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Objective: To explore a new model to predict the prognosis of liver cancer based on MRI
and CT imaging data.

Methods: A retrospective study of 103 patients with histologically proven hepatocellular
carcinoma (HCC) was conducted. Patients were randomly divided into training (n = 73)
and validation (n = 30) groups. A total of 1,217 radiomics features were extracted from
regions of interest on CT and MR images of each patient. Univariate Cox regression,
Spearman’s correlation analysis, Pearson’s correlation analysis, and least absolute
shrinkage and selection operator Cox analysis were used for feature selection in the
training set, multivariate Cox proportional risk models were established to predict disease-
free survival (DFS) and overall survival (OS), and the models were validated using validation
cohort data. Multimodal radiomics scores, integrating CT and MRI data, were applied,
together with clinical risk factors, to construct nomograms for individualized survival
assessment, and calibration curves were used to evaluate model consistency. Harrell’s
concordance index (C-index) values were calculated to evaluate the prediction
performance of the models.

Results: The radiomics score established using CT and MR data was an independent
predictor of prognosis (DFS and OS) in patients with HCC (p < 0.05). Prediction models
illustrated by nomograms for predicting prognosis in liver cancer were established.
Integrated CT and MRI and clinical multimodal data had the best predictive
performance in the training and validation cohorts for both DFS [(C-index (95% CI):
0.858 (0.811–0.905) and 0.704 (0.563–0.845), respectively)] and OS [C-index (95% CI):
0.893 (0.846–0.940) and 0.738 (0.575–0.901), respectively]. The calibration curve
showed that the multimodal radiomics model provides greater clinical benefits.
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Conclusion: Multimodal (MRI/CT) radiomics models can serve as effective visual tools
for predicting prognosis in patients with liver cancer. This approach has great potential
to improve treatment decisions when applied for preoperative prediction in patients
with HCC.
Keywords: liver cancer, multimodal imaging, computed tomography, MRI, radiomics, nomogram
INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common primary
liver tumor, accounting for 75%–85% of liver cancers (1). HCC is
the second most common cause of cancer death worldwide and
has high morbidity and mortality rates (2). Surgical resection and
local ablation remain the most commonly used radical treatment
methods for HCC; however, tumors recur in 70% of cases after
hepatectomy and 25% of cases after liver transplantation, and the
5-year overall survival (OS) rate is only approximately 25%–55%
(3–5). Hence, patients with HCC have a poor prognosis after
surgery, and the high disease recurrence rate represents a great
challenge to successful treatment (3, 6). Therefore, the
identification of reliable predictors of early recurrence is
critical for patient risk stratification, support for treatment
decisions, and improvement of long-term survival.

At present, relevant tumor factors, such as lesion
diameter, cirrhosis, multifocality, poorly differentiated tumor,
and microvascular invasion (MVI), are recognized as risk
factors for early disease recurrence (7–10); however, most
of these features can only be evaluated by postoperative
histopathological examination, which is invasive, and the
results are prone to a missed diagnosis. In oncology, the
application of radiomics, which involves the transformation of
traditional medical images into high-dimensional, quantitative,
and exploitable imaging data, enables in-depth characterization
of tumor phenotypes and has the potential to provide
information on intra-tumor heterogeneity and predict
posttreatment survival (11, 12). Multimodal machine learning
is a method to process and interpret multimodal information
through machine learning. Multimodal fusion is used to fuse
multimodal information and perform targeted prediction
classification or regression problems (13–15). Medical imaging
can include data in different forms, such as CT, MRI, PET,
ultrasound, and X-rays. In different guidelines, either CT or MRI
is proposed as the best imaging modality for the diagnosis of
noma; DFS, disease-free survival; OS,
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HCC (16–18). Recent HCCmanagement guidelines recognize an
increasing role for gadoxetic acid-enhanced MRI in early
diagnosis and monitoring post-resection (19). CT or MRI can
all confirm the diagnosis if a nodule larger than 1-cm diameter is
found with typical vascular features of HCC (hypervascularity in
the arterial phase with washout in the portal venous or delayed
phase) (20). Further, both CT and MR functional scans can be
useful as supplements to conventional plain scan and dynamic
enhancement to improve the accuracy of follow-up evaluation of
liver cancer (21). In recent years, several qualitative MRI and CT
imaging features have been reported. Preliminary evidence
suggests that radiomics features have the potential to predict
OS and tumor recurrence in patients with HCC, for example, by
assessing peritumor parenchymal enhancement, satellite
nodules, and non-smooth tumor margins, which are non-
invasive predictors of early HCC recurrence (22–24).

Multimodal fusion technology can be divided into pixel level,
feature level, and decision level, which are used to fuse abstract
features and decision results in original data (13–15). To date,
radiomics has been successfully applied in the study of
nasopharyngeal carcinoma, non-small cell lung cancer, and
rectal cancer (25–27), demonstrating the great potential for the
development of this approach; however, to our knowledge, the
use of contrast analysis of CT-enhanced sequence and MR-
enhanced sequence data to assess patient prognosis remains
rare. In this study, we combined these two novel imaging
techniques and explored the performance of multimodal
radiomics models derived from MR and CT image data for
prognostic evaluation following HCC resection.
MATERIALS AND METHODS

Patients
This study was approved by the Ethics Committee of the
Affiliated Hospital of Qingdao University. Due to its
retrospective nature, the need for patient written informed
consent was waived. From February 2014 to December 2020,
we collected information from 306 patients with liver cancer, and
135 patients with primary HCC were recruited, based on the
following inclusion criteria: 1) pathologically confirmed liver
cancer recorded in the medical records at our hospital and 2) CT
and MRI examinations performed within the previous 2 weeks
before hepatectomy. The exclusion criteria were as follows: 1)
other preoperative treatments [transarterial chemoembolization
(TACE)], targeted drugs, and radiofrequency ablation), except
hepatectomy (n = 11); 2) incomplete clinicopathological report
(n = 10); 3) CT image and MR image quality was poor, and the
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lesion could not be recognized or the lesion image was less than
three layers (n = 3); 4) lost to follow-up (n = 4); and 5) error
occurred in the feature extraction process (n = 4). The final study
population included 103 patients. The entire cohort was
randomly divided into a training cohort (n = 73) and a
validation cohort (n = 30) (ratio, 7:3). Training queues were
used to build single-modal and multimodal radiomics models,
which were evaluated using validation queues.

Clinical Endpoints and Follow-Up
The endpoints of this study were disease-free survival (DFS) and
OS. DFS was measured from the date of surgery until disease
progression, death from any cause, or the last visit in follow-up
(censored), and nomograms were also built based on the DFS.
Disease progression, including local recurrence distant
metastasis, was confirmed by clinical examination and imaging
methods such as abdominopelvic CT or MRI or was biopsy-
proven. OS was defined as the time to death from any cause. All
patients were followed up after surgery. Serum alanine
transaminase (ALT), aspartate transaminase (AST), total
bilirubin (TBIL), albumin (ALB), and alpha-fetoprotein (AFP)
levels were obtained. Liver ultrasound examination was
performed monthly within the 3 months after surgery and
once every 3 months thereafter. CT examination of the lungs
and enhanced CT or MRI of the liver were performed every 3
months during the first 2 years and once every 6 months
thereafter. The minimum follow-up period was 3 days after
surgery, while the maximum follow-up time was 92.8 months.

Image Acquisition
CT Scanning Methods and Parameters
Three-stage enhanced scans of the upper abdomen were
obtained using a German CT (SOMATOM Definition Flash,
Siemens, Munich, Germany) and an American Discovery CT
(GE Healthcare, Chicago, IL, USA). Scans ranged from the top of
the liver to the lower edges of both kidneys. Scanning parameters
were as follows: voltage, 120 kV; current, 200–350 mA; scanning
layer thickness, 5 mm; layer spacing, 5 mm; and matrix, 512 ×
512. For contrast-enhanced scanning, a double-barreled high-
pressure syringe was used to inject iohexol, containing 350 mg/
ml of iodine, via the peripheral vein (flow rate, 3.0 ml/s; dose, 1.5
ml/kg). The delay times for the arterial, venous, and equilibrium
phases were 30, 60, and 120 s, respectively.

MRI Scanning Methods and Parameters
MRI scanning was conducted using a 3.0 T Signa HDXT MR
superconducting apparatus and an 8-channel body-phase front
coil. Rapid volume acquisition Liver Acquisition with Volume
Acceleration (LAVA) imaging of the liver was conducted using
the following parameters: repetition time (TR), 4.2 ms; echo time
(TE), 2.0 ms; layer thickness, 4.8–5.4 mm; layer spacing, 1.4–2.7
mm; field, 42.0 × 33.6 cm; and matrix, 320 × 192. The contrast
agent, gadolinium diethylenetriamine penta-acetic acid, was used
for enhanced scanning (dose, 0.2 mmol/kg; injection flow rate, 2.0
ml/s). The delay times of the arterial, portal, and equilibrium
phases were 20–23, 60, and 180 s, respectively.
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Tumor Segmentation
The tumor region of interest (ROI) was manually delineated on
multi-phase CT and MR images by a radiologist with more than
10 years of experience (Reader 1) using ITK-SNAP (version
3.6.0; http://www.itksnap.org) to segment each tumor CT stage
and MR stage. A two-dimensional ROI of the largest section of
the tumor was selected, outlined, and saved as an NII file. Two
weeks later, Reader 1 randomly selected 50 HCC patients and
delineated the ROI again to evaluate the intra-class correlation
coefficient of ROI. Additionally, another radiologist (Reader 2)
independently performed ROI mapping for the randomly
selected 50 HCC patients to evaluate the inter-class
correlation coefficient.

Image Preprocessing and
Feature Extraction
At the beginning of extraction, pre-processing was necessary to
improve discrimination between texture features. To eliminate
the batch effect of different equipment, all the data were
normalized through z-score standardization to a standard
intensity range with a mean value of 0 and SD of 1, and the
image slices were resampled to voxel size = 1 * 1 * 1 cm3. With
the use of IBSI compliant AK software (Analysis Kit Software,
version 3.3.0, GE Healthcare), 1,217 radiomics features were
extracted from CT and MR images, including first-order
statistical features, morphological features, gray-level co-
occurrence features, matrix-based features (GLCM), gray-level
run-length matrix-based features (GLRLM), gray-level size zone
matrix-based features (GLSZM), gray-level dependence matrix-
based features (GLDM), and (Log) Laplace wavelet changes.
Furthermore, intra-class and inter-class correlation coefficients
(ICCs) were used to evaluate the intra-observer and inter-
observer reproducibility of feature extraction. The intra-class
correlation coefficient was calculated by comparing the ROI of
Reader 1 twice. The inter-class correlation coefficient between
the groups was evaluated by comparing the ROI of Reader 1 with
that of Reader 2. When ICCs exceeded 0.75 both within and
between observers, this feature was considered to have a good
consistency. Finally, the ICC range for CT (Balance, Venous, and
Artery) was 0.175–1, and 917 features with ICC > 0.75 were
retained for each phase. The ICC range for MR (Balance,
Venous, and Artery) was 0.256–1, and 946 features with ICC >
0.75 were retained.

Feature Selection and Model Construction
Features with ICC values > 0.75 both within and between groups
were retained for further analysis. In the training set, features
with p < 0.05 in univariate Cox regression analysis were retained,
and Spearman’s correlation analysis and Pearson’s correlation
analysis were applied to eliminate characteristics that were highly
correlated (selected coefficient threshold |r| = 0.8). The least
absolute shrinkage and selection operator (LASSO) Cox
regression with 10-fold cross-validation was used for further
feature screening. Then, features with non-zero coefficients
selected by LASSO analysis were linearly weighted. Next,
radiomics scores (Radscores) were calculated for each patient.
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The Radscore was the result of the Cox regression radiomics
model. It was the linear combination weighted by the
corresponding LASSO coefficients of each feature selected of
each patient, and patients were then divided into high-risk and
low-risk groups, according to their best truncation value in each
model and the labeled high-risk group (riskscore = 1) and the
low-risk group (riskscore = 0). Kaplan–Meier (KM) analysis was
used to plot DFS and OS curves, and the log-rank test was used to
evaluate the differences between high-risk and low-risk groups.
The same threshold was then applied to the validation queue. C-
index values were used to evaluate the performance of the model.

Nomogram Construction
First, univariate Cox analysis was used to analyze risk factors and
screen for features with p < 0.05. Clinical factors with p < 0.05 and
Radscore for CT and MRI data combined (Combined_radscore)
were included in themultivariateCox stepwise regressionmodel, to
investigate independent predictors of survival in HCC patients.
Clinical factors and Combined_radscore (with p < 0.05) in the
univariate Cox analysis were enrolled to establish a nomogram to
predict patients’ 2-year, 4-year, and 5-year survival rates. C-index
values were used to evaluate the performance of the model, and
calibration curves were generated and discrimination ability was
quantified to compare predicted and actual survival rates.

Statistical Analysis
All statistical analyses were performed using R3.5.1 (https://www.
r-project.org/). A t-test or Mann–Whitney U test was used to
evaluate differences in continuous variables, and the chi-square or
Fisher’s exact test to assess differences in categorical variables.
Continuous numerical variables are represented by the median
(25th percentile, 75th percentile), and categorical variables are
represented by percentages. Shapiro’s test function in the R
package was used to test for normality. Spearman’s correlation
analysis and Pearson’s correlation analysis were used to eliminate
redundant features. Pearson’s correlation analysis was used for the
features that conform to the normal distribution, and Spearman’s
correlation analysis was used for the features that do not conform
to normal distribution. The surv_cutpoint function in the R
package was used to calculate optimal truncation values. The
KM method and log-rank test were used to estimate DFS and
OS. Calibration curves were used to evaluate the degree of
alignment of nomograms. Two-sided p-values <0.05 were
considered significant.
RESULTS

Patient Characteristics
Patient demographics and clinicopathological features are
presented in Table 1. Of the 103 patients included in the
study, 83 (80.6%) were male, and the median age of all
patients was 57.0 (32.0–73.0) years. There were no statistically
significant differences in clinicopathological factors between
patients in the training (n = 73, 70%) and validation (n = 30,
30%) cohorts (p = 0.558–0.997). A total of 44 patients had death
endpoints. The median values for DFS and OS of the total patient
Frontiers in Oncology | www.frontiersin.org 4
group (n = 103) were 25.9 (0.1–88.1) months and 43.7 (0.1–92.8)
months, respectively.

Radiomics Signature Construction
Features retained after each feature dimension reduction are listed
in Supplementary Table S1. Finally, for prediction of DFS, 7, 12,
and 17 features were selected from CT, MRI, and their combined
features, respectively, and used to build models. For prediction of
OS, 8, 16, and 17 features were selected to establish the model from
CT, MRI, and their combined features, respectively. The details of
selected features of DFS and OS are included in Supplementary
Figure S1 and Table S2. The calculated CT_radscore,
MRI_radscore, and Combined_radscore were based on
selected features.

We performed the univariate Cox analysis to determine the
role of clinical features of patients on DFS in HCC (Table 2).
Three clinical characteristics, namely, tumor diameter, liver
capsule invasion, and MVI were identified by univariate
analysis (p < 0.05). Clinical features with p < 0.05 were
included in backward stepwise multivariate regression analysis.
The results show that MVI was an independent predictor of
HCC in the multivariable analysis (p < 0.05). We performed the
univariate Cox analysis to determine the role of clinical
characteristics on the OS of patients in HCC (Table 3). Six
clinical characteristics, namely, body mass index (BMI), tumor
diameter, MVI, portal vein tumor thrombosis (PV_TT), platelet
count (PLT), and Bleeding_volume were identified by univariate
analysis (p < 0.05). Clinical characteristics with p < 0.05 were
included in backward stepwise multivariate regression analysis.
The results show that BMI, MVI, and Bleeding_volume were
independent predictors of HCC in the multivariable analysis (p <
0.05). The clinical models were built based on clinical risk
features, and the Clinical_score of each model was calculated.

Combined_radscore and clinical factors were included in
univariate Cox regression for analyzing DFS, and factors with
p < 0.05 were included in backward stepwise multivariate Cox
regression analysis (Table 4). The results show that Radscore and
MVI were independent predictors of HCC in the multivariable
analysis (p < 0.05). Combined_radscore and clinical factors were
included in univariate Cox regression for analyzing OS, and
factors with p < 0.05 were included in backward stepwise
multivariate Cox regression analysis (Table 5). The results
show that Radscore, MVI, PLT, and Bleeding_volume
were independent predictors of HCC in the multivariable
analysis (p < 0.05). CT+MRI_Clinical Model was established
based on significant clinical risk features and Radscore.
CT+MRI+Clinical_score of the models were calculated.

CT_radscore, MRI_radscore, Combined_radscore,
Clinical_score, and CT+MRI+Clinical_score were divided into
a high-risk group and a low-risk group according to the optimal
cutoff value of each group, and then DFS and OS KM curves were
plotted. KM curves methods and log-rank test estimating DFS
(Figure 1) in the training cohort showed that patients in the low-
risk group had significantly better outcomes than those in the
high-risk group (all log-rank p < 0.05) using the model. We then
performed the same analyses in the validation cohort. Each
model had similar results in the validation cohort (p < 0.05).
March 2022 | Volume 12 | Article 745258
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KM curves methods and log-rank test estimating OS (Figure 2)
in the training cohort showed that patients in the low-risk group
had significantly better outcomes than those in the high-risk
group (p < 0.05). We then performed the same analyses in the
validation cohort, and similar results were observed.

Development and Assessment of a
Radiomics Nomogram
To provide the clinician with a quantitative method to predict
patients’ probability of 2-year, 4-year, and 5-year DFS and OS
Frontiers in Oncology | www.frontiersin.org 5
and to demonstrate the incremental value of the radiomics
signature for individualized assessment of DFS and OS, both
radiomics nomograms were built in the training cohort
(Figures 3A, B).

For prediction of DFS, Radscore, tumor diameter, liver
capsule invasion, and MVI were finally retained to establish a
nomogram for DFS prediction (Figure 3A), and BMI, tumor
diameter, PV_TT, PLT, Bleeding_volume, and Radscore were
retained for use in establishing the prognostic prediction
nomogram for OS (Figure 3B). The performance of each
TABLE 1 | Demographic and clinicopathological characteristics of patients with liver cancer.

Variable Training cohort (N = 73) Validation cohort (N = 30) p

Age (years), >60 32 (0.44) 12 (0.40) 0.721
≤60 41 (0.56) 18 (0.60)

Gender Male 60 (0.82) 7 (0.23) 0.520
Female 13 (0.18) 23 (0.77)

Alcohol abuse (%) Present 13 (0.18) 6 (0.20) 0.794
Absent 60 (0.82) 24 (0.80)

AFP (ng/ml, %) ≤20 32 (0.44) 11 (0.37) 0.503
>20 41 (0.56) 19 (0.63)

HBV (%) Present 63 (0.86) 23 (0.77) 0.231
Absent 10 (0.14) 7 (0.23)

HBsAg (%) Positive 62 (0.85) 23 (0.77) 0.316
Negative 11 (0.15) 7 (0.23)

Pos_operation_TACE (%) Present 29 (0.40) 10 (0.33) 0.543
Absent 44 (0.60) 20 (0.67)

Tumor diameter (cm, %) ≤5 cm 52 (0.71) 17 (0.57) 0.153
>5 cm 21 (0.29) 13 (0.43)

Tumor number (%) ≥2 8 (0.11) 3 (0.10) 0.835
<2 65 (0.89) 27 (0.9)

MVI (%) Present 35 (0.48) 17 (0.57) 0.421
Absent 38 (0.52) 13 (0.43)

PV-TT (%) Present 3 (0.04) 2 (0.07) 0.627
Absent 70 (0.96) 28 (0.93)

Satellite lesions (%) Present 9 (0.12) 3 (0.10) 0.997
Absent 64 (0.88) 27 (0.90)

Liver cirrhosis (%) Present 61 (0.84) 26 (0.87) 0.924
Absent 12 (0.16) 4 (0.13)

Surgical margin (%) <1 cm 26 (0.36) 16 (0.53) 0.094
≥1 cm 47 (0.64) 14 (0.47)

Liver capsule invasion (%) Present 39 (0.53) 13 (0.43) 0.352
Absent 34 (0.47) 17 (0.57)

Surgical approach (%) Laparoscopy 22 (0.30) 10 (0.33) 0.750
Non-laparoscopy 51 (0.70) 20 (0.67)

Histopathological grading I, II 41 (0.56) 16 (0.53) 0.793
III, IV 32 (0.44) 14 (0.47)

Child–Pugh score (%) A 71 (0.97) 26 (0.87) 0.058
B 2 (0.03) 4 (0.13)

CNLC (%) I, II 66 (0.90) 25 (0.83) 0.309
III, IV 7 (0.10) 5 (0.17)

Bleeding_volume (ml, %) ≤400 64 (0.88) 27 (0.90) 0.997
>400 9 (0.12) 3 (0.10)

BMI (kg/m2) 25.28 (22.67, 26.57) 23.81 (21.87, 25.69) 0.209
ALT (IU/L) 38 (21, 69) 40.50 (26.50, 97.93) 0.408
AST (IU/L) 29 (21, 57) 31.5 (22.25, 64, 35) 0.452
TBIL (µmol/L) 17.07 (13.56–22.50) 18.31 (13.61, 25.65) 0.338
ALB (g/L) 40.05 (37.29, 43.41) 40.71 (37.25, 43.96) 0.836
PT (s) 10.5 (9.80, 11.10) 10.60 (9.83, 11.17) 0.825
PLT (109/L) 160 (127, 209) 164 (116, 190) 0.554
NEUT (109/L) 2.97 (2.12, 4.74) 3.51 (2.88, 4.52) 0.200
Lymphocyte (109/L) 1.9 (1.36, 3.77) 1.71 (1.43, 2.57) 0.862
March 2022 | Volume 12 | Article 7
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modal for predicting DFS and OS was evaluated by calculating
C-index values (Table 6). In DFS analysis, the CT+MRI+Clinical
model showed the best performance in the training cohort (C-
index = 0.858; 95% CI, 0.811–0.905), followed by the CT+MRI
model (C-index = 0.826; 95% CI, 0.767–0.885). The clinical
model had the lowest predictive performance of C-index =
0.717 (95% CI, 0.648–0.786). In the validation cohort, the
CT+MRI+Clinical model showed the best performance (C-
index = 0.704; 95% CI, 0.563–0.845), followed by the clinical
model (C-index = 0.657; 95% CI, 0.504–0.809). The MRI model
had the lowest predictive performance of C-index = 0.587 (95%
CI, 0.412–0.763).

For analysis of OS, CT+MRI+Clinical had the best predictive
performance (C-index = 0.893; 95% CI, 0.846–0.940) in the
training cohort, followed by the CT+MRI model (C-index =
0.865; 95% CI, 0.810–0.920); the CT model had the lowest
predictive performance (C-index = 0.740; 95% CI, 0.650–0.830).

In the validation cohort, CT+MRI+Clinical had the best
predictive performance (C-index = 0.738; 95% CI, 0.575–
0.901), followed by the clinical model (C-index = 0.705; 95%
CI, 0.597–0.803). The MRI model had the lowest predictive
performance of C-index = 0.601 (95% CI, 0.401–801). The
calibration curve showed the high accuracy of the nomograms
Frontiers in Oncology | www.frontiersin.org 6
for predicting DFS and OS both in the training dataset
(Figures 3C, D).
DISCUSSION

Previous studies have developed multimodal imaging models,
using radiomics features determined by MR and CT to predict
tumor prognosis (28). To our knowledge, the present study is the
first to evaluate DFS and OS in patients with HCC using a
contrastive learning analysis of enhanced CT and MRI sequence
data. The main challenges faced by multi-pattern methods are
how to judge the confidence of each mode and the correlation
between modes, how to reduce the dimension of multi-pattern
characteristic information, and how to register multi-pattern
data collected asynchronously (13–15). We compared the
advantages of multimodal radiomics models for CT and
MRI integration.

Radiomics has recently received attention in the field of
cancer research because it is a high-throughput method used
to extract large numbers of radiomics features from standard
medical imaging and can improve medical decisions (29).
Radiomics is used to extract quantitative feature data that
TABLE 2 | Univariate and multivariate analyses of training cohort to identify patient clinical features with prognostic value for DFS.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age 0.994 (0.961–1.028) 0.708
Gender 1.712 (0.723–4.055) 0.222
BMI 1.014 (0.992–1.036) 0.229
Alcohol 1.088 (0.506–2.342) 0.829
Liver cirrhosis 1.436 (0.607–3.399) 0.410
Histopathological grade 1.361 (0.842–2.199) 0.209
Tumor diameter 1.128 (1.02–1.247) <0.05 1.07 (0.96–1.19) 0.244
Liver capsule invasion 1.907 (1.036–3.509) <0.05 1.41 (0.74–2.72) 0.299
Surgical margin 1.025 (0.963–1.091) 0.445
Tumor number 1.329 (0.583–3.027) 0.499
Satellite lesions 1.43 (0.602–3.393) 0.418
MVI 4.338 (2.31–8.147) <0.05 3.95 (2.07–7.54) <0.05
PV_TT 1.412 (0.34–5.867) 0.635
HBV 0.833 (0.352–1.971) 0.677
HBsAg 0.999 (0.997–1.003) 0.953
Surgical approach 1.198 (0.626–2.291) 0.585
Pos_operation_TACE 1.652 (0.911–2.996) 0.099
AFP 1.000 (0.999–1.000) 0.547
PLT 0.999 (0.995–1.004) 0.806
PT 1.002 (0.989–1.015) 0.749
Alb 1.014 (0.949–1.084) 0.675
TBIL 0.954 (0.907–1.003) 0.067
ALT 1.001 (0.998–1.003) 0.594
AST 1.001 (0.999–1.003) 0.307
NEUT 1.088 (0.978–1.209) 0.120
Lymphocyte 0.987 (0.96–1.016) 0.379
Bleeding_volume 1.000 (0.999–1.000) 0.201
Child–Pugh score 0.746 (0.103–5.422) 0.772
CNLC 0.77 (0.464–1.278) 0.312
March 2022 | Volume 12 | Article
BMI, body mass index; MVI, microvascular invasion; PV-TT, portal vein tumor thrombosis; HBsAg, hepatitis B surface antigen status; TACE, transarterial chemoembolization; AFP, alpha-
fetoprotein; PLT, platelet count; PT, prothrombin time; ALB, albumin; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; NEUT, neutrophil count; CNLC,
China Liver Cancer Staging; HR, hazard ratio.
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TABLE 4 | Univariate and multivariate analyses of training cohort to identify patient clinical features and Combined_radscore with prognostic value for DFS.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Tumor diameter 1.128 (1.020–1.247) <0.05 1.290 (0.660–2.520) 0.456
Liver capsule invasion 1.907 (1.036–3.509) <0.05 0.970 (0.870–1.080) 0.593
MVI 4.338 (2.310–8.147) <0.05 3.090 (1.520–6.310) <0.05
Radscore 6.553 (3.975–10.803) <0.05 5.600 (3.340–9.370) <0.05
Frontiers in Oncology | www.frontiersin.org
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DFS, disease-free survival; MVI, microvascular invasion; Radscore, radiomics score; HR, hazard ratio.
TABLE 3 | Univariate and multivariate analyses of training cohort to identify patient clinical features with prognostic value for OS.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-Value HR (95% CI) p-Value

Age 1.018 (0.98–1.057) 0.351
Gender 0.484 (0.215–1.092) 0.081
BMI 0.881 (0.798–0.972) <0.05 0.850 (0.740–0.970) <0.05
Alcohol 0.92 (0.378–2.240) 0.853
Liver cirrhosis 0.952 (0.383–2.367) 0.916
Histopathological grade 1.695 (0.965–2.977) 0.066
Tumor diameter 1.188 (1.063–1.327) <0.05 1.100 (0.910–1.320) 0.329
Liver capsule invasion 1.853 (0.888–3.867) 0.100
Surgical margin 1.053 (0.991–1.120) 0.096
Tumor number 0.947 (0.419–2.139) 0.895
Satellite lesions 1.136 (0.339–3.805) 0.836
MVI 6.935 (2.962–16.239) <0.05 5.060 (2.080–12.310) <0.05
PV_TT 3.87 (1.142–13.114) <0.05 3.190 (0.870–11.650) 0.079
HBV 0.555 (0.212–1.454) 0.231
HBsAg 0.998 (0.994–1.001) 0.155
Surgical approach 1.267 (0.599–2.680) 0.535
Pos_operation_TACE 1.305 (0.641–2.658) 0.463
AFP 1.000 (0.999–1.000) 0.136
PLT 0.993 (0.986–1.000) <0.05 0.990 (0.990–1.000) 0.174
PT 1.003 (0.982–1.024) 0.812
Alb 1.003 (0.932–1.080) 0.937
TBIL 0.989 (0.952–1.028) 0.579
ALT 0.999 (0.995–1.002) 0.500
AST 0.998 (0.994–1.003) 0.478
NEUT 1.07 (0.900–1.273) 0.442
Lymphocyte 0.975 (0.936–1.015) 0.219
Bleeding_volume 1.001 (1.001–1.002) <0.05 1.000 (1.000–1.010) <0.05
Child–Pugh score 1.784 (0.237–13.428) 0.574
CNLC 1.313 (0.787–2.190) 0.298
BMI, body mass index; MVI, microvascular invasion; PV-TT, portal vein tumor thrombosis; HBsAg, hepatitis B surface antigen status; TACE, transarterial chemoembolization; AFP, alpha-
fetoprotein; PLT, platelet count; PT, prothrombin time; ALB, albumin; TBIL, total bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; NEUT, neutrophil count; CNLC,
China Liver Cancer Staging; HR, hazard ratio.
TABLE 5 | Univariate and multivariate analyses of training cohort to identify patient clinical features and Combined_radscore with prognostic value for OS.

Variable Univariate analysis Multivariate analysis

HR (95% CI) p-Value HR (95% CI) p-Value

BMI 0.881 (0.798–0.972) <0.05 0.970 (0.880–1.060) 0.480
Tumor diameter 1.188 (1.063–1.327) <0.05 0.840 (0.660–1.080) 0.174
MVI 6.935 (2.962–16.239) <0.05 4.110 (1.550–10.87) <0.05
PV_TT 3.870 (1.142–13.114) <0.05 2.030 (0.510–8.160) 0.318
PLT 0.993 (0.986–1.000) <0.05 0.990 (0.980–1.000) <0.05
Bleeding_volume 1.001 (1.001–1.002) <0.05 1.000 (1.000–1.010) <0.05
Radscore 6.959 (3.922–12.349) <0.05 7.740 (3.560–16.800) <0.05
OS, overall survival; BMI, body mass index; MVI, microvascular invasion; PV-TT, portal vein tumor thrombosis; platelet count; Radscore, radiomics score; HR, hazard ratio.
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FIGURE 1 | Patient DFS KM curves for each model. (A) CT_DFS; (B) MRI_DFS; (C) CT+MRI_DFS; (D) Clinical_DFS; (E) CT+MRI+Clinical_DFS. p-Values were
calculated using the log-rank test. Training cohort curves are shown on the top and validation cohorts on the bottom in each panel. DFS, disease-free survival; KM,
Kaplan–Meier.
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FIGURE 2 | Patient OS KM curves for each model: (A) CT_OS; (B) MRI_OS; (C) CT+MRI_OS; (D) Clinical_OS; (E) CT+MRI+Clinical_OS. p-Values were calculated
using the log-rank test. Training cohort curves are shown on the top and validation cohorts on the bottom in each panel. OS, overall survival; KM, Kaplan–Meier.
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FIGURE 3 | Development of nomograms and calibration curves for DFS and OS in training cohorts. (A) Prognostic nomogram for DFS. (B) The prognostic
nomogram for OS. (C) Calibration curves for DFS in the training cohort. (D) Calibration curves for OS in the training cohort. To determine the number of factors
associated with the probability of survival, a straight line was drawn to the relevant point on the axis for each patient, and the process was repeated for each
variable. Scores for each risk factor were then summarized, with the final sum marked on the overall point axis. DFS and OS estimated using the nomogram are
plotted on the x-axis. Observed DFS or OS are plotted on the y-axis, and the estimated results are compared with the actual results. The consistency of estimated
and observed calibrations for 2-year, 4-year, and 5-year survival results is shown for each model. DFS, disease-free survival; OS, overall survival.
TABLE 6 | The performance of each model in the training and validation cohorts.

Model Training cohort Validation cohort

Disease-free survival C-index 95% CI C-index 95% CI
CT 0.742 0.668–0.816 0.614 0.442–0.786
MRI 0.772 0.705–0.839 0.587 0.412–0.763
CT+MRI 0.826 0.767–0.885 0.653 0.490–0.816
Clinical 0.717 0.648–0.786 0.657 0.504–0.809
CT+MRI+Clinical 0.858 0.811–0.905 0.704 0.563–0.845

Overall survival CT 0.740 0.650–0.830 0.624 0.450–0.789
MRI 0.833 0.768–0.898 0.601 0.401–0.801
CT+MRI 0.865 0.810–0.920 0.653 0.471–0.835
Clinical 0.802 0.714–0.890 0.705 0.597–0.803
CT+MRI+Clinical 0.893 0.846–0.940 0.738 0.575–0.901
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reflect information related to tumor heterogeneity, which are not
visible to the human eye. Hence, radiomics can provide a non-
invasive, low-cost, and reproducible means to capture tumor
phenotypes that may be associated with intra-tumor
heterogeneity (30). To date, radiomics has been used in
research to explore liver tumors, including numerous studies
applied to the diagnosis, prognosis, pathological grading, and
MVI of liver cancer (31–34). Many previous studies have
demonstrated the role of radiomics in survival assessment for
patients with different types of cancer, including non-small cell
lung, breast, and thyroid cancers (35–37).

We developed a new multimodal radiomics model to
compare the value of enhanced CT and MRI sequence data for
prognosis prediction in patients with HCC and to compare this
with the predictive performance of clinicopathological factors. In
this study, we extracted 1,217 features from CT and MR images
and finally identified non-zero coefficient features associated
with DFS and prognostic features associated with OS by
LASSO regression analysis. Specific feature dimension
reduction and features screening processes are also shown in
the Supplementary Materials. Radscore values were calculated
using these features. KM survival analysis methods and log-rank
tests were used to evaluate their prognostic value.

In our study, the results of multivariate analyses showed that
MVI, Bleeding_volume, and PLT were independent predictors of
the prognosis of HCC patients, which was consistent with the
results of previous studies (7–10). The CT+MRI+Clinical model
was superior to that of a model comprising clinical features
alone, CT alone, MRI alone, or CT+MRI combined model,
indicating that the multimodal radiomics model approach may
have a greater value in predicting DFS and OS of resected HCC.
The multimodal model can provide more abundant information.

In addition, for all KM curves of predicting DFS and OS, the
low-risk group had significantly higher survival times than the
high-risk group (p < 0.05), indicating that Radscore was an
independent predictor of HCC, and this finding was confirmed
in the multivariate Cox proportional risk model (p < 0.05) in
both DFS and OS. Thus, Radscore improves traditional
prognostic ability and represents a potentially effective and
promising tool for evaluating the prognosis of patients with
HCC. This is consistent with the study by Zhao et al. (38). In a
prior study, Zhang et al. (28) established single and multimodal
logic models for predicting LVI, with excellent predictive power
in training (area under the curve (AUC), 0.884; 95% CI, 0.803–
0.964) and validation (AUC, 0.876; 95% CI, 0.721–1.000). Their
results are similar to our study, but our model also included
clinical factors. Univariate and multivariate Cox analyses were
used to select clinical factors into the model to analyze the
prognosis, which was more convincing and scientific by
comparing the prediction performance of various modes, and
it was shown in nomograms. Our Radscore-based nomograms
yielded a better discriminative ability than these traditional
methods for predicting prognosis in HCC patients.

Zhou et al. (24, 38) extracted radiomics features from arterial
and portal phase CT images of 215 HCC patients undergoing
partial hepatectomy, screened the imaging features through a
Frontiers in Oncology | www.frontiersin.org 11
LASSO logistic regression model, and constructed a Radscore
model. The results showed that inclusion of CT-based radiomics
features with routine clinical variables significantly predicted
early recurrence (≤1 year) postoperatively and that the diagnostic
performance of the model combining radiomics and clinical
factors was superior to that of the model with clinical features
alone for estimating early recurrence. It seems to be obvious that
assessing tumorous disease with single modal radiomics
information will not be comprehensive. However, the
development of methods and strategies for the integration of
information of different dimensions is still in its early stages, and
combining prediction models, as performed in the current study,
might increase their precision and could be extended to other
diagnostic indicators. Further research following this scheme
is warranted.

This study has several limitations. First, our study was
conducted in a single institution. Although all CT and MR
images were obtained using a uniform scanner and
standardized imaging acquisition sequences, to reduce bias and
variance in our results and improve the robustness of the model,
further confirmation using patient data from other institutions is
needed. Second, the use of manually drawn two-dimensional
ROI is time-consuming and inconvenient for clinical application;
hence, the feasibility of automatic segmentation or semi-
segmentation in radiomics analysis will be the focus of future
research. Third, the number of patients in this study is not large
because not all HCC patients need to undergo CT and MR in
clinical practice. In addition, the cost of conducting CT and MR
at the same time is relatively expensive, so there are some
obstacles to implementation. Finally, our single-center study
primarily included patients who had undergone CT and MR,
with a small sample size. We will work with other hospitals to
explore the robustness of similar multimodal models in
the future.

In conclusion, our results suggest that Radscore is an
independent prognostic factor in patients with HCC.
Multimodal imaging profiles have great potential to improve
individualized assessment of likely prognosis after surgery and
may guide the individualized care of patients with HCC.
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