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The circadian system is an innate clock mechanism that governs biological processes on
a near 24-hour cycle. Circadian rhythm disruption (i.e., misalignment of circadian
rhythms), which results from the lack of synchrony between the master circadian clock
located in the suprachiasmatic nuclei (SCN) and the environment (i.e., exposure to day
light) or the master clock and the peripheral clocks, has been associated with increased
risk of and unfavorable cancer outcomes. Growing evidence supports the link between
circadian disruption and increased prevalence and mortality of genitourinary cancers (GU)
including prostate, bladder, and renal cancer. The circadian system also plays an essential
role on the timely implementation of chronopharmacological treatments, such as
melatonin and chronotherapy, to reduce tumor progression, improve therapeutic
response and reduce negative therapy side effects. The potential benefits of the
manipulating circadian rhythms in the clinical setting of GU cancer detection and
treatment remain to be exploited. In this review, we discuss the current evidence on the
influence of circadian rhythms on (disease) cancer development and hope to elucidate the
unmet clinical need of defining the extensive involvement of the circadian system in
predicting risk for GU cancer development and alleviating the burden of implementing
anti-cancer therapies.

Keywords: prostate cancer, kidney cancer, bladder cancer, genitourinary cancers, melatonin, chronotherapy,
circadian rhythm, CLOCK proteins
INTRODUCTION

In 2017, three investigators were jointly awarded the Nobel Prize in Physiology or Medicine for their
work on molecular mechanisms controlling the circadian system. The circadian system is an innate
clock mechanism that governs biological processes on a near 24-hour cycle (1, 2). The evolutionary-
conserved process regulates the sleep-wake cycle as well as molecular and cellular operations. The
master clock is located in the suprachiasmatic nuclei (SCN) of the hypothalamus (3). The clock
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responds to environmental cues, such as light-dark patterns, to
allow an individual to maintain synchrony with the external
environment (4). In other words, through light-dark signals from
the environment, the SCN is synchronized to the local position
on Earth (3). In addition, clock genes in the SCN use neural
signals to synchronize peripheral clocks located in the body to
the external solar day (3). The circadian clock intrinsically drives
transcriptional and translational feedback loops (TTFL) that
regulate bodily activities (2, 5). The near 24-h cycles of gene
expression are promoted by two activator clock proteins, Brain
and Muscle ARNT-Like 1 (BMAL1) and Circadian Locomotor
Output Cycles Kaput (CLOCK), and two repressor proteins,
Period (PER) and Cryptochrome (CRY) (5). Disruption and
mutation of the four integral clock proteins can misalign
circadian rhythms (CRs, endogenous rhythms that are
generated and regulated by then master circadian clock and
repeat themselves roughly every 24 hour) such as core body
temperature, hormone secretion, and sleep-wake activity (6).

Circadian rhythms disruption (CRDs; which result in
misalignment of circadian rhythms, such as hormone production
and the sleep-wake cycle have been shown to correlate with
increased prevalence and mortality of GU cancers (7). Non-
pharmacological interventions including chronotherapy and
melatonin have been implicated in the treatment of CRDs. The
four integral clock proteins, PER, CRY, BMAL1, and CLOCK, all
have complex molecular roles that can improve our understanding
of cancer risk and biologically/clinically relevant outcomes (1, 6). Yet,
non-pharmacological treatments of chronotherapy and melatonin
(e.g., light therapy, behavioral interventions) have diminished the
toxicity of chemotherapeutic and immunotherapeutic drugs, while
increasing their overall efficacy against aggressive disease (7). In this
review we discuss the current evidence recognizing the
significant role CRs play in GU cancer risk, development, and
treatment outcomes.
EFFECT OF ENVIRONMENTAL
CUES ON CRs

The daily light-dark pattern reaching the retina is the primary
input to synchronize the biological clock to the 24-h solar day
Abbreviations: ADT, androgen deprivation therapy; Akt, protein kinase B;
MAPKs –mitogen-activated protein kinase; AR, androgen receptor; BMAL1,
Brain and Muscle ARNT-Like; CCGs, clock-controlled genes; CRDs, circadian
rhythms disruption; CR, circadian rhythms; CLOCK, Circadian Locomotor
Output Cycles Kaput; CRPC, castration-resistant prostate cancer; CRY,
cryptochrome; EGF, epidermal growth factor; EMT, epithelial-to-mesenchymal
transition; ET-1, endothelial-1; GSK-3b, glycogen synthase kinase-3b; GU,
genitourinary; HIF-1a, hypoxia-inducible factor 1 alpha; IL-2, interleukin-2;
MAPK, mitogen-activated protein kinase; MET, mesenchymal-to-epithelial
transition; MIBC, muscle-invasive bladder cancer; MLT, melatonin; MMP,
matrix metalloprotease; NMIBC, non-muscle-invasive bladder cancer; PBT,
proton beam therapy; PCa, prostate cancer; PER, period; RCC, renal cell
carcinoma; REV-ERBa (NR1D1), nuclear receptor subfamily 1 group D
member 1; RORa, retinoid-related orphan receptor alpha; RORE, retinoid-
related orphan receptors response elements; SCN, suprachiasmatic nuclei;
TTFL, transcriptional and translational feedback loop; UBC, urinary bladder
cancer; VEGF, vascular endothelial growth factor.
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(6). If humans are not exposed to a sufficient amount of light
from the right spectrum for an adequate amount of time, and
with the right timing, the biological clock becomes
desynchronized with the solar day, resulting in CRDs (8).
CRDs are primarily caused by alterations in the circadian clock
(i.e., the timekeeping system) or by a misalignment between the
endogenous CR (e.g., sleep-wake cycle and hormone production)
and the external factors that affect the timing, quality, or
duration of sleep (e.g., sleep hygiene, environment, behavior,
and social factors) (6, 8). CRDs can profoundly impact physical
and daily functioning and have been linked to increased risk of
insomnia, heart attacks, immune system imbalance,
inflammation, diabetes, and obesity in healthy and chronic
disease populations (9–11).

Recent studies confirmed associations between CRDs,
increased cancer risk, and worse cancer outcomes (3, 12).
Additionally, several environmental and behavioral conditions
that may increase CRDs could also be independently associated
with increased cancer risks (e.g., jet lag, shift work, and exposure
to light at night) (12). Interestingly, a few studies showed that
blind individuals with no light perception are less at risk of
developing cancer (13, 14). Understanding the molecular
mechanisms of the master clock in relation to its role in cell
proliferation, DNA damage response, and apoptosis may provide
insight into combating cancer incidence and prevalence (15).
CRDs AND INCREASED RISK OF
GENITOURINARY CANCER

Evidence suggests that CRDs have a role in an increased risk of
cancer progression, leading to unresponsive disease, especially
in endocrine-based cancers (16). In the majority of patients
treated for genitourinary cancer (GU), including prostate,
kidney, and bladder cancer, there is an emergence of
tumor recurrence due to therapeutic resistance (17). Prostate
cancer (PCa) patients are especially at risk of developing
castration-resistant prostate cancer (CRPC) after initially
promising therapy with androgen deprivation (ADT) (18).
The androgen receptor (AR) remains a prominent driver of
therapeutic resistance in PCa (19). AR variants, amplification,
and mutations all serve as mechanisms of CRPC progression
(19). Despite the implementation of ADT, cells can develop
sensitivity to low levels of androgens and lead to treatment-
resistance and recurrent fatal disease (19).

In patients with renal cell carcinoma (RCC), there is a
progression to chemotherapy-resistant disease that fails to
respond to tyrosine kinase inhibitors, although there is
burgeoning hope with new small molecule inhibitors (20). The
mechanisms of resistance to therapy in RCC are still not fully
defined. However, it is hypothesized that angiogenic escape is a
possible mechanism that can occur from chronic vascular
endothelial growth factor (VEGF) suppression (21).
Angiogenic escape involves restoring blood follow in the
tumor-associated vasculature, increasing the chances of
therapeutic resistance (21).
March 2022 | Volume 12 | Article 759153
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Metastatic urothelial cancer of the bladder has also been
shown to be resistant to immunotherapy and chemotherapy
(22). Cisplatin is a key component of chemotherapies treating
bladder cancer and is the target of therapeutic resistance (23).
There are many ways resistance can arise in bladder cancer,
including reduced intracellular accumulation of cisplatin and
increased sequestration (23). These factors all enable the cancer
cells to elude the therapeutic potential of cisplatin.
CHRONO-PHARMACOLOGICAL
TREATMENTS OF CRDs

Chronotherapy and melatonin are the two most promising
non-pharmacological options to improve current anti-cancer
drugs. Chronotherapy refers to the optimal dosing time of
drugs where high efficacy and low toxicity are achieved (24).
Time-dependent dosing relies on the oscillations of genes
involved in drug absorption, distribution, metabolism, and
excretion (24). Melatonin is a pineal gland hormone and is
concurrently released during the hours of sleep (25, 26).
However, it also possesses anti-tumorigenic abilities through
an unknown mechanism of action (25, 26). Nocturnal
melatonin secretion can persists in constant darkness, but
exposure to light during the nighttime can suppress the release
of the hormone into the bloodstream (25). The endogenous
activity of the central clock results in melatonin production, so
suppression of melatonin can lead to stimulation of cancer
development (27). The possibility of chronotherapy and
melatonin supplementation can be applied as a new platform
to enhance the efficacy of chemotherapy drugs through precise
time-dependent administration (28). A review by Bermu´ dez-
Guzma´ and colleagues showed that melatonin, used as adjunct
treatment concurrent with chemotherapy or radiotherapy,
significantly improved tumor remission and 1-year survival
(28). Co-administering melatonin and cancer treatments could
also result in the patient having fewer adverse effects and
improved outcomes (29).
CRITICAL EFFECTORS OF THE
CIRCADIAN CLOCK

The regulation of the CRs occurs at the transcriptional level.
There are four key circadian clock proteins: BMAL1, PER (1–3),
CLOCK, and CRY (1-2) (Figure 1) (30). Brain and Muscle Arnt-
like protein, also known as BMAL1, is an integral transcription
factor (31). It is a known activator of the master clock and is
present in the transcriptional feedback loop (32). REV-ERBa
(NR1D1) and RORa are two major nuclear receptors involved in
the regulatory loop for BMAL1 (Figure 1) (33, 34). The
heterodimer of BMAL1 and CLOCK binds to the E-box motif
and activates the transcription of REV-ERBa, RORa, two
repressor proteins, PER and CRY, as well as other clock-
controlled genes (CCGs) (Figure 1) (32). CRY is known to be
the primary driver of the circadian oscillator through repressing
Frontiers in Oncology | www.frontiersin.org 3
the CLOCK : BMAL1 heterodimer (Figure 1) (35). PER2 is the
sole protein that interacts with CLOCK, whereas both PER and
CRY proteins interact with BMAL1 (36). Future research on the
binding and repression of the CLOCK : BMAL1 transcriptional
activity will clarify the other regulatory roles of the proteins in
the CRs (36).

Disruption of gene expression may lead to diseases since the
clock proteins are involved in several transcriptional pathways.
For instance, it was found that if the PER2 gene is downregulated,
there is an increased risk for breast cancer (37). In contrast, if the
PER2 gene is overexpressed, it may confer tumor-suppressive
properties (38). In colorectal cancer, increased levels of BMAL1
have been related to decreased survival, and similarly, reduced
levels of PER2 and PER3 have led to more inadequate tumor
differentiation (39). Other studies have found that the clock gene
expressions were reduced to 60% in melanoma and naevus
tumors, highlighting their role in transcription regulation and
tumorigenesis (40). With increasing evidence, research suggests
that the clock proteins are also involved in genotoxic stress and
aging, which are two factors that can also lead to carcinogenesis
(41). Thus, disturbances of the circadian clock gene expression
FIGURE 1 | Genetic Outcomes of the Circadian Clock Proteins and Clinical
Management Techniques. Circadian clock transcription-translation feedback
loop (TTFL) is controlled by two activator proteins Brain and Muscle ARNT-
Like 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), and
two repressor proteins, Period (PER) and Cryptochrome (CRY). BMAL1 and
CLOCK heterodimerize and bind to the E-box motif to activate the
transcription of CRY (1-2), PER (1-3), clock-controlled genes (CCGs), RORa,
REV-ERBa. CRY and PER establish the primary negative feedback loop by
inhibiting the BMAL1 and CLOCK heterodimer. In the secondary feedback
loop, RORa activates, and REV-ERBa inhibits the transcription of BMAL1.
Circadian clock proteins mediate several cancer pathways such as cell cycle
regulation, DNA damage repair, apoptosis, and hormonal changes. Melatonin
binds to the MT1 and MT2 receptors and targets inflammation and survival
pathways by preventing the translocation of NF-kB to the nucleus. Melatonin
interferes with EMT and metastasis by downregulating b-catenin through
activation of GSK-3b and inhibiting the expression of matrix
metalloproteinases-9 and -13. The inhibition of endothelin-1 (ET-1) by
melatonin leads to reduced activity of angiogenic factors HIF-1a and VEGFA.
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leading to interesting downstream effects can play a role in the
carcinogenesis of various cancers.

Other factors, such as exposure to light at the wrong circadian
time (e.g., exposure to ambient electric light during night shifts)
or not enough light exposure at the right circadian time (e.g., not
enough exposure to daylight), can alter the timing of the
biological clock in humans (42). In particular, melatonin, a
pineal gland hormone, can be affected by the amount and
distribution of light signals picked up by the retina (43). With
increased exposure to light at night, blood melatonin levels may
be suppressed, leading to CRDs (43). Melatonin influences CRY1
expression, and melatonin suppression resulting from increased
exposure to light at night, can compromise CRY1’s function in
regulating CRs (44). Thus, electric light at night in the
environment can disrupt pineal function and thus be linked to
a higher incidence of hormone-related cancers such as PCa and
breast cancer (43). The indirect light-induced stimulation of
tumor development may be associated with the inhibitory clock
proteins PER1 and PER2 (44). Specifically, disrupting PER2,
CRY2, or BMAL1 in various tissues can increase the likelihood of
cancer development (44). A light-induced signaling pathway is
also involved in regulating the cell division cycle (44, 45). AP-1 is
a transcription factor involved in maintaining biological
processes, such as cell proliferation and apoptosis (45), and
was found to have light-dependent activation in the SCN,
adding to evidence that light plays a vital role in cancer
development and circadian rhythm regulation (45).
CRDs AND GU CANCERS

Prostate Cancer
Prostate cancer (PCa) is the second most frequent cancer
diagnosis made in men with 1,276,106 new cases of reported
worldwide in 2018 (46). In the United States, an estimated
248,530 new cases and 34,130 deaths are estimated in 2021
(47). Although differences in PCa incidence rates worldwide
reflect differences in the use of diagnostic testing and PCa
screening guidelines, both incidence and mortality rates are
strongly related to age with the highest incidence being seen in
elderly men (> 65 years of age) (46). In the United States, PCa
screening is highly recommended at age 40 for men with familial
history and men of African ancestry (48).
Frontiers in Oncology | www.frontiersin.org 4
For early stage PCa patients survival is 99% for the first five
years after localized treatment (49). However, eventually, many
PCa patients develop therapeutic resistance to ADT, otherwise
known as castration-resistant prostate cancer (CRPC) (50). This
leads to an incurable disease in which 19.5% of patients died
frommetastatic-CRPC in 2020 (51). There has been a recent shift
to using taxane-based chemotherapy to treat CRPC patients (52).
Taxanes are an excellent option for resistant PCa as they
stimulate apoptosis by disrupting the G2/M-phase of the cell
cycle (53). Despite the benefits of taxanes, 1st and 2nd line taxane
chemotherapy (Docetaxel and Cabazitaxel, respectively) in
patients with advanced metastatic disease, ultimately,
emergence of therapeutically resistant tumors leads to lethality.

Significantly enough, disruption of CRDs have been
implicated in PCa risk and progression (54). Compelling
evidence suggests a significant correlation between light
exposure at night and increased PCa incidence (54). Additional
studies from independent investigators have exploited melatonin
suppression and shift work and their positive correlations with
PCa risk (55, 56). Increased risk of PCa among night male shift
workers is attributed to changes in amplitude of melatonin and
associated changes in sex hormone secretion that contribute to
Epithelial-to-mesenchymal transition (EMT) typically involved
in PCa development (55, 56). Two pathways may result in
reduced amplitude of melatonin among male night shift
workers; a) the acute melatonin suppression through exposure
to electric light after dusk (57); and b) the decreased melatonin
levels through CRDs (58), that consequentially results in
desynchronization of the peripheral clocks, promoting cell
growth and tumor development (58). Melatonin may suppress
PCa growth by down regulating transcription, secretion, or
activity of growth factors; it may stimulate the immune system
through increased production of interleukin-2 and interleukin-4
by T-helper cells; lastly, it may protect DNA against oxidative
damage by scavenging free radicals (58). It is thus apparent that
disruption of the CRs can lead to increased PCa risk (Table 1).
Moreover, growing evidence supports an intricate relationship
between PCa, and the effector proteins functionally associated
with the circadian clock. These proteins regulate cancer
mechanisms such as apoptosis or proliferative cancers (58, 59).
A study found that PER2 and CLOCK protein levels were
downregulated, and in contrast, BMAL1 was upregulated in
PCa tissue (60). Another circadian repressor protein, CRY1, is
a known regulator of cell proliferation and DNA repair (61).
TABLE 1 | Genetic Involvement of the circadian system in GU cancers and clinical management options.

GU Cancers
(Tumor Type)

Mechanisms of Disruption of Circadian Rhythms Effects of Melatonin Therapeutic Targets with
Chronotherapy

Prostate Cancer Downregulated PER2 and CLOCK (60)↓
Upregulated BMAL1 and CRY1 (60, 61),↑

Downregulates MMP-13 (109) PBT (123)
Docetaxel (115)

Kidney Cancer Downregulated CLOCK, CRY1, CRY2, and BMAL1 (80)↓ Suppresses the Akt/MAPKs pathway (113)
Downregulates MMP-9 (113)

Interferon-alpha (122)
IL-2 (122)

Bladder Cancer Downregulated BMAL1↓
Upregulated CLOCK and CRY1 (89)↑

Prevents the nuclear translocation of NF-kB (110)
Induces apoptosis (110, 112)

Doxorubicin-cisplatin (122)
March 2022 |
The role of the four clock proteins, BMAL1, CLOCK, PER, and CRY, were evaluated in relation to three GU cancers. The genetic effects of melatonin supplementation were explored as well
as the primary therapeutic targets of chronotherapy to manage GU cancers.
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CRY1 was upregulated in PCa and thus indicated a poor
outcome for metastatic-CRPC (61). Like many clock proteins,
CRY1 has transcriptional control aside from its role in regulating
the circadian clock (61). Clock proteins are crucial for the proper
functioning of the cell, especially in the case of cell growth/death,
homeostasis, metabolism, and hormone release (60). When
protein expression is disturbed, the CRs are also disrupted,
which can amount to several disease states such as PCa (61).
The mechanistic underpinnings of these proteins are still being
studied and could provide profound insight into designing
molecular therapies to treat cancers (62, 63).

The tumor microenvironment is a critical biological dynamic
entity that merits exploitation in functional exchange with the
external environment (light, temperature, specifically impacted
by the circadian clock). EMT in solid tumors (including PCa) has
been defined to play a significant role in cancer and a major
contributor to metastasis (64). EMT is characterized by the loss
of cell-cell adhesion, increased cell motility, and reduced E-
cadherin expression, a structural adhesion molecule (65). E-
cadherin, a calcium-dependent protein involved in cell-cell
adhesion, is crucial for preventing PCa cells from migrating to
bones to facilitate metastatic disease (66). Some several
molecular mechanisms and pathways influence EMT, such as
epidermal growth factor (EGF) and mitogen-activated protein
kinase (MAPK) (67). Changes in signaling pathways ultimately
alter the expression of transcription factors such as Snail and
Zeb-1 (67). As a result of activation of these transcriptional
repressors, E-cadherin expression levels are repressed, ultimately
leading to enhanced mesenchymal and migratory markers in
mesenchymal cells (68). Thus, EMT is functionally linked to
promoting PCa metastatic progression, leading to stemness,
therapeutic resistance, and ultimately lethal disease (68). Work
from our group demonstrated that interconversion of EMT to
mesenchymal-to-epithelial transition (MET) is observed in
advanced PCa pre-clinical models in response to treatment
with the second line taxane chemotherapy, cabazitaxel (52).
This dynamically transient EMT-MET cycling allows
cabazitaxel to prime the cells to retain a non-migratory
phenotype, reducing the chances of metastasis (52). There is
an ongoing effort to identify a temporal therapeutic window that
can enable cells to overcome resistance by anti-androgen
action (52).

Similar to phenotypic EMT navigating PCa, chronic CRs has
been demonstrated to lead to the metastatic spread of breast
cancer (65). CRs have a role in hormone expression and promote
an immunosuppressive phenotype in endocrine-related cancers
(69). Circadian-regulated transcription factors, such as PER2 and
BMAL1, can regulate EMT through influencing EMT signaling
effectors responsible for stemness and cell migration (69).
Downregulated PER2 was associated with a higher likelihood
of EMT in breast tissue, while downregulated BMAL1 decreased
the invasion of mesenchymal cells in colorectal cancer (69).
Melatonin was also found to regulate EMT and molecular
pathways underlying the phenotypic conversion and cell
invasiveness (65). MLT can activate GSK3b, an enzyme
involved in cell proliferation, which reduces b-catenin levels,
Frontiers in Oncology | www.frontiersin.org 5
and subsequently leads to restoration of E-cadherin in human
breast cancer cells (Figure 1) (65).

Kidney Cancer
Kidney cancer accounted for nearly 431,300 cases worldwide in
2020 and has been increasing in recent years (70, 71). The median
age of diagnosis is 65 years (72) (Table 1). Many tumors comprise
kidney cancer, with 90% being RCC cases (73). Within the various
molecular subtypes of RCC, clear cell RCC leads to the most deaths
(73). The mortality rate of 30-40% for RCC is significantly greater
than prostate and bladder cancers (74). Kidney cancer tends to be
resistant to chemotherapy and radiation therapy, making
immunotherapy the best option (75). With increased attention
on potential mechanisms of progression such as angiogenesis and
altered hypoxia signals, CRs research could explore ways to reduce
the disease burden (76). Circadian pathways help maintain
physiological fluctuations, such as water transport and essential
renal function (77). Almost 43% of all protein-coding genes
throughout the body showed CRs in transcription, many of them
being in the kidney (77, 78). These gene expressions peak right
before dawn and dusk (78). In a study linking the dysregulation of
the circadian clock and RCC, clock genes were transcriptionally
different in diseased versus healthy tissue (79). For example,
CLOCK, CRY1, and CRY2 levels were downregulated in kidney
cancer tissue (80). Patients that retained high levels of CLOCK had
a better prognosis than those without (80). Like PCa, the clock
proteins significantly predict the risk and progression of kidney
cancer through intricate molecular mechanisms.

The clock proteins are crucial for regulating CRs and immune
system function (81). The immune checkpoint pathway is
suppressed when the clock protein BMAL1 is downregulated,
causing sepsis (81). Sepsis and cancer share many immunological
properties, so immunomodulatory agents could successfully treat
both diseases (81). Increased expression of PD-1 and its ligand,
PD-L1, help stimulate tumor-directed cytotoxic T cell function
in both sepsis and cancer (81). The loss of the clock gene,
BMAL1, showed increased PD-L1 expression in macrophages,
which is associated with poorer sepsis survival (81).

Bladder Cancer
Bladder cancer is ranked in the top ten most common cancers
worldwide (82). Around 2.1% of cancer deaths are caused by
urinary bladder cancer (UBC) each year, resulting in a high
mortality rate (47). In Europe, the five-year survival rate for UBC
was 68% (83). Unlike PCa, UBC has poorer outcomes within five
years of being diagnosed. However, it has a higher survival rate
than kidney cancer in Europe, which is 60% (83). UBC follows a
similar prevalence trend of other GU cancer. It is less common in
sub-Saharan Africa, India, and Mongolia and more common in
Western Europe and Australia (84). The geographic distribution
may be partly explained by exposure to tobacco, environmental
pollutants, and occupational carcinogens, which are invariably
linked to UBC incidence (85).

UBC can develop into either muscle-invasive bladder cancer
(MIBC) or non-muscle-invasive bladder cancer (NMIBC) (86).
For NMIBC, the course-of-treatment usually involves
March 2022 | Volume 12 | Article 759153
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maintenance immunotherapy, whereas MIBC often requires
chemotherapy (86). Combination chemotherapy provides good
outcomes initially in impairing tumor growth, but it ultimately
fails as cancer cells develop therapeutic resistance (87). Cisplatin
is a first-line chemotherapy treatment that directly interacts with
the circadian clock proteins and enhances the body’s natural
response to cancerous cells (88). It upregulates CLOCK and
BMAL1, resulting in increased proliferation and increased
apoptosis, respectively (88). In bladder cancer tissue from
human specimens, BMAL1 was downregulated, and CLOCK
was upregulated, so cisplatin acts differently on both proteins
through unclear mechanisms (89). Cisplatin has multiple
opposing effects on tumor growth, resulting in stimulating pro-
cancer effects (88). Thus our current understanding begs the
question of interrogating the impact of disruption of circadian
clock proteins on the molecular mechanisms underlying cell
proliferation and apoptosis. In the context of contributing to
therapeutic resistance, another clock protein, CRY1, was found
to inhibit paclitaxel-induced senescence in bladder cancer cells
(90). Typically, in urothelial tumors, CRY1 has been detected to
be downregulated (89). While senescence causes cells to halt
dividing, it also provides a way for cancer cells to become
resistant to treatment (91). When the second-line therapy of
paclitaxel is used, it prevents cell arrest and promotes the
degradation of p53 (90). Healthy adults continually degrade
p53, which is a tumor suppressor to stimulate p53 turnover
(92). CRY1 is crucial in preventing the senescence induced by
paclitaxel and delaying drug resistance (90).
THE CIRCADIAN CLOCK AS THE
NEW FRONTIER TO OVERCOME
THERAPEUTIC RESISTANCE

Melatonin Treatment
Melatonin (MLT) is a pineal gland hormone that can phase shift
the SCN and provide timing information to the body (93). The
pineal gland is crucial in regulating tumor growth and could
become a target for therapeutics development (94). Melatonin
levels naturally increase during dusk and taper off at dawn (95).
Interestingly, subjects in perpetual darkness, such as visually
impaired individuals, still display a 24.2-h cycle of melatonin and
can have typical endogenous CRs (96).

The molecular mechanisms via which melatonin influences
tumor cell proliferation and cancer metabolism are not clearly
defined. Growing evidence suggests that melatonin may decrease
the activity of endothelin-1 (ET-1), leading to downstream effects
of downregulating hypoxia-inducible factor 1 alpha (HIF-1a)
and VEGF, which both contribute to promoting angiogenesis
(Figure 1) (97, 98). Preventing angiogenesis remains a critical
goal to impair metastasis of kidney cancer (21). Significantly, it
can also regulate breast cancer growth through two membrane
melatonin receptors, MT1 and MT2, which are expressed in
breast tissue, and impact survival signaling pathways (97). An
overall decrease in melatonin levels has been associated with a
higher risk of cancer, neurological disorders, and sleeping
Frontiers in Oncology | www.frontiersin.org 6
disorders (99). Thus, melatonin proves to be an effective and
attractive therapy to improve the efficacy to toxicity ratio of anti-
cancer drugs (100).

One of the most well-known hypotheses is that MLT is an
epigenetic regulator that can prevent tumor growth by inhibiting
telomerase activity and regulating linoleic acid uptake and
metabolism, both crucial to proliferation (101). Circadian-
dependent administration of MLT may confer tumor-
suppressive properties (102). Melatonin has also been a potent,
safe, and low-cost therapeutic in cancer research (103). A
randomized controlled trial of solid tumors found that MLT
reduces death by nearly a year (103). MLT also stimulates a
robust chemotherapy response in palliative cancer care
compared to receiving only supportive care (104). The
patient’s quality of life is improved by reducing the side effects
such as asthenia and thrombocytopenia (104). Thus, melatonin
may enhance the therapeutic efficacy of patients with resistant
GU cancers.

Despite the uncertainty that surrounds melatonin’s impact on
cancer as a clinical disease, its protective benefits in human PCa
are becoming increasingly evident. Men with high levels of
urinary melatonin were less likely to develop advanced PCa
(105). Advanced PCa is characterized by metastasis which
involves tumor migration and invasion and ultimately lethal
disease (106). Approximately 80% of patients with advanced PCa
develop bone metastasis, a process that is linked with the
expression of matrix metalloproteases (MMP) (107). Matrix
metalloproteases are proteolytic enzymes responsible for
breaking down connective tissue and allowing tumors to
invade other tissues (108). MLT downregulates MMP-13
expression, which may suppress the metastasis of PCa
(Figure 1) (109). MMP-13 is another excellent target for future
therapeutic studies of PCa. It is of major significance to
understand the molecular mechanisms driving the anti-tumor
and anti-invasion properties of this agent.

MLT inhibits bladder and kidney cancer growth and
metastasis (109). MLT prevents the nuclear translocation of
NF-kB and decreases the expression of pro-inflammatory
intermediates (Figure 1) (110). Recent studies have shown that
MLT treatment resulted in increased apoptosis through NF-kB
regulation in human gastric (111) and bladder cancer cells (110,
112). Moreover, MLT suppresses the Akt/MAPKs pathway and
downregulates MMP-9, crucial for RCC progression (113).
Through binding to the active site of MMP-9, MLT can arrest
associated inflammatory signals that contribute to tumor growth
(Figure 1) (114). Given the rapidly growing evidence at the
mechanistic level, one could propose that MLT confers
considerable transcriptional and post-translational control that
are still not well understood.

Chronotherapy
Chronotherapy involves orchestrating the timing of treatment
administration to match the body’s endogenous CRs (115).
This method has shown unequivocal success in tumor
outcome and improved management of the disease (116). In
addition, circadian dosing is crucial in limiting the toxicity of
anti-cancer drugs and maximizing their efficacy (115). A
March 2022 | Volume 12 | Article 759153

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Mohamed et al. Circadian Rhythms Impact on GU-Cancers
characteristic example of an optimized (time-dependent
response) is the first-line taxane chemotherapy, docetaxel,
which is shown to have the best clinical outcome if
administered in PCa patients between 6 and 9 am (115).

One must also consider that many cancer patients in late
stages report having increased CRD with irregular sleep
schedules (117). In breast cancer specifically almost 72% of
advanced cancer patients display moderate-to-severe sleep
disturbances (118). Chronotherapy could reduce the side
effects of chemotherapy while also promoting a strong
therapeutic response. In a retrospective study, patients
undergoing high-dose radiotherapy for PCa in the evening had
more GI complications than those in the morning (119). The
toxicity of the drug is also decreased when administering the
treatment in alignment with circadian oscillations. Lower
toxicity levels could significantly relieve patients who have
PCa, especially since GU cancer patients are older on average
(119). There should also be a shift to similarly evaluating
circadian-based dosing in therapy-resistant cancer patients. A
circadian-modified infusion schedule can also allow clinicians to
administer higher drug doses to induce a powerful response
without the lethal toxicity. For example, patients with RCC could
receive higher doses of floxuridine on a circadian-modified
infusion schedule than on a continuous infusion schedule
(120). This provides unique opportunities for a rigorous and
impactful treatment of GU cancers while in their non-resistant
phases for a better outcome. Chronotherapeutic schedules can
also increase long-term survival and overall quality of life while
on chemotherapies, such as oxaliplatin for metastatic colorectal
cancer (121). In patients with metastatic UBC, treatment with
doxorubicin-cisplatin resulted in a 57% objective response rate
when coupled with chronotherapy (122). Other therapeutic
options such as interferon-alpha and IL-2 (Interleukin-2) are
promising agents to slow metastatic RCC, but they come at the
risk of significant toxicity (122). By optimizing drug
administration when toxicity would be minimized, clinicians
can better use readily available compounds to treat GU cancers
(122). Chronotherapy is not limited to only chemotherapy and
immunotherapy in enhancing their treatment response
outcomes. It can also be applied to radiation techniques, such
as proton beam therapy (PBT), which directs smaller radiation
doses at localized PCa (123). PBT was observed to have less
severe lower urinary tract symptoms when given in the morning
than in the afternoon (123).

Personalized medicine approaches can pave treatment
strategies towards increasing patient survival and improving
the quality of life for cancer patients. One may also consider
that specializing current treatment methods according to a
person’s chronotype, defined as a person’s preference for
timing of sleep and activity, may lead to improved clinical
outcomes. While chronotherapy has provided encouraging
results in rendering cancer therapies more tolerable, more
clinical studies are warranted. A significant issue is that much
of the current research on chronotherapy in anti-cancer drugs do
not have a strict time interval. Without a specific period, it is
difficult for clinicians to administer treatment at the optimal time
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for maximum efficacy. Thus, there is an unmet need to
functionally define the role of the CRs in cancer research.

Environmental and Behavioral Interactions
Prior work in chronic disease patient populations suggests
significant effects of environmental and behavioral
interventions on reducing CRDs, including light therapies,
physical activities, and diet modification which could, in turn,
improve cancer patient outcomes (124, 125). Light is the
strongest synchronizer of CRs, and exposure to ambient light
at the right time could reduce CRDs and, thus, improve cancer
patient physical and functional outcomes (126–130). Endocrine
disruption due to exposure light during the circadian night has
been implicated as carcinogenic, both in animal studies and in
epidemiological studies in humans (131).

Evidence also suggests that physical activity could affect CRs
(132–134). It has been shown that 1–3 hours of intense exercise
can induce significant circadian phase shifts depending on the
duration, intensity, and frequency of physical activities (132–
134). Studies showed that early morning physical activities are
associated with phase delays in the circadian clock (134, 135).
However, early morning exercise offered protective effects for
breast and PCa patients with an evening chronotype (136).
Other studies showed that physical activities later at night
induced phase delays in melatonin secretion (137).
Individuals placed on prolonged periods of bed rest without
exercise also show a circadian phase delay (125). Circadian
misalignment is also observed when individuals participate in
restrictive movement of one limb but not the other (125). This
selective exercise leads to changes in the regulation of the clock
genes, which are implicated in cancer pathways (Figure 1)
(125). Additional assessment of the optimal time to exercise
that can mitigate increased cancer risk and CRDs (124). One
must note here that, while some studies show that exercise can
alter circadian phase, its impact on the circadian clock is
significantly less than the impact of light-dark patterns
reaching the retina.

Lifestyle patterns in feeding/meal consumption (e.g., late-
night meals) and diet programs (e.g., high fat diet) have been
found to also influence circadian patterns in humans, although
behavioral and sociocultural factors often control this (124).
These circadian eating patterns are mirrored by both the
gastrointestinal system, leading to rhythms in digestive
secretions, gut motility, absorption of digested food, and blood
nutrient concentrations (124). Feedback loops exist between the
hormones controlling the circadian clock and those directing
appetite and satiety, such as leptin, orexin, and ghrelin (124).
Considering the roles of clock-related hormones, a food-
entrainable circadian clock in humans may be present
(124, 138, 139). Food-based entrainment enhances the
synchronization of the peripheral and master clock, which can
positively impact cancer regulation (124). Thus, in addition to
understanding the impact of light exposure patterns, a further
investigation into the interactive impact of exercise, diet, and
nutrition on the risk, development, and clinical outcomes of GU
cancers is likely to be impactful.
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CONCLUSION

A systematic review and meta-analysis of the previous studies in
breast cancer female patients revealed a positive relationship
between indicators of CRDs (e.g., nightshift work) and breast
cancer risk (58). Changes in hormone secretion, caused by CRDs,
was proposed as a contributing factor to the observed increase in
breast cancer risk (58). Although breast cancer occurs
predominantly in women, the biology and epidemiology of
breast cancer share some similar features of GU cancer
specially PCa (57, 58). For example, tumor progression in both
breast cancer and PCa is strongly affected by sex hormones,
which are, to a larger extent, influenced by CRDs and reduced
amplitude of nighttime hormone melatonin.

The role of the CRs extends past currently known molecular
regulations in transcription and translation. Given the extensive
part of the four clock proteins (CRY, PER, BMAL1, and
CLOCK), the circadian clock may regulate many cancer
mechanisms such as apoptosis and therapeutic resistance (140,
141). Advanced GU cancers have poor outcomes and high
mortality rates, making the development of therapeutic targets
a time-sensitive task (142). A pioneering research study of
circulating tumor cells, which are biomarkers of metastasis, has
shown to follow specific circadian rhythmicity in animal models
of PCa (143). By targeting PCa treatment to coincide when
circulating tumor cells are at their highest concentration in the
bloodstream, clinicians may be able to produce robust patient
responses to treatment (143). Chronotherapy and MLT
supplementation have also both proven to increase the efficacy
of various chemotherapies and immunotherapies (121, 144).
These are underused and beneficial tools that can diminish
disease burden and progression.

Moving forward, the focus is the pursuit of CRs as defense
mechanisms the body can engage to optimize therapeutic
responses in patients diagnosed and treated for GU cancers.
Circadian-based treatments can modulate the pharmacological
ability of anti-cancer drugs towards improving therapeutic
outcomes and be potentially incorporated into clinical trials for
treatment optimization and improved patient survival. One may
argue that the simple method of syncing drug administration
with the body’s endogenous circadian clock can maximize the
efficacy of clinically approved treatment strategies in managing
advanced GU cancers. Moreover, the circadian clock provides an
informative new platform about the optimal timing and dosing
Frontiers in Oncology | www.frontiersin.org 8
of the drug, compared to traditional pharmacokinetics and
pharmacodynamics. Given the impact of the circadian clock on
cancer progression and treatment response, the promise of
enabling a viable defense against the GU tumors emerges.
Driven by advanced technology, ongoing efforts from different
centers focus on defining the roles of the clock proteins and their
downstream effects in progression and clinical management of
GU cancers to advanced disease. Thus whole-genome
approaches, genomics, and proteomics would enable the
detection of protein expression patterns and temporal
networks of the clock proteins. Moreover, clinical studies
implementing chronotherapy and melatonin supplementation
are currently lacking in large patient cohorts ranked by their
circadian profiles. The circadian-rhythms-navigated therapies
pave the way for more effective implementation of current
treatment modalities, their optimization towards overcoming
therapeutic resistance and improving the quality of life in
patients with GU malignancies.
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