tackling some of the most ambitious research in the fields of biomedical
imaging, artificial intelligence and cancer treatment, addressing the four types of cancer
that currently have the highest prevalence worldwide: lung, breast, prostate and
colorectal. To allow this, clinical partners and external collaborators will populate the
repository with multimodality (MR, CT, PET/CT) imaging and related clinical data.
Subsequently, AI developers will enable a multimodal analytical data engine facilitating
the interpretation, extraction and exploitation of the information stored at the repository.
The development and implementation of AI-powered pipelines will enable advancement
towards automating data deidentification, curation, annotation, integrity securing and
image harmonization. By the end of the project, the usability and performance of the
repository as a tool fostering AI experimentation will be technically validated, including a
validation subphase by world-class European AI developers, participating in Open
Challenges to the AI Community. Upon successful validation of the repository, a set of
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selected AI tools will undergo early in-silico validation in observational clinical studies
coordinated by leading experts in the partner hospitals. Tool performance will be
assessed, including external independent validation on hallmark clinical decisions in
response to some of the currently most important clinical end points in cancer. The
project brings together a consortium of 18 European partners including hospitals,
universities, R&D centers and private research companies, constituting an ecosystem
of infrastructures, biobanks, AI/in-silico experimentation and cloud computing
technologies in oncology.
Keywords: radiology, artificial intelligence-AI, cancer imaging, cancer management, quantitative imaging
biomarkers, image harmonization
INTRODUCTION

The use of Artificial Intelligence (AI) on health data is generating
promising tools to assist clinicians in cancer management, as an
increasing number of health imaging-based AI approaches are
proving to have vast potential to become useful clinical tools in
different areas of application (1). These include recurrence and
survival prediction using multidimensional heterogeneous data
(2) prediction of tumor molecular features and association with
tumor spread (3, 4), stratification of patients based on risk (5),
and prediction of treatment response (6) among many others.

Despite these major advancements, the development of
imaging-based AI tools relies on the availability of large, quality-
controlled datasets (7), which currently still remains a major
challenge. The generation of these imaging biobanks is a
resource-intensive endeavor, facing multiple technical and
operational difficulties such as image and data harmonization,
data curation and annotation, image pre-processing and
annotation, as well as various legal and ethical restrictions (8–13).
As a result, the quantity, quality, and representativeness of datasets
still remain major limiting factors in the development of predictive
cancer management tools.

Despite these limitations, several health imaging repositories
have been created to date (14–16), such as the Cancer Imaging
Archive (TCIA) which is one of the most renowned amongst
those focusing on cancer imaging (17). Albeit of huge potential,
the vast majority of these repositories have been created as stand-
alone entities, being currently not in a position to become
interoperable with similar existing initiatives. As such, the need
for the creation of a fully FAIR (Findable, Accessible,
Interoperable, Reusable), GDPR compliant, European imaging
repository still stands (18).

To address the lack of data availability as well as the
interoperability limitation of currently existing initiatives, the
CHAIMELEON project aims to set-up and populate a cancer
imaging repository facilitating access to large, high-quality sets of
anonymized data. This will be achieved through the creation of a
distributed data repository that will be made interoperable with
other existing repositories and biobanks, enabling secure share
and reuse of data as an intuitive sustainable single-access point
resource for the community of developers working on AI-
powered cancer management solutions. The repository will use
2

a controlled access policy, whereby registered users will have
access to datasets upon acceptance of the terms and conditions of
use. These conditions, albeit still under definition by the
governance bodies, will include the contracting of non-
identification commitments as well as others related to the
purpose of use of the data. Since imaging datasets contain
images acquired at different centers with different scanners
(cross-vendor/cross-institution datasets), quantitative image
features, parameters, values and ranges extracted from images
acquired at one center may not be reproducible from once center
to another. This is due to a lack of consistency of medical images,
as they generate from different equipment vendors, models and
software versions. To ensure the reproducibility of quantitative
imaging biomarkers (QIB) and allow scientific reuse of
retrospective imaging data from multicenter acquisitions,
CHAIMELEON has set the development and testing of
imaging data harmonization protocols as one of its main
objectives. Different harmonization approaches have been
proposed, including a disruptive one for the generation of
synthetic images adjusted to a common harmonization
framework, ensuring that the authenticity and integrity of each
synthetic coherent image is properly secured.

The project will involve the setup of the IT infrastructure, the
creation of protocols for legal compliance, the development of
tools for agile data ingestion and curation and processing
pipelines for imaging data annotation and harmonization, as
well as methodologies and tools for enhanced interpretability of
AI models among others. Since the repository will be targeted to
AI developers as end-users, it will not be designed as a simple
data warehouse but as a complete AI-powered solution that will
provide integrated quality data. To do so, AI-powered pipelines
for data annotation, multicentric data harmonization, integrity
securing of synthetic AI-generated images and clinical decision
prediction will be implemented, aiming to enhance the
interpretability of the tested AI models. An overview of the
project execution steps is summarized in Figure 1.

Ethics, integrity and compliance with data protection
regulatory frameworks will be integral and critical to the
project, guaranteeing regulatory compliance in all aspects of
the work performed both at the technical and clinical level. To
ensure this, all project actions will be carefully guided and
supervised by legal experts on data privacy.
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FIGURE 1 | Project overview.
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The successful execution of this project will make multiple
resources available to the research community. These will
include data infrastructures, legal protocols, new AI models
and tools, and methodologies for performance validation and
enhanced interpretability of AI solutions. All these resources will
be ultimately validated in the context of lung, breast, colorectal
and prostate cancer. Given that these are such complex and
heterogeneous diseases, this will allow to demonstrate the
versatility and scalability of the repository and tools across a
range of heterogeneous cancer applications. The final aim is to
design the repository as a transversal resource with the required
versatility and scalability to incorporate data for other types of
cancer and imaging modalities in the near future.
MATERIALS AND METHODS

Project Consortium
To bring this project to fruition, an interdisciplinary consortium
was recruited, bringing together experts in the fields of IT
systems, automated health data management, data privacy and
legal compliance, and researchers with experience in the design,
set-up and management of imaging repositories and radiomic
features. The CHAIMELEON consortium involves 18 partners
from 9 European countries (Spain, Germany, France, Austria,
United Kingdom, Israel, Italy, The Netherlands and Portugal)
constituting a pan-European ecosystem of knowledge,
infrastructures, biobanks and technologies in oncology, AI/In-
silico experimentation and cloud computing. The partner
institutions include 9 hospitals, 3 universities, and 6 R&D
centers and private companies. An advisory board consisting
of a recognized group of experts in the fields of oncology and AI
applied to cancer management has been designated to give
general advice and guidance to the consortium.

Project Timeline and Management Strategy
The CHAIMELEON project is a 4-year long, EU funded project
that started in September 2020 and will finalize in August 2024.
Currently in its second year of execution, the project results
Frontiers in Oncology | www.frontiersin.org 4
already include a first complete version of the repository design,
a selected set of standards to be used to ensure the repository’s
interoperability and the first proposal for its legal operating
model among others. To ensure its correct implementation, the
project has set 13 different milestones to be met over its entire
duration. A final, populated version of the repository is expected
to be available to the public on project month 34 (June 2023). A
summary of relevant project milestones indicating dataset
availability of the repository can be found in Table 1.

Distributed Architecture and IT
Infrastructure of the Repository
To facilitate its scalability and promote cooperative work with the
rest of the scientific community, the repository is cloud-based and
built upon open standards. Likewise, the use of free, open-access
services has been prioritized, to keep maintenance and running
costs to a minimum while implementing a robust software
infrastructure. In particular, CHAIMELEON uses European
Open Science Cloud (EOSC) services to join the projects
currently contributing to this initiative. Table 2 summarizes
CHAIMELEON’s main design and infrastructure features.

The CHAIMELEON repository architecture has been set as a
hybrid type of architecture whereby local data warehouses and
tools deployed within hospitals streamline the process of data
collection and curation, while a central repository allows (1)
management and annotation of anonymized data (2) AI model
training, and (3) use of data processing pipelines. Local tools
deployed at hospitals are being built on the Medexprim Suite™

framework to allow cohort selection, image extraction, collection,
extraction and mapping of clinical data, as well as data curation,
quality control, anonymization and transfer to the central
repository (Figure 2). This set of tools is currently undergoing
constant customization in order to adjust to the specific IT
environment of each data provider site.

The storage and processing platform (central repository) uses
a set of horizontal technologies that enable the distributed
storage of medical images and associated clinical data, along
with a processing environment where different applications can
run. In particular, the storage has been implemented through
TABLE 1 | Project milestones.

Milestone
ID

Description Due date
(months)

M1 Initial repository design available for regulatory clearance. Repository’s legal operational model established. 12
M2 Start of data collection at data provider sites, with clearance for data to be incorporated into the CHAIMELEON repository. 13
M3 Completion of the repository design phase and the verification of the repository’s compliance with GDPR. 18
M4 First repository prototype released, fully interfaced with data provider sites 24
M5 Start of the repository’s technical validation phase Stage 1 – Internal by project partners 30
M6 Start of the repository’s technical validation phase Stage 2 – External validation via open challenges to the AI community 31
M7 End of the repository’s technical validation phase Stage 1 – Internal validation completed and documented 34
M8 Execution of the repository’s technical validation phase Stage 2 – External validation via open challenges 34
M9 Start of the repository’s data expansion stage – addition of new datasets provided by external collaborators. Legal clearance and IT

interfacing with selected centers.
37

M10 End of the repository’s technical validation phase Stage 2 – External validation via open challenges 38
M11 Start of the clinical validation phase - observational studies for AI-based solutions developed/refined using the repository start 41
M12 End of the clinical validation phase 46
M13 Assessment of observational studies finalized. 48
February 2022 | Volume 12 | Ar
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CEPH (19) running on an on-premise cloud infrastructure
implemented through OpenStack (20). The application and
services run embedded on Docker (21) containers orchestrated
by a Kubernetes (22) platform. Images are stored as DICOM files
on a filesystem hierarchy, using access control lists to manage
authorization. Clinical data is stored on a Mongo DB (23)
through standardized e-forms and authentication is based on
OpenID (24). A set of services has been developed to map access
permissions, mount selected data on virtual workstation consoles
and persist access and data processing actions on a Blockchain
Frontiers in Oncology | www.frontiersin.org 5
registry. Some data processing applications including one for
image harmonization are currently being developed by project
partners as one of the main challenges to this project. The overall
platform architecture and list of processing applications is
illustrated in Figure 3. In line with making the repository data
FAIR, data ingestion processes ensure the incorporation of
relevant information and make sure datasets are searchable by
different criteria such as type of disease, imaging modality, or
patient´s gender and age. Registered users (data requesters
adhering to the data usage policy/license) will have on-line,
A

B

FIGURE 2 | Distributed architecture and IT infrastructure. (A) and (B) refer to two different types of hospitals based on their capacity to curate, complete, and anonymize data prior
to their ingestion into the central repository. (A) Data processing is done on site. (B) Data processing is done via an intermediation platform.
TABLE 2 | Summary of CHAIMELEON’s main design and infrastructure features.

Feature Description

Distributed
infrastructure

In the first phase of the project, data will be centralized, after it has been collected, curated and anonymized by a set of tools deployed locally. In the
second phase of the project, we will explore a distributed architecture, where the architecture will be composed of a central index and multiple
physical repositories (local indexes), which may be either regional, national or hospital-based data warehouses connected to the hospital’s PACS and
EHR/RIS. Repositories will be connected using encrypted communications and standards for interoperability, such as DICOM-TLS or DICOM web.
Federated Learning approaches and distributed data exploration solutions will be explored.

Single-entry
point for pan-
European users

CHAIMELEON will be designed to facilitate AI developers access to any relevant curated datasets, independently of their origin.

Publicly
available, upon
user registration

The registration process will include requirements for the researchers to sign acceptance of the conditions of use and access to the data. These will
include commitments related to the purposes of data use and contracting of non-identification commitments.

Types of roles Different entities and physical persons under different roles will be key parties to the repository, including data providers, entities providing
infrastructure or services (primary data users), and researchers willing to access data for research purposes (data users). Roles will be carefully
defined and assigned the applicable rights and obligations.

Powered with
automatic tools,
human refined

The latest machine learning advancements on data ingestion, curation, quality control, annotation, segmentation and harmonization will be
incorporated into CHAIMELEON. During the project execution, extensive human resources will be devoted to the supervision and refinement of the
automation tools. As technologies evolve, the repository will steadily progress towards less human supervision and more automated processes.

Pseudonymized
and anonymized
data

The Repository will have two levels of de-identification. The first one will be pseudonymization at local premises, in order to preserve traceability and
enable potential linkage to other biobanks (e.g., Pathological or genetic). The second, at the central repository level, will be complete anonymization,
meaning the data will no longer be identifiable, even indirectly.
February 2022 | Volume 12 | Article 742701
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controlled access to anonymized data only. Accessibility to
pseudonymized data, on the other hand, will be limited to
authorized repository managers locally in order to enable
linkage to other related biobanks and the use of standards for
metadata exchange and annotation. Data usage policies and
licenses are currently being defined for users to commit to the
reuse data for research purposes mainly.

The repository design has been built under the principles of
legal compliance and privacy and security by design and by
default. To do so, the consortium’s data protection officer has
performed a risk analysis and data protection impact assessment,
identifying security, ethics, and regulatory compliance risks, as
well as those associated with the re-identification of patients and
the potential impact of the use of AI.

The long-term sustainability of the repository is being
promoted by design, as it is being established as a controlled
access cloud-based repository hosting reusable methodologies
and protocols which will be interoperable with similar existing
initiatives. Other means for the continuity of the repository will
be assessed over the project lifetime, including creating synergies
with new repositories and biobanks and incorporating data for
other types of cancer and imaging modalities. Methodologies and
protocols, including image processing tools, automatic
Frontiers in Oncology | www.frontiersin.org 6
annotation pipelines, and tools promoting interpretability of
the AI models will be made available for reuse by similar
research initiatives in the health imaging community.

Repository Population and Image
Harmonization Strategies
The data to be made accessible in the repository will include
imaging data (complete radiological studies for a given case) in
DICOM format, linked to the correspondent e-form including
relevant clinical features on the patient´s profile (age, gender,
ethnicity, symptoms, comorbidities, etc.), tumor data
(pathological, molecular and genetic), treatment details
and outcome.

These data will be provided by the clinical partner institutions
in the consortium which will populate the repository with
retrospective cases during the project lifetime over two data
recruitment periods. All cases will correspond to real world data,
meaning the study subjects will be patients diagnosed in the
participant hospitals for the 4 targeted types of cancer, collected
through the routine delivery of healthcare with no enrolment
conditions. Local imaging protocols will be used all over the data
recruitment period. All cases included will be fully closed cases,
that is, those for which all the required data, as specified in the
FIGURE 3 | High-level architecture of the central repository and technologies used.
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project requirements, are already available for a given patient.
More specifically, both clinical and imaging data will be collected
over the period comprised between the date of diagnosis and a 12
or 24 month follow up, depending on the type of cancer.

It is estimated that de-identified medical imaging data and
related clinical data for a total of 11.500 cases of lung cancer,
6.000 of breast cancer, 6.000 of colorectal cancer and 10.000 of
prostate cancer approximately will be accessible from the
repository. Table 3 shows a summary of the type of data
expected to be accessible in CHAIMELEON per type of cancer.

To further accelerate the Repository´s population and to
evidence its scalability and adaptability, during project Stage 2
(years 3 and 4) external collaborator hospitals from 5 additional
countries will join the data provision efforts. These independent
cases will be used for the external validation of the AI tools within
the repository architecture. With both internal and external cases
incorporated, the total size forecasted for the repository by project
end is of nearly 40.000 cases, corresponding to approximately 20
million images (25).

To address the data inhomogeneity derived from the multiple
sources the images will originate from, computational data
harmonization methods such as self-supervised learning and
GAN based models will be developed, in an aim to merge the
data from the different sources into a single coherent data set by
modifyingdata formats, terminologies, andmeasurement units (12,
13, 26). The project will consider reusing the results of the Imaging
Biomarker Standardisation Initiative (27). Computational data
harmonization methods, such as ComBat including its variations
(BM-ComBat and QN-ComBat), and Distance-Weighted
Discrimination, will also be explored (11).

Lastly, and so as to ensure that CHAIMELEON will offer only
high-quality datasets, a data submission process will be
implemented, involving the performance of quality assurance tests
and the assignment of data set quality scores upon data submission
onto the central repository. A detailed description of the quality
check process is described in the Supplementary Material.
Data Models and FAIR Principles
CHAIMELEON’s approach to image metadata is oriented at
enabling data interoperability following FAIR data principles. As
such, the data model to be implemented will refer to the current
DICOM-MIABIS joint model (28), which proposes a first
integration of the international DICOM standards into the
MIABIS (Minimum Information About Biobank Data Sharing)
Frontiers in Oncology | www.frontiersin.org 7
core model. While MIABIS aims to standardize data elements
used to describe biobanks and samples, the DICOM fields will be
used to describe heterogeneous information across datasets, such
as imaging protocols, modalities, sequences, scanners, and labels.
Complete DICOM information (excluding patient information)
will be available for further description of imaging collections.
Therefore, the model will provide for the inclusion of metadata
relating to the acquisition parameters, MRI and CT. Pseudo-
anonymization processes, where applicable, will be programmed
for the conservation of essential metadata such as patient
preparation protocol. In this manner, this project further
highlights the current need of datasheets for datasets (29)

Regarding the Common Data Model (CDM) to be used for
clinical data across clinical centers, the use of the OMOP
(Observational Medical Outcomes Partnership) CDM (30) was
agreed upon, which is based on standard ontologies such as
SNOMED CT] (31) or ICD-10 (32). As such, the local clinical
data warehouse deployed at each hospital is built using the
OMOP CDM, and the set of necessary clinical variable terms
to collect has been standardized according to this standard. As of
project month 16, a total of 930 terms (97%) have been
successfully adapted to match the standard vocabularies with
currently available concepts. The CHAIMELEON project is
committed to contributing to the evolution of standards rather
than developing proprietary formats. For this reason, an upgrade
of the OMOP CDM has been suggested to include the 24
remaining terms (3%) given their relevance in current
clinical practice.

As curated, annotated, and enriched datasets are being
constituted, the MIABIS model will be used to label these
collections and promote their reuse. Findability, on the other
hand, will be provided through the use of persistent identifiers
that will be assigned to the datasets and persisted on the
Blockchain. Accessibility will be ensured through the use of an
open Application Programming Interface (API) to query the
dataset service. Reusability will then be enhanced by the
provision of virtual processing environments.
Development of AI Tools for Cancer
Management
The project will contribute to the development, refining, testing
and early clinical validation of AI tools targeted to reproducibly
assist clinicians in the precise estimation of some of the currently
most relevant Clinical End Points (CEPs) in cancer (Table 4) (33).
TABLE 3 | Types of datasets to be accessible from the CHAIMELEON repository.

Type of cancer Imaging Data Estimated number of cases

Training phase Validation phase

Lung cancer CT/PET/CT 7000 4500
Breast cancer Mammography, Digital breast tomosynthesis, Ultrasound and MRI 3500 2500
Colorectal cancer
Colon CT 2334 1667
Rectum MRI 1167 833

Prostate cancer MRI 6000 4000
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The tools include image preparation and harmonization, tissue
segmentation, radiomics data extraction, treatment allocation and
prognosis prediction (7, 34–37). Once these are tested, Open
Challenges will be organized promoting other world-class
developers to use CHAIMELEON resources to train their
own models.

This project will follow a methodological approach of
continuous learning, allowing a smooth update of the models
including new data annotations and training to progressively
improve performance over time. It is expected that this
continuous learning will provide the repository infrastructure
with large scalability in terms of algorithm performance and
management of datasets.

Although many AI models that predict factors related to
both disease phenotyping and treatment effects have recently
been published (38–45), important challenges remain in
the standardization of the criteria for evaluation of model
performance, reproducibility and clinical utility. The principal
challenge remains the optimal collection and integration
of diverse multimodal data sources in such quantitative
manner that delivers unambiguous clinical predictions. In
CHAIMELEON, we aim to undertake ground-breaking
research on the AI space leading to a new paradigm in the
investigation of imaging biomarkers at multi-center studies and
clinical trials, overcoming the problem of reproducibility
in QIBs.

The cancer management solutions to be developed in the
context of this project include those assisting radiologists in
image processing and analysis, impacting diagnosis and follow
up capabilities, helping predict tumor behavior, as well as aiding
patient’s stratification, therapy allocation and tumor response
to treatment.

Technical and Clinical Validation of
AI Solutions
By the end of the project, the performance of the repository as
tool fostering AI experimentation will be validated. This
technical validation phase will assess the usefulness of the
repository for accelerating experimentation of AI solutions and
contributing to better training and testing of the AI models. This
process will occur in two subsequent steps. First, AI developers of
the consortium will undertake training and testing of a selected
set of their proprietary AI tools using the data provided by
consortium partners. Secondly, an external validation subphase
will be done by other world-class European AI developers,
Frontiers in Oncology | www.frontiersin.org 8
initiative that will be articulated via Open Challenges to the
AI community.

Lastly, a clinical validation phase will assess how the
technically validated tools can assist clinicians in addressing
the selected CEPs for lung, breast, colorectal and prostate
cancer. To do so, observational In-silico studies will be
designed by cancer experts to assess the capacity of these tools
to aid clinical decision-making in cancer management in terms
of diagnosis, prognosis, treatment selection and treatment
follow-up. Cases provided by external collaborator centers will
be used for this clinical validation phase to ensure the
reproducibility of the results on real world cases.
EXPECTED RESULTS

The CHAIMELEON repository along with its related AI-
powered tools are being designed to impact the management
of the four most prevalent types of cancer worldwide. Due to the
social and economic burden these imply, we expect the outcome
of this project to have an EU-wide impact both at the social and
economic level. Upon successful validation on how the proposed
AI tools can assist clinicians in daily decision making, we expect
the repository infrastructure, legal operational model, analysis
tools and web-based user interfaces to have the potential to be
adapted to the management of other types of cancer (46).

The project will contribute to the current state of the art of AI
for health imaging by defining a framework for legitimate access
to anonymized imaging and related clinical data provided by
hospitals in different European nations, making these more
openly accessible across the EU for secondary use in research.
From image acquisition to image evaluation and QIB reporting,
our work is aligned with exciting research on the use of AI for
improving image quality and interpretation. At the technical
level, we hope to contribute to the advancement in robustness of
AI systems against malicious attacks, interpretability of AI-based
models, and validation of AI tools in clinical observational
studies. We also aim to impact the fields of standardization of
radiological procedures for image acquisition and analysis, as
well as harmonization for extraction of reproducible
imaging biomarkers.

From a legal perspective, this project will contribute to the
creation of ethical standards for the use of health imaging data in
the context of AI tool development. All in all, we expect
CHAIMELEON to generate resources that facilitate faster and
TABLE 4 | Clinical end points to be addressed in CHAIMELEON for the four targeted types of cancer.

Type of
Cancer

Current therapies CEPs

Lung Immunotherapy Predicting patients with a positive response to immunotherapy
Colorectal Surgery/neoadjuvant

chemotherapy
(Rectal cancer) Prediction of patients with a positive response to chemoradiation and classification in different
treatment response sub-groups.
(Colon cancer) Identification of patients at higher risk of distant metastases at an early timepoint.

Breast Surgery, radiation and systemic
therapy

Diagnostic performance and cancer staging.

Prostate Wide range due to heterogeneity Early Staging/Grading
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more successful development of AI-based solutions for cancer
management, while promoting actions to foster the evolution of
European laws in the reuse of health data for research purposes
(47). By doing so, we expect to have a major mid to long-term
impact in the European health imaging sector, increasing trust in
AI solutions amongst healthcare professionals, patients, and
stakeholders in both industry and academia.
DISCUSSION

The EU-funded CHAIMELEON project aims to set up one of the
most ambitious health imaging repositories across the EU,
contributing to major advancements in the field of cancer
management at a global scale. Once implemented, it will have
the potential to generate innovative products and services
beyond the direct outcomes planned for the project. The
developed methodologies and protocols will pave the way for
the use of this type of repository, not just in other fields of
biomedical research but also in any other disciplines where
public interest is the main driver.

Upon successful demonstration of the disruptive analysis
approaches used in this project, such as those related to the
improvement of the interpretability of AI models, these will have
the potential to be used in other currently prevalent pathologies,
such as cardiovascular, neurological or psychiatric diseases. The
developed AI-powered tools may be used as clinical support
systems for complex diagnosis, and contribute to new diagnostic
approaches based on telemedicine or second opinion.

To further ensure future interoperability across repositories of
the same nature, the CHAIMELEON is taking part in the AI for
Health Imaging (AI4HI) league, a collaborative network of
similar projects funded under the same topic. The main goal to
this collaboration is to ensure the long-term sustainability of
these kind of repositories, and to promote cooperation and data
sharing among users.

Further information on the main project objectives, partners
and contributors, work progress and latest updates on project
results can be found on the project website (chaimeleon.eu) and
social media platforms.
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