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Objective: The aim of this study was to develop and validate a radiomics model to predict
treatment response in patients with advanced gastric cancer (AGC) sensitive to
neoadjuvant therapies and verify its generalization among different regimens, including
neoadjuvant chemotherapy (NAC) and molecular targeted therapy.

Materials and Methods: A total of 373 patients with AGC receiving neoadjuvant
therapies were enrolled from five cohorts. Four cohorts of patients received different
regimens of NAC, including three retrospective cohorts (training cohort and internal and
external validation cohorts) and a prospective Dragon III cohort (NCT03636893). Another
prospective SOXA (apatinib in combination with S-1 and oxaliplatin) cohort received
neoadjuvant molecular targeted therapy (ChiCTR-OPC-16010061). All patients
underwent computed tomography before treatment, and thereafter, tumor regression
grade (TRG) was assessed. The primary tumor was delineated, and 2,452 radiomics
features were extracted for each patient. Mutual information and random forest were used
for dimensionality reduction and modeling. The performance of the radiomics model to
predict TRG under different neoadjuvant therapies was evaluated.

Results: There were 28 radiomics features selected. The radiomics model showed
generalization to predict TRG for AGC patients across different NAC regimens, with areas
under the curve (AUCs) (95% interval confidence) of 0.82 (0.76~0.90), 0.77 (0.63~0.91),
0.78 (0.66~0.89), and 0.72 (0.66~0.89) in the four cohorts, with no statistical difference
observed (all p > 0.05). However, the radiomics model showed poor predictive value on
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the SOXA cohort [AUC, 0.50 (0.27~0.73)], which was significantly worse than that in the
training cohort (p = 0.010).

Conclusion: Radiomics is generalizable to predict TRG for AGC patients receiving NAC
treatments, which is beneficial to transform appropriate treatment, especially for those
insensitive to NAC.
Keywords: radiomics, gastric cancer, neoadjuvant therapy, tumor regression grade, generalization
INTRODUCTION

Gastric cancer (GC) is a serious health problem in the world,
causing an estimated 783,000 deaths in 2018 (1). Despite surgery
being the only curative approach, more than half of cases are
initially diagnosed as advanced disease, with a limited 5-year
survival of 20%–30% (2). Meanwhile, even after R0 gastrectomy,
relapse rates remain high, in the range of 40%–60% (2).

Neoadjuvant chemotherapy (NAC) is beneficial to improving
R0 resection and prognosis in patients with advanced gastric cancer
(AGC) by downstaging the tumor, eradicating micrometastasis, and
reducing the risk of recurrence (3). Compared with only about half
of patients with a good condition suitable to receive postoperative
chemotherapy, NAC (the preoperative part of perioperative
chemotherapy) is feasible to most patients, highlighting its
importance (4). Although accumulated studies have been made to
investigate regimens with more safety and effectiveness since the
landmark MAGIC study launched in 2006, a considerable
proportion of cases are insensitive to NAC, leaving unnecessary
cytotoxicity to those patients (4–9). Even for the newly reported
triplet FLOT regimen (docetaxel, oxaliplatin, fluorouracil, and
leucovorin), which is under impassioned discussion as the new
standard for NAC, completed or subtotal pathological regression
was achieved in only 37% of cases (6). Uniform standard of care is
an absence in NAC even if great progress has been achieved in this
area (10, 11). Besides, the emergence of treatments for precision
medicine, such as molecular targeted therapy and immunotherapy,
brings vitality to neoadjuvant approaches (12). The choice of
appropriate treatment is beset with difficulties where controversial
results were observed from different studies (12). It is of urgent need
to find an easy-to-use and noninvasive tool to predict tumor
sensitivity to different neoadjuvant regimens.

Transformation in artificial intelligence (AI) has provoked a
new area of medical image analysis named radiomics, which
noninvasively provides insight into tumor heterogeneity by
extracting and analyzing high-throughput image features
(13, 14). Radiomics extends the scope of biopsy, providing
possibilities in dynamic surveillance, prognosis prediction, and
ncer; AI, artificial intelligence; AUC,
antigen 19-9; CEA, carcinoembryonic
ted tomography; GC, gastric cancer;
nitiative; ICC, intraclass correlation
apy; NPV, negative predictive value;
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treatment decision (15). Especially, compared with conventional
imaging metrics, radiomics effectively gauges tumor
microenvironment status, providing tailored treatment for
individuals (16–18). Radiomics also allows for predicting
treatment sensitivity to non–small cell lung cancer treated with
different systemic anticancer therapies (19). Accumulated
evidence has identified the prognostic value of radiomics in
evaluating tumor sensitivity for GC, but there is a lack of clear
elucidation whether radiomics is generalizable among different
anticancer regimens (20–22).

In this study, we aimed to predict treatment response for GC
patients sensitive to neoadjuvant therapies using radiomics and
verify the generalization of this AI technology among different
regimens, including NAC regimens and molecular targeted therapy.
MATERIALS AND METHODS

Themainobjectivewas to testwhether the radiomicsmodelwebuilt
was generalizable to detect AGC tumors sensitive to neoadjuvant
approaches. We firstly trained and tested the radiomics model on
baseline CT images for patients treated with the EOX regimen
(epirubicin, oxaliplatin, and capecitabine). Then, we sought to
investigate whether this model was practical on real-world data
by applying it to predict therapeutic response on a clinical trial [the
Dragon III study (23), ClinicalTrials.gov: NCT03636893] and a
retrospective external validation cohort incorporated with three
mixture NAC regimens. We finally aimed to validate whether our
radiomics model could predict treatment response to molecular
targeted therapy from another clinical trial (ChiCTR.gov.cn:
ChiCTR-OPC-16010061) (24).

Participants
Patients consecutively enrolled in this study were histopathologically
diagnosed as having gastric adenocarcinoma and with advanced
disease (cT2-4a/bNxM0) based on contrast-enhanced CT (CECT)
images. No prior treatment before NAC was demanded, and all
patients underwent CECT scans less than 3 weeks before treatment
started. Meanwhile, all patients enrolled were tolerant of NAC and
have completed the planned preoperative schedule. The enrollment
for all patients is presented in Figure 1.

Patients receiving the triplet EOX regimen were retrospectively
recruited fromMay 2009 to September 2017. A total of 200 patients
(women, 64; mean age, 59.5 ± 9.7 years) were finally recruited and
were divided into a training cohort and an internal validation cohort
to construct the radiomics model at a ratio of 2:1. Therefore, there
February 2022 | Volume 12 | Article 758863
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were 134 and 66 patients in the training and internal validation
cohorts, respectively.

The Dragon III study was sought to compare the efficacy
between the doublet SOX regimen (S-1 and oxaliplatin) and the
triplet FLOT regimen. This clinical trial was conducted from
August 2018 to November 2019. Finally, there were 71 patients
(women, 24; mean age, 61.3 ± 9.9 years) enrolled in this study,
and three patients were excluded due to poor image quality of
CECT. Those patients receiving the two regimens were
considered as an entity and named as the Dragon III cohort.
There were 27 and 44 patients receiving the SOX regimen and
the FLOT regimen in the Dragon III cohort, respectively.

Patients in the external validation cohort were from another
tertiary referral hospital (Peking University Cancer Hospital
and Institute) and were retrospectively recruited from January
2018 to December 2019. In this cohort, three doublet NAC
regimens were used, including the SOX regimen, the XELOX
regimen (oxaliplatin and capecitabine), and the FOLFOX regimen
(oxaliplatin, folinic acid, and fluorouracil). There were 75 AGC
patients (women, 24; mean age, 59.4 ± 10.5 years) enrolled in this
cohort. There were 42, 30, and 3 patients receiving the SOX, the
XELOX, and the FOLFOX regimens, respectively.

Patients in the clinical trial (ChiCTR.gov.cn: ChiCTR-OPC-
16010061) were recruited from December 2016 to August 2018.
The single-arm, open-label, phase II trial was designed to
investigate the added value of apatinib in combination with
SOX (the SOXA regimen) to improve the pathologic response of
AGC patients. Two patients were excluded due to poor image
quality of CECT, and 27 patients (women, 10; mean age, 59.3 ±
8.0 years) were enrolled in this study as the SOXA cohort.

This study was approved by the ethics committee of Ruijin
Hospital and Peking University Cancer Hospital and Institute. For
patients in the training, internal validation, and external validation
cohorts, written informed consent was waived due to the
retrospective nature. Baseline clinical data for all patients included
gender, age, tumor invasion, lymph node status, tumor location,
Frontiers in Oncology | www.frontiersin.org 3
tumor size (cm), differentiation status, carcinoembryonic antigen
(CEA), and carbohydrate antigen 19-9 (CA19-9). Definition for
those indices is presented in the Supplementary Material S1.

Protocols for Neoadjuvant Regimens
For patients receiving the SOX and FLOT regimens in the
DRAGON III study (i.e., the DRAGON III cohort) and
patients receiving the SOXA regimen (the SOXA cohort), the
protocols are described in the corresponding clinical trials (23,
24). Treatment protocols for patients receiving the EOX regimen
and patients in the external validation cohort are presented in
Supplementary Material S2.

Imaging Protocol
All patients underwent abdomen CECT scanning before treatment.
The information and parameters for involved CT scanners are
presented in Supplementary Table S1. The images on portal-venous
and delayed phases were anonymously retrieved for further analysis.

Tumor Regression Grade
Evaluation of tumor response to treatment was in accordance with
Ryan criteria (25) after the completion of planned neoadjuvant
courses, where completed response represents no viable cancer
cells, moderate response represents single cells or small groups of
cancer cells, minimal response represents residual cancer
outgrown by fibrosis, and poor response represents minimal or
no tumor kill (extensive residual cancer). Two pathologists, who
had 7 and 10 years of experience, respectively, evaluated tumor
response and resolved disputes with consensus. In this study, we
considered patients with a completed response or moderate
response to neoadjuvant treatment as responders and minimal
response or poor response as non-responders.

Tumor Delineation and Feature Extraction
Before segmentation, all images were resampled into a uniform
voxel space of 1 * 1 * 1 mm. The volume of interest (VOI) was
FIGURE 1 | Flowchart and patient enrollment of this study. AGC, advanced gastric cancer. For the regimens, EOX (epirubicin, oxaliplatin, and capecitabine), SOXA
(apatinib in combination with S-1 and oxaliplatin).
February 2022 | Volume 12 | Article 758863
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performed on the primary tumor by open-source software (3d-
slicer, version 4.10.2) on baseline axial images from portal-
venous and delayed phases along with tumor boundary slice by
slice and omitting the first and last slices to avoid potential
partial volume effect. Radiomics features were extracted from an
in-house research platform (Syngo Via, Version VB20, Research
Frontier, Siemens Healthineer) (26).

A total of 110 original radiomics features (without any
preprocessing producers applied) were extracted from each
phase. In addition, 1,116 features were calculated after
preprocessing for each phase. Therefore, there were 2,452
radiomics features finally extracted for each patient. All
features were compliant with the benchmarks of the image
biomarker standardization initiative (IBSI) (27). Detailed
information is presented in Supplementary Material S3.

To guarantee reproducibility of the radiomics features, we
performed reliability analysis by repeatedly delineating the
tumors by two radiologists (with 10 years and 5 years of
experience in abdominal imaging, respectively) on images from
portal-venous and delayed phases from 70 randomly selected
patients from the training cohort. The two radiologists were
aware of GC but unaware of pathological and clinical results.
Intraclass correlation coefficient (ICC) analysis was used for
reliability analysis, and features with ICC >0.80 were
considered robust and remained for further analysis.

Dimensionality Reduction, Radiomics
Score Generation, and Modeling
To avoid dimensionality curse and overfitting, mutual information
that measures the mutual dependence between features and label
was used to select candidate features in the training cohort. Random
forest (RF), a widely used ensemble machine learning algorithm,
was chosen in our studies for radiomics score generation and model
establishment (28,29). RF was generally reported to own the best
discriminative and diagnostic power in radiomics studies due to
their ability to handle high dimensional features and strong
generalization. Grid search with 10-fold cross-validation was
implemented for parameter tunings in the training cohort. The
contribution of features to modeling was ranked by feature
importance calculated by Gini-impurity. Subsequently, the
radiomics scores that were generated by the established model for
every patient were calculated and included for further analysis. The
performance of the radiomics model was then verified in the
internal validation cohort.

Generalization Analysis
To investigate the generalization of our radiomics model among
different regimens, we further applied the model to predicting
TRG for patients in the DRAGON III cohort and the external
validation cohort (each included two and three different
regimens). Besides, to test whether the model was generalizable
to predict treatment response undergoing molecular targeted
therapy, we used it to assess TRG on patients in the SOXA cohort.

Model Comparison
For comparison, we evaluated the degree of tumor response on CT
images in accordance with the Response Evaluation Criteria in Solid
Frontiers in Oncology | www.frontiersin.org 4
Tumors (RECIST, version 1.1) (30) for patients receiving the EOX
regimen and compared its performance with our radiomics model.
In addition, the clinical model was built in the training cohort and
validated in corresponding cohorts as the radiomics model did by
incorporating significant clinical indices into the multivariate
logistic regression model after univariate analysis. Furthermore,
we also integrated the radiomics scores and significant clinical
characteristics into a combined model to investigate whether there
was any improvement to predict TRG for AGC patients in
different regimens.

Subgroup Analysis
Given the SOX regimen and the FLOT regimen indicating no
significant TRG difference in the Dragon III study, which was
inconsistent with previous studies, we emphasized the comparison
between the SOX regimen and the FLOT regimen in the Dragon III
cohort. We were also interested in the added value of apatinib in the
SOXA cohort compared with patients receiving the SOX regimen
only and compared the difference between the two regimens. For
patients receiving the SOX regimen, only those recruited from the
randomized controlled trial (RCT) clinical trial (i.e., patients in the
Dragon III cohort) were considered to match the single-arm SOXA
clinical trial. To avoid the influence of response rate within different
cohorts, we further split responders and non-responders in each
regimen and independently compared them between the regimens.
To simplify the analysis, we analyzed the top 10 features in
subgroup analysis according to the importance of ranking.

Statistical Analysis
Continuous variables were compared by independent-samples t-test
or Mann–Whitney U test based on their distribution. Categorical
variables were compared using c2 or Fisher’s exact test. For model
assessment, discrimination ability included receiver operating
characteristic (ROC) curve and area under the curve (AUC),
sensitivity, specificity, and accuracy were performed for all
models. The optimal threshold was selected based on the Youden
index for the radiomics score in the training cohort, and Delong test
was implemented for the AUC comparison between models in each
cohort. The reliability of those models was evaluated by Cohens’
kappa index. An individualized nomogram and a decision curve
were implemented to present the clinical utility of our models. The
goodness of fit of all models was assessed by calibration curve and
Briers score. The radiomics analysis was compliant with published
guidance, and we performed a radiomics quality score (RQS) for
our study to assess the quality of our study (15). All statistical
analyses were performed with software R (version 3.6.0, http://www.
r-project.org) and Python Scikit-learn package (version 3.7, Scikit-
learn version 0.24.1, https://scikit-learn.org/stable/index.html).
Package resources are listed in Supplementary Table S2.
Statistical significance was considered as a two-sided p < 0.05.
RESULTS

Clinical Characteristics
Demographic data in each cohort are presented in Table 1. For
patients receiving the EOX regimen, there was no response bias
February 2022 | Volume 12 | Article 758863

http://www.r-project.org
http://www.r-project.org
https://scikit-learn.org/stable/index.html
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Radiomics Predicting Neoadjuvant Chemotherapy Response
between the training cohort and the internal validation cohort
(73.1% vs. 75.8%, p = 0.691). Univariate analysis for
differentiation status was not performed, given 28% of cases
were not accurately evaluated by a specimen from the endoscopic
biopsy. For other clinical indices, only age and tumor size were
statistically different between responders and non-responders in
the training cohort (p = 0.023 and p = 0.020, respectively).
Gender, tumor invasion, lymph node status, tumor location,
CA19-9, and CEA showed no statistical difference (all p > 0.05,
see Supplementary Table S3). Finally, we integrated age and
tumor size as clinical risk factors into a clinical model using
multivariate logistic regression.

Dimensionality Reduction
The average ICCs for features from the portal-venous and the
delayed phase images were 0.75 and 0.80, respectively. There
were 668 and 776 radiomics features with a threshold
of 0.80 in each phase, and finally, a total of 1,444 radiomics
features were considered as robust and remained for further
dimensionality reduction.

A total of 741 radiomics features showed non-zero mutual
information. Subsequently, 164 radiomics features were selected
with a threshold value of 0.05. Finally, 28 features with the
highest importance ranking were used for modeling after RF
(Figure 2). The RQS of our study was 30 (83.3% of ideal score),
Frontiers in Oncology | www.frontiersin.org 5
guaranteeing good quality of the radiomics process
(Supplementary Table S4).

Modeling
We utilized the 28 features to construct a radiomics model to
predict TRG for AGC patients. The radiomics score of the training
cohort was 0.600. The model achieved AUCs of 0.82 (95% CI,
0.76~0.90) and 0.77 (95% CI, 0.63~0.91) in the training and internal
validation cohorts in patients treated with the EOX regimen.
Furthermore, the radiomics model showed generalizability to
other NAC regimens because similar performance was observed
[for the Dragon III cohort and the external validation cohort, AUCs
of 0.78 (95% CI, 0.66~0.89) and 0.72 (95% CI, 0.66~0.89),
respectively]. Delong test indicated that no significant difference
was found when compared with the training cohort (p = 0.571 and
p = 0.216, respectively). However, the radiomics model showed a
poor predictive value for TRG in the SOXA cohort [AUC of 0.50
(95% CI, 0.27~0.73) vs. 0.82 in the training cohort, p = 0.010].
Detailed information for the performance of the radiomics model in
each cohort is presented inTable 2. The radiomics score for patients
in each cohort is shown in Supplementary Figure S1. The Kappa
indices of the radiomics models of the training cohort, the internal
validation cohort, the Dragon III cohort, the external validation
cohort, and the SOXA cohort were 0.485, 0.365, 0.221, 0.156, and
0.069, respectively.
TABLE 1 | Demographic data for all patients in each cohort.

The training cohort
(n = 134)

The internal validation
cohort (n = 66)

The Dragon III cohort
(n = 71)

The external validation
cohort (n = 75)

The SOXA cohort
(n = 27)

p
value

TRG (response, %) 98 (73.1%) 50 (75.8%) 13 (18.3%) 23 (30.7%) 16 (59.3%) <0.001
Regimens EOX EOX SOX and FLOT SOX, XELOX and FOLFOX apatinib plus SOX
Age (years) 58.4 ± 10.2 60.3 ± 8.8 61.3 ± 9.9 59.4 ± 10.5 59.3 ± 8.0 0.328
Gender (female, %) 41 (30.6%) 23 (34.8%) 24 (33.8%) 25 (33.3%) 9 (33.3%) 0.977
Tumor invasion <0.001
cT2 0 (0.0%) 0 (0.0%) 0 (0.0%) 6 (8.0%) 0 (0.0%)
cT3 0 (0.0%) 0 (0.0%) 0 (0.0%) 23 (28%) 0 (0.0%)
cT4 134 (100.0%) 66 (100%) 71 (100.0%) 46 (61.4%) 27 (100.0%)
Lymph node status <0.001
cN0 0 (0.0%) 0 (0.0%) 4 (5.6%) 3 (4.0%) 0 (0.0%)
cN1 23 (17.2%) 5 (7.6%) 10 (14.1%) 26 (34.7%) 7 (25.9%)
cN2 55 (41.0%) 29 (43.9%) 48 (67.6%) 29 (38.7%) 15 (55.6%)
cN3 56 (41.8%) 32 (48.5%) 9 (12.7%) 17 (22.7%) 5 (18.5%)
Tumor size (cm) 6.46 ± 2.32 7.16 ± 1.90 5.64 ± 1.96 5.23 ± 1.64 4.83 ± 2.38 <0.001
Tumor location 0.002
Upper 33 (24.6%) 16 (24.2%) 23 (32.4%) 18 (24.0%) 14 (51.9%)
Middle 38 (28.4%) 18 (27.3%) 4 (5.6%) 15 (20.0%) 3 (11.1%)
Lower 41 (30.6%) 19 (28.8%) 36 (50.7%) 28 (37.3%) 5 (18.5%)
Diffuse 22 (16.4%) 13 (19.7%) 9 (11.3%) 14 (18.7%) 5 (18.5%)
Differentiation status <0.001
Well differentiated 2 (1.5%) 0 (0%) 0 (0%) 1 (1.3%) 1 (3.7%)
Moderately
differentiated

11 (8.2%) 4 (6.1%) 9 (12.7%) 41 (54.7%) 3 (11.1%)

Poorly differentiated 78 (58.2%) 35 (53.0%) 57 (80.3%) 33 (44%) 15 (55.6%)
SRCC 8 (6.0%) 6 (9.1%) 1 (1.4%) 0 (0%) 1 (3.7%)
Not evaluated 35 (26.1%) 21 (31.8%) 4 (5.6%) 0 (0%) 7 (25.9%)
CA19-9 (positive, %) 43 (32.1%) 16 (24.2%) 13 (18.3%) 7 (9.3%) 5 (18.5%) 0.005
CEA (positive, %) 39 (29.1%) 24 (36.4%) 18 (25.4%) 12 (16.2%) 5 (18.5%) 0.061
February 2022
 | Volume 12 | Article
CA19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; SRCC, signet-ring cell carcinoma; TRG, tumor regression grade. For the regimens, EOX (epirubicin, oxaliplatin, and
capecitabine), FOLFOX (oxaliplatin, folinic acid and 5-fluorouracil), FLOT (5-fluorouracil, leucovorin, docetaxel and oxaliplatin), SOX (S-1 and oxaliplatin), SOXA (apatinib in combination with
SOX), XELOX (oxaliplatin and capecitabine).
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Model Comparison
The RECIST 1.1 showed poor performance to predict TRG,
which reached AUCs of 0.53 (95% CI, 0.44~0.62) and 0.67 (95%
CI, 0.53~0.81) in the training and internal validation cohorts,
respectively. The radiomics model in the training cohort was
significantly better than the RECIST model (p < 0.001), but no
statistical difference was found in the internal validation cohort
(p = 0.338). Detailed information on discriminative metrics for
the RECISTmodels is presented in Table 2. The Kappa indices of
the RECIST models of the training cohort and the internal
validation cohort were 0.057 and 0.316, respectively.

The clinical model, incorporating age and tumor size in
multivariate logistic regression, achieved AUCs of 0.69 (95% CI,
0.60~0.79) and 0.59 (95% CI, 0.43~0.74) in the training and internal
validation cohorts for patients receiving the EOX regimen. For the
Dragon III and external validation cohorts, the performance of the
clinical models was 0.60 (95% CI, 0.46~0.74) and 0.68 (95% CI,
0.56~0.81), respectively. For patients receiving NAC regimens,
the performance of the radiomics models was better than that of
the clinical models to predict TRG in each cohort, although the
marginal difference was only observed in the training cohort and
the Dragon III cohort (p = 0.052 and p = 0.057, respectively). On the
contrary, the clinical model showed a higher predictive value
compared with the radiomics model in the SOXA cohort, with an
AUC of 0.57 (95% CI, 0.34~0.81), and no statistical difference was
found for the comparison (p = 0.664). Detailed information on
discriminative metrics for the clinical models is presented in
Table 2. The Kappa indices of the clinical models of the training
cohort, the internal validation cohort, the Dragon III cohort, the
external validation cohort, and the SOXA cohort were 0.269, 0.097,
0.145, 0.002, and 0.080, respectively.

The combined models that integrated the radiomics score and
clinical risk factors showed limited improvement compared with
the radiomics models in each cohort (Table 2). The results
Frontiers in Oncology | www.frontiersin.org 6
indicated a similar trend observed for the radiomics models,
where a similar predictive power was found for patients receiving
NAC regimens, while significantly declined performance was
found in the SOXA regimen. When compared with the clinical
models, the combined models in the training and internal
validation cohorts presented statistically higher predictive value
to TRG (p = 0.003 and p = 0.030, respectively). The ROC curves
for all models in each cohort are presented in Figure 3. The
Kappa indices of the combined models of the training cohort, the
internal validation cohort, the Dragon III cohort, the external
validation cohort, and the SOXA cohort were 0.521, 0.418, 0.073,
0.002, and 0.119, respectively.

The nomogram indicated that individuals with lower radiomics
scores, younger age, and smaller tumor size are prone to respond to
NAC treatment; the calibration curve revealed that the radiomics
model and the combined model showed better goodness of fit
compared with the clinical model because lower Brier scores were
observed (0.159 and 0.136 vs. 0.182) (Supplementary Figure S2).
The DCA curve indicates that the combined model and the
radiomics model have higher clinical net benefit than the clinical
model (Figure 4, Supplementary Figure S2).

Subgroup Analysis
We further analyzed the distribution difference of radiomics
features in terms of response status between the SOX and FLOT
regimens as well as the SOX and SOXA regimens using top 10
importance ranking features. In the Dragon III cohort, response
rates for patients receiving the SOXandFLOTregimenswere 18.5%
and 18.2%, and there were five and eight responders in each
regimen, respectively. In the non-responder group, no radiomics
features showed a significant difference between the regimens
(Supplementary Figure S3). However, in the responder group,
four radiomics features were statistically different between the two
regimens (Supplementary Figure S4).
FIGURE 2 | Importance ranking for 28 selected radiomics features using random forest The length of the bin and the depth of the color blue represent the important
degree of the radiomics features. The feature name is ordered by the following rule: phase (p or d represents the venous-portal phase or the delayed phase) _ pre-
processing_feature category_feature name. For example, for the first feature, i.e., d_logarithm_firstorder_Median indicates that the feature is named as Median from
the first-order category, with transformation by logarithm.
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The response rate for patients receiving the SOXA regimen was
59.3% (16/27). In the non-responder group, 3 of 10 radiomics features
showed a significant difference, and they were all from the delayed
phase images (Supplementary Figure S5). Intriguingly, those features
also presented significance between the two regimens in the responder
group (Supplementary Figure S6). Apart from that, another
radiomics features also shared a significantly different distribution.
DISCUSSION

In this study, we developed and validated an AI method using
quantitative imaging named radiomics and successfully
predicted TRG for AGC patients treated with NAC, which
showed generalized power among different NAC regimens by
validating its predictive value in the Dragon III cohort and an
external validation cohort. More importantly, radiomics
noninvasively revealed that NAC regimens and molecular
targeted therapy probably shared different pharmacological
effects on tumors. This observation was identified by a
significantly declined performance of the radiomics model in
Frontiers in Oncology | www.frontiersin.org 7
the SOXA cohort and the results from the subgroup analysis.
Our findings are helpful to evaluate the benefit of NAC before
treatment and provide the opportunity to timely adjust to an
appropriate strategy for patients insensitive to NAC.

Previous studies have demonstrated the predictive value of
radiomics in evaluating pathological response after NAC for GC
(21, 31, 32). However, few pieces of research reported the
generalization of radiomics among different regimens except for a
study innon–small cell lungcancer,whichhasfirstdemonstrated that
radiomics could serve as an early indication for different systemic
anticancer therapies (19). To verify whether radiomics could exert
predictive value to NAC for GC, we first trained and validated our
radiomics model in patients treated with the EOX regimen. The
radiomics model constructed by selected 28 radiomics features
achieved a comparable AUC (0.77) in the internal validation
cohort compared with previously reported performance from 0.722
to 0.82 (21, 31, 32). To investigate the generalization of our radiomics
model in neoadjuvant agents, we further applied it on the Dragon III
cohort and external validation cohort including five different NAC
regimens. The radiomics model continued to show its efficacy in the
two cohorts, identifying the generalization of our model. For
comparison, the commonly used RECIST 1.1 criteria only showed
TABLE 2 | Performance of different models in each cohort.

AUC Accuracy Sensitivity Specificity PPV NPV

The training cohort The radiomics model 0.82
(0.76~0.90)

0.78
(0.70~0.84)

0.79
(0.69~0.86)

0.79
(0.62~0.91)

0.92
(0.83~0.96)

0.56
(0.41~0.70)

The RECIST model 0.53
(0.44~0.62)

0.60
(0.51~0.68)

0.67
(0.57~0.76)

0.39
(0.24~0.57)

0.75
(0.64~0.83)

0.30
(0.18~0.45)

The clinical model 0.69
(0.60~0.79)

0.62
(0.53~0.70)

0.55
(0.45~0.65)

0.81
(0.63~0.91)

0.89
(0.77~0.95)

0.40
(0.29~0.52)

The combined
model

0.83
(0.75~0.91)

0.81
(0.74~0.88)

0.88
(0.79~0.93)

0.64
(0.46~0.79)

0.87
(0.78~0.93)

0.66
(0.48~0.80)

The internal validation cohort The radiomics model 0.77
(0.63~0.91)

0.73
(0.60~0.83)

0.74
(0.59~0.85)

0.69
(0.42~0.88)

0.88
(0.74~0.96)

0.46
(0.26~0.67)

The RECIST model 0.67
(0.53~0.81)

0.73
(0.60~0.83)

0.78
(0.64~0.88)

0.56
(0.31~0.79)

0.85
(0.71~0.93)

0.45
(0.24~0.68)

The clinical model 0.59
(0.43~0.74)

0.49
(0.36~0.61)

0.40
(0.27~0.55)

0.75
(0.47~0.92)

0.83
(0.62~0.95)

0.29
(0.16~0.45)

The combined
model

0.78
(0.65~0.92)

0.77
(0.65~0.87)

0.82
(0.68~0.91)

0.63
(0.34~0.84)

0.87
(0.74~0.95)

0.53
(0.30~0.75)

The Dragon III cohort The radiomics model 0.78
(0.66~0.89)

0.70
(0.58~0.81)

0.54 (0.26 0.80) 0.74
(0.61~0.84)

0.32
(0.15~0.55)

0.88
(0.75~0.95)

The clinical model 0.60
(0.46~0.74)

0.42
(0.31~0.55)

0.31
(0.10~0.61)

0.45
(0.32~0.58)

0.11
(0.04~0.27)

0.74
(0.56~0.87)

The combined
model

0.71
(0.59~0.84)

0.63
(0.51~0.75)

0.77
(0.46~0.94)

0.60
(0.47~0.73)

0.30
(0.16~0.49)

0.92
(0.78~0.98)

The external validation
cohort

The radiomics model 0.72
(0.66~0.89)

0.49
(0.38~0.61)

0.91
(0.71~0.99)

0.31
(0.19~0.45)

0.37
(0.25~0.51)

0.89
(0.64~0.98)

The clinical model 0.68
(0.56~0.81)

0.60
(0.48~0.71)

0.74
(0.51~0.89)

0.54
(0.40~0.68)

0.42
(0.27~0.58)

0.82
(0.65~0.93)

The combined
model

0.76
(0.64~0.87)

0.40
(0.29~0.52)

0.96
(0.76~0.99)

0.15
(0.07~0.29)

0.33
(0.23~0.46)

0.89
(0.51~0.99)

The SOXA cohort The radiomics model 0.50
(0.27~0.73)

0.52
(0.32~0.71)

0.44
(0.21~0.69)

0.64 (0.32 0.88) 0.64
(0.32~0.88)

0.44
(0.21~0.69)

The clinical model 0.57
(0.34~0.81)

0.56
(0.35~0.75)

0.63
(0.36~0.84)

0.46
(0.18~0.75)

0.63
(0.36~0.84)

0.46
(0.18~0.75)

The combined
model

0.51
(0.27~0.72)

0.59
(0.39~0.78)

0.75
(0.47~0.92)

0.36
(0.12~0.68)

0.63
(0.39~0.83)

0.50
(0.17~0.83)
February
 2022 | Volume 12
AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value; RECIST, Response Evaluation Criteria in Solid Tumors. The SOXA cohort is defined as the
patients receiving the regimen of apatinib in combination with SOX (S-1 and oxaliplatin).
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limited value to predict tumor response to NAC, urging the
application of our radiomics model as an early prediction tool for
AGC after neoadjuvant treatment. Overall, radiomics shows its
potentiality in early prediction of tumor response for GC patients
receiving NAC, and more importantly, this efficacy is generalizable
among different NAC regimens.

The FLOT regimen is a new candidate NAC approach for AGC
patients. Intriguingly, in the Dragon III study, no significantly
improved response rate was observed between the FLOT and
SOX regimens (23). We also performed a subgroup analysis
between the two regimens to investigate whether the radiomics
Frontiers in Oncology | www.frontiersin.org 8
features could provide evidence for the finding in the clinical trial.
No features were found statistically different in the non-responders
between the two groups, which was consistent with what was
observed in the Dragon III study. However, four radiomics
features demonstrated a significant difference in the responders
between the two groups. Due to the low response rate observed for
the two regimens (18.2% and 18.5% for FLOT and SOX,
respectively), the sample size in the responder subgroup for each
regimen was small, which probably weakened the efficacy of the test.
Therefore, whether there was any tumor heterogeneity for patients
who were sensitive to the regimens remained to be elucidated.
FIGURE 4 | The predictive value of the individualized nomogram to predict tumor regression grade (TRG) for two patients receiving the EOX (epirubicin, oxaliplatin,
and capecitabine) regimen. The two patients had similar clinical baseline information but different insensitivity to neoadjuvant chemotherapy treatment (both were
men, 65 years old, cT4aN2M0, and similar tumor size). The individualized nomogram integrated radiomics score, age, and tumor size successfully predicted the
outcomes of the patients, which mainly relied on the performance of radiomics score.
A B

D E

C

FIGURE 3 | The receiver operator characteristic (ROC) curves for models in each cohort. (A–E) Represents ROC curves of models for patients in the training cohort,
the internal validation cohort, the Dragon III cohort, the external validation cohort, and the SOXA cohort. Rmodel, the radiomics model; Cmodel, the clinical model;
Recmodel, the RECIST model; Combmodel, the combined model. The SOX cohort is defined the patients receiving the regimen of S-1 and oxaliplatin; the SOXA
cohort is defined as the patients receiving the regimen of apatinib in combination with SOX (S-1 and oxaliplatin). AUC, area under the curve.
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Unlikeindistinctivecytotoxicityfromconventionalchemotherapy
drugs, apatinib was an antiangiogenic agent, which highly selectively
targets vascular endothelial growth factor receptor 2 (VEGFR-2)
tyrosine kinase, mediating the growth of the tumor by inhibiting
angiogenesis (33). Apatinib alone exerts its antitumor effects by
inhibiting tumor growth, reducing microvascular density, and
enhancing apoptosis (34). This molecular targeted drug was
considered as third- or subsequent-line therapy for chemotherapy-
refractory advanced ormetastaticGC in phase II and III studies, with
good tolerance and improved survival (35, 36). The synergistic
antineoplastic effects of apatinib combined with chemotherapy
agents were observed in preclinical studies (37, 38), which was
demonstrated in the clinical practice setting, in combination with
preoperative SOX regimen to improve the pathological response of
AGC (24). However, the intrinsic changes in tumor heterogeneity
initiated by apatinib have not been clarified. In this study, the
radiomics model constructed by the NAC regimen performed
poorly in the SOXA cohort, revealing the existence of the underlying
differencebetweenthetwodifferentneoadjuvantapproaches.Wethen
performed a subgroup analysis between patients receiving the SOX
regimen and the SOXA regimen to investigate the added value of
apatinib. Due to the SOXA cohort being a single-arm clinical trial,
patients receiving the SOX regimenswere from theDragon III study.
Three key radiomics features simultaneously expressed differences in
both the responder and non-responder groups, indicating that the
discriminative tumor heterogeneity after the addition of apatinib
could be detected early by quantitative imaging. Meanwhile, the
clinical model maintained a similar performance regardless of
which neoadjuvant approach was taken, laterally highlighting the
importanceof our radiomicsmodel for a discriminative capability for
NAC and molecular targeted therapy. Those findings suggested that
our radiomics model is helpful to screen patients insensitive to NAC
regimensbefore treatmentand thusprovide theopportunity for those
patients to choose appropriate treatment such as molecular targeted
therapy or immunotherapy.

Our study achieved an RQS of 30 (83.3% of ideal score), which is
higher than most radiomics studies (reviews report an average RQS
percentage ranging from 9.4% to 26.1%) (39–42), guaranteeing the
robustness and reproducibility of our study. The calibration curve
showed well goodness of fit of the radiomics model, indicating the
robustness of the results. The DCA curve revealed that our
radiomics model presented higher net benefit in almost the whole
period compared with the clinical model, increasing the clinical use
of radiomics in providing advice for patients if they should receive
NAC treatment.

Our study has several limitations. Except for data from two
clinical trials, patients receiving the EOX regimen in the external
validation cohort were retrospectively recruited, and bias
selection was inevitable in this proof-of-concept study. Also, a
potential confounder is that we had limited information in
molecular or genetic aspects for those patients, and the
diversity among patients may lead to different responses to
neoadjuvant therapies. The response rate in each cohort varied,
which conformed to the complex condition in the real world.
Furthermore, except for the EOX regimen, limited sample size in
other NAC regimens hindered the construction of models for
each cohort or NAC regimen to investigate the similarity of
Frontiers in Oncology | www.frontiersin.org 9
radiomics features expressed in different NAC regimens. For the
same reason, an independent radiomics model for the SOXA
cohort was also not realized. Therefore, we could conclude that
radiomics was capable of predicting different pharmacological
effects on tumors between NAC regimens and molecular targeted
therapy, but the nuances that reflected radiomics features
between the two different neoadjuvant approaches remained to
be further elucidated. Although TRG is reported as a surrogate
for prognosis, the predictive value of our radiomics model needs
to be elucidated in further investigation with follow-up evidence.

In conclusion, in this study, we demonstrated that our radiomics
model is generalizable to predict TRG for AGC patients receiving
NAC treatments, which is beneficial to transform appropriate
treatment for GC, especially for those insensitive to NAC. We
also identified the intrinsic difference between cytotoxic
neoadjuvant chemo agents and molecular targeted therapy from a
radiomics perspective, which is helpful to construct individualized
models for different neoadjuvant approaches.
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