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Objectives: Spread through air spaces (STAS), a new invasive pattern in lung
adenocarcinoma (LUAD), is a risk factor for poor outcome in early-stage LUAD. This
study aimed to develop and validate a CT-based radiomics model for predicting STAS in
stage IA LUAD.

Methods: A total of 395 patients (169 STAS positive and 226 STAS negative cases,
including 316 and 79 patients in the training and test sets, respectively) with stage IA
LUAD before surgery were retrospectively included. On all CT images, tumor size, types of
nodules (solid, mix ground-glass opacities [mGGO] and pure GGO [pGGO]), and GGO
percentage were recorded. Region of interest (ROI) segmentation was performed semi-
automatically, and 1,037 radiomics features were extracted from every segmented lesion.
Intraclass correlation coefficients (ICCs), Pearson’s correlation analysis and least absolute
shrinkage and selection operator (LASSO) penalized logistic regression were used to filter
unstable (ICC < 0.75) and redundant features (r > 0.8). A temporary model was
established by multivariable logistic regression (LR) analysis based on selected
radiomics features. Then, seven radiomics features contributing the most were selected
for establishing the radiomics model. We then built two predictive models (clinical-CT
model and MixModel) based on clinical and CT features only, and the combination
of clinical-CT and Rad-score, respectively. The performances of these three models
were assessed.

Results: The radiomics model achieved good performance with an area under of curve
(AUC) of 0.812 in the training set, versus 0.850 in the test set. Furthermore, compared
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with the clinical-CT model, both radiomics model and MixModel showed higher AUC and
better net benefit to patients in the training and test cohorts.

Conclusion: The CT-based radiomics model showed satisfying diagnostic performance
in early-stage LUAD for preoperatively predicting STAS, with superiority over the clinical-
CT model.
Keywords: adenocarcinoma, radiomics, spread through air spaces, lung cancer, stage IA
INTRODUCTION

In 2015, spread through air spaces (STAS), a novel invasive
pattern in lung cancer, was recognized by the World Health
Organization (WHO) Classification (1). STAS has been reported
to occur in 14.8-56.4% of lung adenocarcinomas (LUADs) (2–5).
Recent reports have shown that the presence of STAS is an
independent risk factor for recurrence and low overall survival in
small or early-stage LUAD (4, 5). Moreover, preoperative
detection of STAS could help choose an appropriate surgery
type (6, 7). Correspondingly, Ren et al (6) reported patients with
STAS undergoing sublobar resection have a higher rate of
pulmonary metastases than patients with STAS administered a
lobectomy (25.8% vs 8.2%). Another study (7) showed the
presence of STAS is associated with higher cumulative
incidence of recurrence (CIR) and death (CID) in patients with
sublobar resection compared with those undergoing lobectomy
(5-year CIR, 39% vs. 16%; 5-year CID, 16% vs. 8%). Thus, it is
critical to determine the STAS status in LUAD prior to the
surgical decision-making.

It has been previously reported that some CT findings,
including maximum tumor diameter, nodule type and
percentage of the solid component, are related to STAS, with
promising diagnostic efficacy (0.64-0.77) (8–11). However, the
identification of these CT-based morphological features depends
on the radiologist’s experience. Furthermore, the use of such
qualitative CT features to predict STAS could inevitably lead to
inestimable misdiagnosis and overdiagnosis. Radiomics is a
characterization algorithm that can extract and analyze a large
number of quantitative image features from medical images (12).
Numerous studies have revealed the promising potential of
radiomics in predicting gene mutations (13, 14), lymph node
metastasis (15), therapeutic response (16) and clinical prognosis
(17) in lung cancer. Two recent studies performing radiomics
analysis of STAS have predicted the existence of STAS by
establishing different models (18, 19); the established radiomics
models achieved moderate performances for STAS prediction
with areas under the curves (AUCs) of 0.63 and 0.754,
respectively. However, none of the two studies compared the
radiomics signature-based and clinical or CT morphological
features-based models. This is of great interest because the
introduction of radiomics into routine the clinical workflow is
unlikely to be accepted if it does not provide additional predictive
value compared to clinical factors or morphological CT features.
Consequently, in the present study, in addition to establishing a
radiomics model and assessing its capabilities, we simultaneously
2

developed the clinical-CT and mixed models, and compared
their predictive values for the STAS status.
MATERIALS AND METHODS

This retrospective study was approved by the Ethics Committee
of Wuhan Union Hospital (S377), and the requirement for
written informed consent was waived.

Patients and Inclusion Criteria
A total of 1051 patients with Stage IA adenocarcinoma (T1a-
cN0M0) confirmed by curative surgery between September 2015
and July 2021 in Wuhan Union Hospital were retrospectively
assessed. Then, 126 patients were excluded according to the
following exclusion criteria (1): previous chemoradiotherapy
(n=45); (2) a history of lung operation (n=17); (3) no thin-
section CT before treatment (n=44); or (4) no plain chest CT
imaging (n=30, Figure 1). As shown in Figure 1, the incidence of
STAS in our institution was relatively low (169/923,18.3%). To
overcome potential data imbalance, we randomly divided the
STAS-negative cases by 3:7 into groups and matched them with
the STAS-positive group at a nearly 1:1 ratio. Such method for
balancing data has been validated in previous studies (11, 18, 20).
Due to the fact that the incidence of STAS negative is higher than
that of positive cases, we divided the negative data by a ratio of
3:7(226 cases) rather than 2:8(150 cases) to ensure the STAS
negative cases were slightly larger than the positive ones. In
addition, we had reperformed these models by 2:8 ratio for divide
the negative data, and found that this ratio does not affect our
main conclusions. In total, 395 patients (226 STAS negative and
169 STAS positive cases) were included, which were randomly
assigned into training database (316 patients) and test dataset (79
patients), with a ratio of 0.8:0.2. In the train cohort, 136 patients
were presented as STAS positive while 180 were negative. In the
test cohort, 33 cases were positive for STAS while 46 were
negative for STAS. All included patients had single
lung adenocarcinoma.

The patients’ clinical characteristics and pathological
findings, including age, sex, smoking history, histologic
subtypes, surgical margin, lymphatic metastasis, epidermal
growth factor receptor (EGFR) mutations and anaplastic large-
cell lymphoma kinase (ALK) were recorded. A history of
smoking was defined as lifetime exposure to more than 100
cigarettes. TNM staging was performed according to the IASLC
8th TNM Lung Cancer Staging System (21).
July 2022 | Volume 12 | Article 757389
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Histopathological Analysis
Two pathologists (JF and NW, with 4 and 10 years of experience in
thoracic pathology, respectively) blinded to clinical findings re-
evaluated the hematoxylin and eosin-stained slides of all included
patients using a multiheaded microscope. The predominant
subtype of lung adenocarcinoma was assessed based on the
International Association for the Study of Lung Cancer/American
Thoracic Society/European Respiratory Society multidisciplinary
classification of LUAD. STAS positivity was defined according to
theWHO definition of STAS as tumor cells were found in the lung
air spaces beyond the edge of the primary tumor, which is mainly
composed of the following three forms: (1) air spaces filled by
micropapillary structure without central fibrovascular cores; (2) air
spaces filled by the solid component of the tumor; (3) air spaces
filled by multiple discrete and single cells(1). After independent
assessments, differences were resolved by consensus.

CT Acquisition
CT was performed on two multislice spiral CT scanners
(SOMATOM Definition AS+ and Siemens Healthineers,
Germany) at our institution, using the following parameters:
detector collimation widths, 64 x 0.6 mm and 128 x 0.6 mm; tube
voltages, 120 kV. The tube current was regulated by an automatic
exposure control system (CARE Dose 4D). Images were
reconstructed at a slice thickness of 1.5 mm or 1 mm and an
Frontiers in Oncology | www.frontiersin.org 3
interval of 1.5mmor 1mm.No contrast mediumwas used. Digital
Imaging andCommunications inMedicine (DICOM) images from
the picture archiving and communication system (PACS) were
imported to the 3D-slicer software.

Two senior radiologists (HSS and JLZ, with 31 and 25 years of
experience in thoracic radiology, respectively) evaluated the CT
images to determine tumor size (longest diameter inMPR images),
tumordensity type (solid,mix ground-glass opacities [mGGO], and
pure GGO [pGGO]), and GGO ratio (GGO diameter/tumor
diameter) in consensus on the PACS. These specific CT features
were chosen as the most contributing risk factors for STAS in
patients with LUAD (8–11). The above two radiologists blinded to
clinical and histologic findings assessed CT features on both axial
CT and multiplanar reconstruction (MPR) images.

Radiomics Feature Extraction
The regions of interest on CT images were semi-automatically
delineated layer by layer by three junior radiologists (XH, YZ and
JX with 5, 3 and 2 years of experience in thoracic imaging,
respectively). All the three radiologists were aware of tumor
presence and location but unaware of the pathological reports
and STAS status. The 3D-slicer software was used for segmenting
the lesions on each slice of CT scans semi-automatically and
independently. Then, the three-dimensional volumes of interest
(3D-VOIs) of tumors were automatically reconstructed with the
FIGURE 1 | Study flowchart. STAS, spread through air spaces; STAS+, presence of STAS; STAS-, absence of STAS.
July 2022 | Volume 12 | Article 757389
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3D-slicer software (Figure 2). Two senior radiologists (HSS and
JLZ) were responsible for checking all tumor segmentations, and
any deviations were addressed with additional corrections. As
reported in a recent publication (22), the semi-automatic
segmentation from the 3D-Slicer is a better alternative to
manual segmentation, as it can produce more robust and
reproducible radiomic features. In addition, we randomly
selected 40 cases at a ratio of 1:10 of all sample (396 cases) for
estimating intraclass correlation coefficients (ICCs) analysis,
which could ensure the precision and assurance of results (23).
One observer (XH) repeated the segmentation after one week for
intra-observer variability analysis. The other observer (YZ)
performed the segmentation on the same image set using the
same method, for inter-observer variability analysis.

The Philips Radiomics Tool (Philips Healthcare, China) was
used for radiomics feature extraction, and core feature calculation
was based on pyRadiomics (24). A B-spline curve interpolation
algorithm was used to resample each 3D CT image to a spacing of
(0.7, 0.7, 1.0) mm. For each VOI, a total of 1037 3D-radiomic
features, including direct, wavelet transformed, logarithm
transformed and gradient filtered features, were extracted (types
andnumbers are shown inFigure 2, anddetails can be also found at
pyradiomics.readthedocs.io/en/latest/features.html).

Statistical Analysis
The SPSS software (SPSS, version 21, IBM,Chicago, IL,USA) andR
(version 4.0.2; http://www.Rproject.org) were used for all statistical
analyses. LASSO binary logistic regression was performed with the
‘glmnet’package.Multivariate binary logistic regressionwas carried
out with the ‘rms’ package. Decision curve analysis was performed
with the ‘rmda’ package. Receiver operating characteristic (ROC)
analysis was carried out with the ‘pROC’ package. Descriptive
Frontiers in Oncology | www.frontiersin.org 4
analysis was performed to describe the distribution of the
variables of interest for the training and testing cohorts. All
continuous data and categorical variables were expressed as mean
± standard deviation and frequency (percentage), respectively.
Independent samples Student’s t test was applied to compare
continuous data in two groups, and the chi-square test was used
to compare categorical variables. P<0.05 (two-tailed) was
considered statistically significant.

All radiomics features were normalized to the z-score.
Intraclass correlation coefficient (ICC) determination and
Pearson’s correlation analysis were performed to exclude
redundant and unstable features (r>0.8, ICC>0.75). ICC < 0.5,
between 0.5 and 0.75, between 0.75 and 0.9, and > 0.90 indicated
poor, moderate, good, and excellent reliability, respectively (25).
Least absolute shrinkage and selection operator (LASSO)
analysis was performed to determine features for further
assessment (26). Five-fold cross-validation and maximum area
under the curve (AUC) were used as feature filtering criteria. A
classification model based on the selected features was
established by a multivariate logistic regression (LR) algorithm.
Feature selection was performed on the training set. In this work,
we selected no model using the one-standard-error rule as the
final model, because a five-fold cross-validation LASSO analysis
was performed to filter features. A temporary model was built
behind the LASSO analysis as to preserve features that are
significant enough for the feature coefficients. More features
kept after the LASSO analysis reflect a better performance for
the final multivariate logistic regression algorithm (27). Three
models were built based on three sets of features: a radiomics
model based on the most contributing radiomics features from
the temporary model, a clinical and CT model based on clinical
and CT features only, and a mixed model (MixModel) combined
FIGURE 2 | Radiomics workflow.
July 2022 | Volume 12 | Article 757389
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the Rad-score with clinical and CT characteristics. The
performances of these models for predicting STAS were
evaluated in the training set, then in the test set by plotting
ROC curves and calculating the areas under the curves (AUCs).
The accuracy, sensitivity, specificity, negative predictive value
(NPV) and positive predictive value (PPV) were then calculated
for each model. The predictive ability was also illustrated by the
confounder matrix. The DeLong test was conducted to compare
diagnostic efficiency among the different models. Furthermore,
decision curve analysis was preformed to determine the clinical
usefulness of the three models by quantifying the net benefits at
different threshold probabilities in the data set.
RESULTS

Clinicopathological and CT Features
of STAS
This study included 395 eligible patients (average age, 59 ± 10
years; 207 males) in total. The clinicopathological and main CT
features of the final study population are shown in Table 1. STAS
Frontiers in Oncology | www.frontiersin.org 5
was found in 169/928 (18.2%) patients. No significant differences
were found between STAS-positive and STAS-negative cases in
age, gender and smoking history (p=0.268, p=0.232 and p=0.053,
respectively). Concerning CT features, tumors with STAS tended
to be larger than STAS negative counterparts (21 ± 6.3 mm vs 18
± 6.7 mm, p<0.001). Tumor densities differed between the STAS
and non-STAS groups (p<0.001). The majority of STAS-positive
tumors manifested as solid nodules (152/169, 89.9%; Figure 3),
followed by the mix GGO (13/169, 7.7%) and pure GGO (4/169,
2.4%) groups. Moreover, the less the GGO ratio, the higher the
possibility of STAS positivity (0.08 ± 0.21 vs 0.38 ± 0.42,
p<0.001). Then, age, gender, smoking history, diameter, density
and GGO ratio were selected for predicting STAS in the clinical
and CT model (Clinical-CT Model) by the LR algorithm
(Table 2). Based on clinical and CT features, the model had an
AUC of 0.721 (a sensitivity of 69.9% and a specificity of 61.7%) in
the training cohort; the AUC was 0.804 (a sensitivity of 72.7%
and a specificity of 76.1%) in the test cohort (Figure 4). The
distribution of the selected clinical and CT features for the
patients with STAS and those without STAS in the training
and test cohorts are shown in Table 3.
TABLE 1 | Associations of spread through air spaces with Clinicopathological features and CT findings.

Factor Total patients STAS (+) STAS (-) p-value

N 395 169 226
Gender 0.268
Male 207 (52.4%) 94 (55.6%) 113 (50%)
Female 188 (47.6%) 75 (44.4%) 113 (50%)

Age, years 59 ± 10 60 ± 10 58 ± 10 0.232
History of smoking 63 (15.9%) 34 (20.1%) 29 (12.8%) 0.053
Diameter, mm 19 ± 6.7 21 ± 6.3 18 ± 6.7 <0.001*
GGO ratio 0.25 ± 0.37 0.08 ± 0.21 0.38 ± 0.42 <0.001*
Density <0.001*
pGGO 39 (9.9%) 4 (2.4%) 35 (15.5%)
mGGO 85 (21.5%) 13 (7.7%) 72 (31.9%)
Solid 271 (68.6%) 152 (89.9%) 119 (52.7%)

Histologic subtypes <0.001*
Lepidic predominant 38 (9.6%) 4 (2.4%) 34 (15%)
Acinar predominant 171 (43.3%) 74 (43.8%) 97 (42.9%)
Micropapillary 26 (6.6%) 21 (12.4%) 5 (2.2%)
Papillary predominant 106 (26.8%) 37 (21.9%) 69 (30.5%)
Solid predominant 44 (11.1%) 30 (17.8%) 14 (6.2%)
Mucinous predominant 10 (2.5%) 3 (1.8%) 7 (3.1%)

Resection margin 0.013*
Negative 373 (94.4%) 154 (91.1%) 219 (96.9%)
Positive 22 (5.6%) 15 (8.9%) 7 (3.1%)

Pleural invasion 0.001*
Absence 358 (90.6%) 144 (85.2%) 214 (94.7%)
Present 37( 9.4%) 25 (14.8%) 12 (5.3%)

Perineural invasion
Absence 379 (95.9%) 160 (94.7%) 219 (96.9%) 0.266
Present 16 (4.1%) 9 (5.3%) 7 (3.1%)

EGFR 0.039*
Negative 154/261 (59%) 76/115 (59%) 78/146 (53.4%)
Positive 107/261 (41%) 39/115 (33.9%) 68/146 (46.6%)

ALK
Negative 288/303 (95%) 11/124 (8.9%) 4/179 (2.2%) 0.009*
Positive 15/303 (5%) 113/124 (91.1%) 175/179 (97.8%)
July 2022 | Volume 12 | Article
*P<0.05 based on comparisons between the two groups. Data are mean ± SD or n/N (%). STAS, spread through air spaces; STAS+, presence of spread through air spaces; STAS-,
absence of spread through air spaces; EGFR, epidermal growth factor receptor; ALK, anaplastic large-cell lymphoma kinase; GGOs, ground-glass opacities; pGGO, pure GGO; mGGO,
mix GGO.
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Pathologically, the histologic subtypes differed between the
STAS and non- STAS groups (p<0.001). Specifically, STAS-
positive tumors had a lower frequency of lepidic predominant
subtypes (2.4% vs 15%), while STAS-negative ones had a lower
rate of solid predominant (6.2% vs 17.8%). The positive rate of
resection margin was 5.6% (22/395) in this cohort and tended
to occur more in STAS-positive tumors (8.9% vs 3.1%,
p=0.013). Pleural invasion was observed more frequently in
patients with tumors positive for STAS versus the STAS-
negative group (14.8% vs 5.3%, p=0.001), whereas perineural
invasion showed no significant difference (5.3% vs 3.1%,
p=0.266). EGFR and ALK analyses were available in 261 and
303 patients, respectively. STAS positivity was associated with
reduced incidence of EGFR (p=0.039) and higher incidence of
ALK (p=0.009). Lymphatic metastasis was negative in
all patients.
Radiomics Model Building and Validation
After intraclass correlation coefficients (ICC) and Pearson’s
correlation analysis, 98 radiomics features were selected for
predicting STAS. Based on LASSO penalized logistic regression
analysis, 18 features showed significant associations between
radiomics and STAS (Figures 5A, B). Then, the top seven
radiomic features with coefficients greater than 0.1 (two first-
order and five second order parameters, including GLCM,
Frontiers in Oncology | www.frontiersin.org 6
GLSZM and GLDM features) were identified by the LR
model (Figure 5C).

Finally, these seven radiomics features were entered into the LR
model for building the radiomics model. Features contained in the
radiomics model, and their coefficients are shown in Table 4. The
radiomics model achieved good performance both in the training
cohort(AUC: 0.812, sensitivity: 75%, and specificity: 78.3%) and the
test cohort(AUC:0.850,; sensitivity:75.8%, and specificity:
76.1%) (Figure 4).

The rad-score of each lesion was calculated using the
following formula:

Rad-Score = 0:585917936 + 0:49*wavelet : LHH_ firstorder _
TotalEnergy + 0:21*

wavelet :HLL _ ngtdm _Complexity + 0:46*

wavelet : LLL _ gldm_
SmallDependenceHighGrayLevelEmphasis + 1:28*

log : sigma:6:0:mm:3D_ glcm _MCC + 0:78*gradient _ glcm_
Correlation+

0:30*original _ glszm _ SmallAreaEmphasis + 0:77*original _
firstorder _Minimum

The rad scores for both the training and test sets are shown in
Figure S1. STAS-positive tumors had significantly higher rad-
scores than STAS-negative tumors in both the training and
validation sets (p <0.001).
B CA

FIGURE 3 | Spread through air spaces in a 52-year-old woman with papillary adenocarcinoma. (A) Axial CT image presenting a slightly lobulated, solid tumor in the
right upper lobe (arrow). (B, C) Photomicrographs showing detached papillary clusters of tumor cells (arrows) in the alveolar space beyond the edge of the main
tumor (*). Hematoxylin-eosin staining, magnification x50 (B), x100 (C).
TABLE 2 | Features included in the clinical-CT model and their coefficients.

Estimate Std. Error z value Pr (>|z|)

(Intercept) -1.10 1.25 -0.88 0.378
Sex 0.06 0.25 0.24 0.811
Gender 0.01 0.01 -0.18 0.861
Smoking 0.61 0.37 1.68 0.093

Size 0.03 0.02 1.70 0.089
GGO ratio -1.59 0.99 -1.62 0.106
Solid nodule 0.65 0.99 0.66 0.509
mGGO -0.25 0.71 -0.35 0.723
July 2022 | Volume 12 | Article
GGOs, ground-glass opacities; mGGO, mix GGO.
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Performance Comparison Among
Different Models
The MixModel of a comprehensive nomogram model was
developed with the retain clinical CT characteristics(including
age, gender, smoking history, diameter, density and GGO ratio)
and rad-score(Figure 6), and showed AUCs of 0.822 and 0.865 in
Frontiers in Oncology | www.frontiersin.org 7
the training and test cohorts, respectively. Features contained in
Mixmodel and their coefficients are listed inTable 5. Subsequently,
we separately compared AUCs among MixModel, clinical-CT
model and radiomics model (Figure 4). Both in the training
cohort and the test cohort, the MixModel showed improvement
in diagnostic ability compared with the clinical-CT model and
BA

FIGURE 4 | Performances of the three models in the training (A) and test (B) groups.
B CA

FIGURE 5 | Least absolute shrinkage and selection operator (LASSO) logistic regression of radiomics features (A) and the regularization parameter l (B). (C) The
feature weights of selected radiomics features.
TABLE 3 | Comparison of selected clinical and CT features between LUADs with STAS and those without STAS in the training and test cohorts.

Train cohort Test cohort

STAS(+) N=136 STAS(-) N=180 P value STAS(+) N=33 STAS(-) N=46 P value

Gender 75 (55.1%) 92 (51.1%) 0.496 18 (54.4%) 20 (43.5%) 0.368
Age 59.4 ± 10.2 58.2 ± 10.3 0.310 60.0 ± 11.1 58.9 ± 9.1 0.660
Smoking 25 (18.4%) 22 (12.2%) 0.151 9 (27.3%) 7 (15.2%) 0.258
Size 21.3 ± 6.3 18 ± 6.7 <0.001 21.7 ± 5.9 18.2 ± 6.9 0.019*
GGO ratio 0.08 ± 0.20 0.38 ± 0.42 <0.001 0.08 ± 0.22 0.45 ± 0.40 <0.001*
Solid nodule 123 (55.6%) 100 (55.6%) <0.001 29 (87.9%) 19 (41.3%) <0.001*
mGGO 9 (6.6%) 49 (27.2%) <0.001 4 (12.1%) 22 (47.8%) 0.001*
July
 2022 | Volume 12 | Article
*P<0.05 based on comparisons between the two groups. Data are mean ± SD. STAS, spread through air spaces; STAS+, presence of spread through air spaces; STAS-, absence of
spread through air spaces,GGOs, ground-glass opacities; mGGO, mix GGO.
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radiomics model. In addition, the AUC of radiomics model was
larger than that of the clinical-CT model in both cohorts (0.812 vs
0.721, p<0.001; 0.850 vs 0.804, p=0.228).

The results of confoundermatrix analysis in the training and test sets
in MixModel, and the clinical-CT and radiomics models are
summarized in Table 6. The Mixmodel model showed the highest
accuracy (number of correct predictions divided by that of total
predictions)amongthe threemodels in thetrainingsetandin the test set.

Calibration Analysis and Clinical Use
For the radiomics model, calibration curve analysis showed P values
of 0.954 and0.792 in the training and test sets, respectively, indicating
a good degree offit for the model in both sets (Figure S2). Similarly,
Frontiers in Oncology | www.frontiersin.org 8
the clinical-CT model also showed good calibration abilities in both
the training and test sets (Figure S2). The clinical usefulness of the
three predictive models were examined by decision curve analysis
(Figure S3). Compared with the treat-all and treat-none models,
MixModel, and theclinical-CTandradiomicsmodels couldbringnet
benefits to patients, among which the radiomics model had the best
benefit, while the clinical-CT model had the lowest.
DISCUSSION

In this study, we developed a CT-based radiomics model with good
performance, which was superior to the clinical-CT model
TABLE 4 | Features included in the radiomics model and their coefficients.

Estimate Std. Error z value Pr (>|z|)

(Intercept) -0.76 0.20 -3.82 <0.001
wavelet.LHH_firstorder_TotalEnergy 0.49 0.20 2.50 0.012
wavelet.HLL_ngtdm_Complexity 0.21 0.186 1.15 0.249
wavelet.LLL_gldm_SmallDependenceHighGrayLevelEmphasis 0.46 0.28 1.68 0.093
log.sigma.6.0.mm.3D_glcm_MCC 1.28 0.52 2.46 0.014
gradient_glcm_Correlation 0.78 0.18 4.23 <0.001
original_glszm_SmallAreaEmphasis 0.30 0.23 1.30 0.194
original_firstorder_Minimum 0.77 0.20 3.73 <0.001
July 20
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FIGURE 6 | (A) Nomogram of MixModel for predicting presence of spread through air spaces(STAS). For each patient, draw a vertical line between the variable value
and the corresponding point line, and then assign a score for each variable based on the clinical and imaging characteristics to obtain a total score. The risk of STAS can
be predicted according to the total score. (B) Calibration curve for the MixModel in training cohort. (C) Calibration curve for the MixModel in validation cohort.
TABLE 5 | Features included in Mixmodel and their coefficients.

Estimate Std. Error z value Pr (>|z|)

(Intercept) -2.4 1.4 -1.8 0.08
Sex -0.1 0.3 -0.2 0.8
Age 0.02 0.0 -0.1 0.9
Smoking 0.4 0.4 1.1 0.3
Size 0.0 0.0 -0.8 0.4
GGOradio -0.4 1.1 -0.4 0.7
density_solid 0.4 1.1 0.4 0.7
density_mGGO 0.1 0.8 0.1 0.9
radiomics_score 5.1 0.7 7.1 0.0
GGOs, ground-glass opacities; mGGO, mix GGO
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established by demographic characteristics and selected CT features,
indicating the discrimination value of radiomics features for STAS
positivity in IA-stage LUAD cases before surgery. Furthermore,
MixModel also outperformed the clinical-CT model, presenting a
higher value in predicting STAS. This report provides a powerful tool
for preoperative decision-making in early-stage LUAD patients

As expected, this study showed that STAS-positive tumors
tended to be larger, solid tumors with reduced GGO ratio on CT
images, which was consistent with previous studies (8–11). In
addition, Kim et al. (11) found that a predictive model using the
percentage of the solid component could achieve an AUC of 0.77 for
STAS detection. In this study, the clinical-CT model also had a
similar AUC of 0.721 in the training cohort, and an AUC of 0.804 in
the test cohort. The clues behind the associations of imaging
features with STAS could be found in pathological findings.
Several studies have revealed the connections between STAS and
pathological characteristics (28, 29). Similar to previous studies (28),
STAS-positive tumors in the present study had a high frequency of
micropapillary, papillary or solid pattern growth, which might
partially explain the association of STAS with solid tumor
predominance on CT images. This study also found that STAS-
positive tumors tended to be along positive resection margin and
pleural invasion. In addition, the current study further analyzed the
correlation between genetic mutations and STAS. We found that
STAS positivity was associated with lower incidence of EGFR
mutations and higher incidence of ALK mutations. Meanwhile,
previous investigations have confirmed that the occurrence of
GGOs is significantly associated with EGFR mutations (30) and
the presence of solid nodules is one of the vital CT features of ALK
rearrangement in LUAD (31). Thus, taken together, we might
reasonably consider that STAS could be a potential factor in
Frontiers in Oncology | www.frontiersin.org 9
tumor aggressiveness. The larger size and solid nature on CT
scans in this study supported such biological behavior.

In this study, the AUCs of the radiomics model were 0.812 and
0.850 in the training and test sets, respectively. Totally, seven
features with coefficients >0.1 were selected for the tumors,
including three first-order and seven second order indexes,
including GLCM, GLSZM and GLDM features. First-order
statistics are defined as the distribution of voxel intensity within
the image region delineated by the mask through commonly used
andbasicmetrics, while second order parameters involve the spatial
position relationship with voxel intensity. Accordingly, many gray
level features inferring intratumor heterogeneity were included in
the radiomics model, suggesting that gray level features can
contribute to the high diagnostic accuracy observed. Moreover,
the present results demonstrated that the firstorder_Minimum
feature was closely related to STAS, with the highest estimate
coefficient (0.77) among the selected first-order parameters. The
firstorder_Minimum feature referred to the lowest gray level
intensity within the tumor, and STAS-positive tumors had higher
firstorder_Minimum values than STAS-negative tumors.
Therefore, these findings suggested that STAS-positive tumors
tend to be more heterogeneous and solid components. Similarly,
previous reports (18, 19) have also shown correlations between
radiomics features representinggray level characteristics andSTAS-
positive tumors, such as Size-zone non-uniformity and Grey level
variance. In addition, as shown in our clinical-CTmodel, the solid-
density type and lower GGO ratio were the most critical features
determining STAS risk. Since the automatic extraction of radiomics
features by computer ismore objective and accurate than subjective
and manual measurements, our study confirms the reliability and
interpretability of the features extracted by the radiomics analysis.
TABLE 6 | Confounder matrix for the training and testing sets in the three models.

Predicted results Actual results Accuracy (%) Sensitivity (%) Specificity (%)

STAS (-) STAS (+)

Clinical-CT model
Training data set 65.2 69.9 61.7
STAS(-) 111 41
STAS(+) 69 95
Testing data set 74.7 72.7 76.1
STAS(-) 35 9
STAS(+) 11 24

Radiomics model
Training data set 76.9 75 78.3
STAS(-) 141 34
STAS(+) 39 102
Testing data set 76 75.8 76.1
STAS(-) 35 8
STAS(+) 11 25

MixModel
Training data set 78.5 75 81.1
STAS(-) 146 34
STAS(+) 34 102
Testing data set 79.7 74.3 80.4
STAS(-) 37 7
STAS(+) 9 26
July 2022 | Volume 12
Rows correspond to the prediction of the logistic algorithm, and columns to known outcomes. STAS, spread through air spaces; STAS+, presence of spread through air spaces; STAS-,
absence of spread through air spaces.
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Two previous studies have explored the relationships between
CT-based radiomics features and STAS in lung adenocarcinomas
(18, 19). Chen et al. (19) developed a Naïve Bayes model using five
radiomics features to predict STAS that achieved AUCs of 0.63 and
0.69 in the internal and external validation sets, respectively.
Another report by Jiang et al. (18) built a random forest model
using 12 CT-based radiomics features and showed a good AUC of
0.754 for predicting STAS. Our radiomics model established by LR
outperformed those in the above two studies for STAS prediction
(0.828,0.848). In addition to the differences in modeling
methodologies, the discrepancy among the three studies might be
related to patient inclusion criteria, sample size, and different data
compositions. Chen et al. included both stage IA and IB
adenocarcinomas in their study, while Jiang et al. analyzed LUAD
patients with no TNM stage restriction. Meanwhile, only stage IA
adenocarcinoma (T1a-cN0M0) patients were included in the
present study. In addition, the number of STAS-positive patients
in this investigation was twice those reported in the above two
studies. In addition, STAS-positive tumors accounted for nearly
50% of all cases in this study, while the STAS-positive rates in the
above two studies were less than 30%. Therefore, further studies
with larger samples and better design are needed to confirm the
present results.

There were several limitations in this research. Firstly, since this
was a single-center retrospective study, the present radiomics model
wasnotverifiedbyexternaldata.Thus, furthermulticenter studies are
needed to confirm our results. Secondly, our study only included
patients who underwent surgery for removing tumors, which might
exclude cases with small tumors. However, tumor lesions larger than
3 cm were ruled out. Thirdly, since CT was performed on two
different scanners, image acquisition protocolswere slightly different,
whichmight lead to somebias. Fourthly,weonly included the specific
CT features supported by previous reports (8–11), so the results
might not represent the total CT morphological characteristics of
tumors. However, the associations of other CT findings (such as
satellite nodules) in LUAD with STAS remain controversial (32).
Moreover, we calculated the mean and standard deviation in the
training and testing sets, separately, but it might be better for clinical
deployment to determine all model hyperparameters in the training
set alone.Finally, since thepatientswereexamined from2015to2021,
whose follow-up time was limited, we did not evaluate the effects of
STAS on patient outcome.

In conclusion, theCT-based radiomicsmodel showed a satisfying
diagnostic performance for preoperatively predicting STAS, which
can provide decision-making support for treatment planning in
stage-IA LUAD. Besides, this radiomics model outperformed the
clinical-CT model, indicating the additional value of radiomics
features for predicting STAS positivity in LUAD. However, since
thiswas a single-center retrospective study, these conclusions need to
be confirmed in further prospective multicenter studies.
Frontiers in Oncology | www.frontiersin.org 10
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