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Approximately 85% of histological subtypes of thyroid cancer are papillary thyroid cancer
(PTC), and the morbidity and mortality of PTC patients rapidly increased due to lymph
node metastases or distant metastasis. Therefore, it needs to distill an enhanced
understanding of the pathogenesis of PTC patients with lymph node metastases or
distant metastasis. We employed the TMT-based quantitative proteomics approach to
identify and analyze differentially expressed proteins in PTC with different degrees of lymph
node metastases. Compared with paired normal tissues, asporin is overexpressed in
PTC-N0, PTC-N1a, and PTC-N1b tumorous tissues via proteomics, western blotting, and
immunohistochemistry assays. Functionally, asporin is mainly expressed in the
extracellular matrix, cell membrane, and cytoplasm of PTC tumorous tissues, and
promotes thyroid cancer cell proliferation, migration, and invasion. Mechanistically,
asporin, interacting with HER2, co-localizes HER2 on the cell membrane and
cytoplasm, and the asporin/HER2/SRC/EGFR axis upregulate the expression of EMT-
activating transcription factors through the MAPK signaling pathway. Clinically, asporin
can be regarded as a serological biomarker to identify PTC patients with or without lymph
node metastasis, and high expression of asporin in PTC tumorous tissues is a risk factor
for poor prognosis.

Keywords: papillary thyroid cancer, asporin, HER2, quantitative proteomics, tumor migration and invasiveness
INTRODUCTION

Cancer has rapidly grown in global incidence and mortality in recent years and is expected to
become the leading cause of death from the non-communicable disease according to GLOBOCAN
(1). Thyroid cancer is the most common endocrine malignancy, and its incidence was the highest
among all cancers in the United States between 2000 and 2009 (2). Approximately 85% of
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histological subtypes of thyroid cancer are papillary thyroid
cancer (PTC). Although the death rate of PTC is relatively low
following surgery with or without concomitant radioiodine
treatment, the morbidity and mortality of PTC patients are
increased greatly due to lymph node metastases (LNMs) or
distant metastasis (3).

PTC is MAPK-driven cancer characterized by mutually
exclusive drivers including BRAFV600E and mutated RAS (4).
Importantly, the BRAF V600E oncoprotein (encoded by the
BRAFV600E mutation) is a typical member of MAPK signaling
pathway, occurring in 40%–60% of PTC patients (3).
Furthermore, Xing M demonstrated that activation of MAPK
signaling pathway resulted in upregulation of tumor-promoting
genes (e.g. VEGFA, MET, HIF1A, UPA, UPAR, TGFB1,
and TSP1) as well as downregulation of tumor suppression and
thyroid genes (e.g. TIMP3, SLC5A8, DAPK1, NIS, TSHR, and
TPO) (2). Recently, the framework of BRAFV600E-RAS gene
expression scores in The Cancer Genome Atlas (TCGA)
indicated that PTCs differentiate into BRAFV600E-like and RAS-
like PTCs (5). All these studies indicated that the MAPK
signaling pathway (upregulated in tumors with the BRAFV600E

mutation) is associated with PTC aggressiveness. However, the
phase 2 trial of vemurafenib targeting BRAF-mutated PTC
patients showed only a 38.5% response rate, which is
considerably lower than that in patients with BRAF-mutated
melanoma (6). Therefore, it needs to distill an enhanced
understanding of the pathogenesis of PTC patients.

Asporin belongs to the class I small leucine-rich proteoglycan
(SLRP) family, which also includes biglycan and decorin (7). The
name “asporin” refers to its unique aspartate resides (D-repeat)
in its N-terminal domain and its 54% identity with the sequence
of decorin (8). Asporin contains 380 amino acids and its D-
repeat polymorphisms (residues 8–19) in the N-terminus are
correlated with osteoarthritis and metastatic recurrence of
prostate cancer (7, 9). Although decorin acts as a tumor
suppressor and biglycan is regarded as an oncogene, asporin
exerts tumor-suppressor function in triple-negative breast cancer
but exerts tumor-promotor function in some types of cancer,
including breast, pancreatic, colorectal, gastric, and prostate
cancer (10). For example, asporin binds directly to extracellular
TGF-b1 in triple-negative breast cancer and its downstream
cytoplasmatic component Smad 2/3 in colorectal cancer,
resulting in inhibition or activation of the TGF-b1 signaling
pathway, respectively (11, 12). Therefore, it is unsurprising that
asporin plays different roles depending on binding different
proteins. A growing body of evidence now demonstrates that
asporin acts as an extracellular matrix component or
intracellular protein that positively or negatively controls
proliferation, invasion, and metastasis of cancer cells by
regulating the TGF-b, EGFR, and CD44 signaling pathways
(10). A previous study indicated that asporin is expressed at
moderate levels in thyroid normal tissues (8); however, the
biological roles of asporin in thyroid cancer progression have
never been investigated. The present study contributes to this
field by demonstrating that asporin interacts with HER2 to
promote thyroid cancer metastasis by regulating the MAPK-
epithelial-to-mesenchymal transition (EMT) axis.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Patients and Specimens
In total, 106 PTC patients were recruited from the department of
head and neck surgery, Peking University Cancer Hospital &
Institute, People’s Republic of China. The use of human
materials in this study was approved by the Ethics Committee
of Peking University Cancer Hospital & Institute and informed
consent was obtained from all patients. Tumorous and paired
normal tissues from 53 PTC patients were used in Western
blotting, immunohistochemistry (IHC), and tandem mass tag
(TMT)-based mass spectrometry (MS)/MS assays. Serum
samples from another 53 PTC patients were analyzed by
ELISA. Tissues collected from surgical procedures and serum
samples were immediately snap-frozen in dry ice and then stored
at –80°C. The clinicopathological parameters of all these PTC
patients are summarized in Supplementary Table 1.

Co-Immunoprecipitation
Immunoprecipitation was performed as previously described
(13, 14). Briefly, whole-cell extracts were obtained with RIPA
buffer (ab156034; Abcam) containing 1 mM PMSF and a
protease inhibitor cocktail (04693132001; Roche). After
centrifugation at 12,000 ×g for 20 min at 4°C, soluble proteins
were quantified by BCA. Samples (1 mg) of proteins precleared
with 30 ml protein A/G Plus-Agarose (sc-2003; Santa Cruz) were
used for each immunoprecipitation experiment. Proteins were
incubated with 2 mg antibodies and 30 ml protein A/G Plus-
Agarose. Immunoprecipitated materials were washed four times
with ice-cold wash buffer (0.1% Triton X-100, 50 mM Tris-HCl,
pH 7.4, 300 mM NaCl, 5 mM EDTA, 0.02% sodium azide) and
once more using 1 ml ice-cold PBS. Bound proteins were
separated by SDS-PAGE, transferred onto PVDF membranes,
and immunoblotted with the appropriate antibodies. Signals
were detected with Enhanced Chemiluminescence kits
(Millipore) according to the manufacturer’s instructions. Band
intensity was measured using FluorChem Q 3.4.0 software.

IHC and Evaluation of Staining
Tissue sections (5 mm thick) were de-waxed at 60°C for 30 min
followed by two 5-min washes with xylene. The sections were
then rehydrated by sequential 5-min washes in 100%, 95%, and
80% ethanol and distilled water. Antigen retrieval was performed
by heating the tissues at 95°C for 10 min in 0.01 M citrate buffer
(pH 6.0). The endogenous peroxidase activity of the tissues was
blocked by 3% hydrogen peroxide for 30 min, followed by
incubation with primary detection antibodies overnight at 4°C.
The sections were then incubated with the Polink-2 Plus® HRP
Polymer Detection System (PV-9001 and PV-9002; ZSGB-BIO)
according to the manufacturer’s instructions. The samples were
developed using the 3, 3′-diaminobenzidine (DAB) substrate
(Dako), and counterstained with hematoxylin.

The immunohistochemical staining was evaluated according
to percentage and intensity. The percentage of positive cells was
scored as 0–4 (0 = <10% cells; 1 = 10%–30% cells, 2 = 30%–50%
cells, 3 = 50%–70% cells, and 4 = >70% cells), and the
staining intensity of the positive cells was scored as 0–3 (0 =
May 2022 | Volume 12 | Article 762180
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no staining, 1 = weak staining, 2 = intermediate staining, and 3 =
strong staining). The percentage and intensity scores were
summed to obtain the final immunohistochemical staining
scores ranging from 0–7. Based on these scores, the protein
expression level was classified into three groups: 0–2 = negative
staining; 3–5 = moderate staining; and 6–7 = high staining.

Immunofluorescence Staining
Immunofluorescence staining was performed as previously
described (15). Briefly, BCPAP and KTC-1 cells were washed
three times with PBS, fixed in 4% paraformaldehyde for 20 min,
permeabilized with 0.2% Triton-X 100 for 15 min, and then
blocked with 5% BSA for 60 min. Cells were incubated with
primary detection antibodies (anti-asporin and anti-HER2 (sc-
7301); Santa Cruz) at 4°C overnight. Cells were then incubated
with appropriate secondary detection antibodies [Alexa Fluor
Plus 555-conjugated anti-mouse (A32727; Thermo Fisher) or
anti-rabbit (A32727) antibody and Alexa Fluor 488-conjugated
anti-rabbit (A11034; Thermo Fisher)]. Cell nuclei were stained
with DAPI (Sigma) at a final concentration of 0.1 mg/mL.
Fluorescent images were captured on a laser confocal
microscope (LSM780; ZEISS).

Transfection of Thyroid Cancer Cell Lines
Poorly differentiated thyroid cancer cell lines [B-CPAP (RRID:
CVCL_0153) and KTC-1 (RRID: CVCL_6300)] and anaplastic
thyroid cancer (ATC) cell lines [BHT-101 (RRID: CVCL_1085)]
were kindly provided by the Stem Cell Bank of the Chinese
Academy of Sciences. BCPAP and KTC-1 cells were cultured in
RPMI 1640 supplemented with 10% FBS and 1% non-essential
amino acids (Invitrogen, USA). BHT101 cells were cultured in
DMEM supplemented with 20% FBS. All human cell lines have
been authenticated using short tandem repeat profiling within
this year, and all experiments were performed with mycoplasma-
free cells. Small interfering RNAs (siRNAs) were obtained from
Guangzhou RiboBio (China). Three siRNAs targeting the Asporin
gene were designed and synthesized (siRNA2: 5’-GTGACGG
TGTTCCATATCA-3’; siRNA4: 5’-GGAGTATGTGCTCCTAT
TA-3’; siRNA5: 5’-GTGCTATTCACGAGTTGTA-3’). At the
time of transfection, cells were plated onto a 6-well plate at
60%–80% confluence. Transfection was performed with
RNAiMAX (13778-150; Thermo Fisher) according to the
manufacturer’s protocol. RNAiMAX reagent (7.5 mL) and
siRNAs were diluted in Opti-MEM and incubated at room
temperature for 15 min. The mixtures were then added to cells,
giving a final concentration of siRNAs of 30 pmol. BCPAP, KTC-
1, and BHT101 cells were cultured for 72 h after transfection and
were subsequently lysed in RIPA buffer (ab156034; Abcam).

Drug Treatment
For the Afatinib assay, BCPAP and KTC-1 Cells (4×105) were
incubated with 100 ng/ml EGF (236-EG-200; R&D Systems) for
20 min, and then incubated with or without 1 mmol/L Afatinib
(S1011; Selleckchem) for 2 h. For the PLX4032 assay, BCPAP and
KTC-1 Cells (4×105) were also incubated with 100 ng/ml EGF for
20 min and then incubated with or without 2 mmol/L PLX4032
(S1267; Selleckchem) for 4 h. After Afatinib and PLX4032
Frontiers in Oncology | www.frontiersin.org 3
treatment, BCPAP and KTC-1 Cells were washed with ice-cold
PBS three times, and whole-cell lysates were subjected to SDS–
PAGE and incubated with p-EGFRY845, p-ERK1/2, t-ERK1/2,
SLUG, ZEB1, ZEB2, and b-actin antibodies, respectively.

In Vitro Assays of Cell Migration
and Invasion
The migratory and invasive potentials of the BCPAP, KTC-1 and
BHT101 cell lines were evaluated as described previously (16).
Briefly, 3×104 cells suspended in RPMI 1640 or DMEM media
were seeded in the upper chamber of the Transwell (3422;
Corning) coated with 100 ml 2% Matrigel (356234; Corning).
RPMI 1640 or DMEM supplemented with 10% FBS was placed
in the lower chamber as the source of chemoattractant. After 24 h
of 37°C incubation, the cells remaining on the upper surface of
the insert were removed using a cotton swab, and the cells on the
lower surface were fixed with anhydrous methanol for 30 min
and then stained with 0.2% crystal violet solution (V5265-
250ML; Sigma). For each insert, cells in the center and five
randomly selected peripheral fields were assessed under an
inverted microscope. Migration assays were performed using
the invasion assay method, except that 5×104 cells were seeded
into the upper chamber that was not coated with Matrigel.

Cell Proliferation And Colony
Formation Assays
Cell proliferation assays were performed using the Cell Counting
Kit-8 (96992; Sigma) according to the manufacturer’s protocol.
Briefly, 5×103 BCPAP and KTC-1 cells in suspension were
seeded into a 96-well plate (100 ml/well). After incubating the
plate in a humidified incubator (37°C, 5% CO2) for 24, 48, 72,
and 96 h, 10 mL CCK-8 solution was added to each well. After
incubating the plate for 2 h, the absorbance values at 450 nm and
600 nm were measured using a microplate reader (Multiskan FC;
Thermo Scientific). For the colony formation assay, 3×103

BCPAP and KTC-1 cells suspended in RPMI 1640 containing
10% FBS were added to each well of a 6-well plate. Cells were
cultured for 14 days at 37°C, and colonies were counted in three
independent experiments.

TMT-Based MS/MS Analysis and
Protein Identification
TMT-based MS/MS analysis was performed as previously
described (17, 18). Briefly, according to the lymph node status,
48 thyroid tissues from 24 PTC patients were pooled as follows:
tumorous tissues from PTC patients with N0 (N0_T), tumorous
tissues from PTC patients with N1a (N1a_T), tumorous tissues
from PTC patients with N1b (N1b_T), and paired normal tissues
from all PTC patients (N0_N, N1a_N, and N1b_N). The four
groups of proteins were reduced by incubation with 10 mMDTT
for 30 min at 55°C, alkylated with 25 mm IAA for 30 min at
room temperature in the dark, and then incubated with trypsin/
Lys-C mix at a protein/protease ratio of 25:1 for 12 h at 37°C.
Subsequently, TMT isobaric label reagents (0.8 mg TMT
dissolved in 40 mL 99.9% acetonitrile) were used separately
according to the manufacturer’s instructions to label each
May 2022 | Volume 12 | Article 762180
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group of peptides as follows: TMT-126 for N1b_T; TMT-127 for
N0_T; TMT-128 for N1a_T; TMT-131 for N0+N1a+N1b_N. All
the labeled peptides in the four groups were then combined for
subsequent high-performance liquid chromatography (HPLC)
and LC-MS/MS analysis (18).

The MS/MS raw data were analyzed against the human
reviewed Swiss-Prot FASTA database (released on 2018.03.02)
using Proteome Discoverer software (Version 2.1, Thermo
Scientific). The following search criteria were applied:
carbamidomethylation (C, +57.021 Da) and TMT-6plex (K
and peptide N-terminus) as fixed modifications and oxidation
(methionine, M) as a variable modification. A maximum of two
missed trypsin/Lys-C cleavages was allowed. The false discovery
rate (FDR) was determined based on searches of the peptide
spectrum matched against the reversed decoy database. The
FDRs for peptide and protein identification were both set to
0.01. The MS/MS raw data were deposited in the
ProteomeXchange Consortium via the PRIDE partner
repository with the dataset identifier PXD007971.

Bioinformatic Analysis
The two-sided 95% prediction interval of the combined ratio
distribution was used to identify the cutoffs for differentially
expressed proteins (DEPs) (set as ≥1.7-fold or ≤0.4-fold) using
JMP Pro 13.2.1 software (Supplementary Figure 1A). Gene
ontology (GO) and pathway enrichment analyses were performed
using the Funrich tool (Version 3.1.3). The protein-protein
interaction (PPI) analysis was performed and visualized using the
stringAPP plugin in Cytoscape (Version 3.7.0), with a confidence
cutoff set at 0.4. TCGA-Assembler 2 software was used to download
the normalized RNA-seq by expectation-maximization (RSEM)
data and clinicopathological parameters of thyroid cancer (THCA)
from TCGA (19). Upregulated mRNA expression was defined as a
Z-score ≥1, whereas downregulated mRNA expression was defined
as a Z-score ≤−1 according to the previous study (20).

Statistical Analysis
All statistical analyses were performed using SPSS 19.0 (IBM
Corp., Armonk, NY, USA) and JMP Pro 13.2.1 software. Each
experiment was repeated at least 3 times. ANOVA was used to
evaluate differences among different groups and Tukey’s HSDwas
further applied for pairwise comparisons. Mann–Whitney or
Kruskal–Wallis tests were used to analyze the relationship
between asporin mRNA expression and clinicopathological
characteristics. The Kaplan–Meier method was used to evaluate
progression-free survival (PFS) and overall survival (OS). Receiver
operating characteristic (ROC) curves were generated to evaluate
the diagnostic value of serum asporin in thyroid cancer. Two-
tailed P < 0.05 was considered to indicate statistical significance.
RESULTS

Overview of Proteomic Profiles and
Corresponding Bioinformatic Analysis
To comprehensively investigate the underlying mechanisms of
PTC tumorigenicity with different degrees of LNMs, we obtained
Frontiers in Oncology | www.frontiersin.org 4
the global protein profiles of PTC tissues by performing TMT-
based MS/MS. A total of 7,657 proteins were identified, of which
5,965 high confidence proteins without keratin were extracted
with stringent criteria (q-value <0.01, unique peptide ≥2). The
abundance of these 5,965 proteins was analyzed by non-
supervised principal component analysis (PCA). Tumorous
tissues in PTC-N0, PTC-N1a, and PTC-N1b were separated
from pooled paired normal tissue (Npool_N) in Component 1,
indicating that proteomic profiles in PTC tumorous tissues were
distinct from paired normal tissues. Furthermore, tumorous
tissues in PTC with different degrees of LNM also exhibited
different profiles in terms of protein expression, resulting in a
separate cluster in Component 2 (Supplementary Figure 1B). In
further exploration of the patterns of variation among tumorous
tissues in PTC-N0, PTC-N1a, and PTC-N1b, we obtained a total
of 609 DEPs (q-value < 0.01, unique peptide ≥ 2, and fold change
≥ 1.7-fold or ≤ 0.4-fold) for hierarchical clustering analysis. The
ratios of these 609 DEPs were grouped hierarchically into five
clusters, of which 430 DEPs in cluster 5 were upregulated in
N0_T, N1a_T, and N1b_T (Figure 1A). To further explore the
biological significance of these DEPs, we performed GO and
pathway enrichment analyses of these 430 DEPs. The majority of
these DEPs were mainly involved in metabolism, energy
pathways, cell growth, and extracellular matrix structural
constituents (Figure 1B), which are the pathological hallmarks
of cancer (21). Therefore, 70 DEPs enriched in these categories
were extracted and average ratios were used to construct the PPI
network. Of particular note, these DEPs were closely linked and
upregulated in PTC tumorous tissues compared to the levels
expressed in pooled normal tissues (Figure 1C).

Verification of DEPs by Western Blotting
and IHC Analyses
To further validate our proteomics data, five core DEPs (VCAN,
PLS3, SERP1NA1, CD55, and asporin) enriched in three
different categories of PPI were analyzed by Western blotting
(Figure 2A). VCAN, PLS3, SERP1NA1, CD55, and asporin were
confirmed to be upregulated in in PTC-N0, PTC-N1a, and PTC-
N1b tumorous tissues (Figures 2A, B); b-actin was used as an
internal control. Thus, the Western blotting results were
consistent with our proteomics data, and the average ratios of
these five DEPs [e.g., Ratio_ave (asporin) = (N0_T/Npool_N +
N1a_T/Npool_N + N1b_T/Npool_N)/3)] were 3.60, 1.84, 2.91,
2.02, and 2.31, respectively (Figure 2C). Asporin was selected for
further investigation based on the following criteria: (a) Asporin
acts as an oncogene in pancreatic, colorectal, gastric, and prostate
cancer (10); (b) The roles of asporin in thyroid cancer have not
been reported based in searchers of PubMed or Google. IHC
performed in an independent set of PTC patients confirmed that
the IHC scores of asporin were also increased in PTC tumorous
tissues (Figures 2D, E). Furthermore, IHC staining indicated
that asporin is expressed mainly in the extracellular matrix, cell
membrane, and cytoplasm. Typical images of IHC staining of
asporin expression are shown in Figure 2E. To further
investigate the roles of asporin in PTC tumorigenesis, asporin
RSEM data and corresponding clinicopathological parameters
were successfully retrieved from the TCGA-THCA cohort.
May 2022 | Volume 12 | Article 762180
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This dataset showed that the high-level Z-scores of asporin were
positively correlated with PTC patients with larger tumor
classification (P < 0.001), LNM (P < 0.001), high AJCC staging
(P < 0.001), and BRAFV600E mutation (P < 0.001) (Table 1).
Furthermore, we found that asporinmRNA expression showed a
Frontiers in Oncology | www.frontiersin.org 5
significant positive association with EMT-activating
transcription factors (EMT-TFs), including b-catenin (r =
0.207, P < 0.001), SLUG (r = 0.706, P < 0.001), ZEB1 (r =
0.428, P < 0.001), and ZEB2 (r = 0.522, P < 0.001) (Figure 4C).
These results suggested that asporin may exert a vital
A B

C

FIGURE 1 | Bioinformatic analysis of differentially expressed proteins (DEPs) by TMT-based MS/MS. (A) Hierarchical cluster analysis of DEPs. Upregulated and
downregulated DEPs are shown in red and green, respectively. Five clusters are shown on the left of the heatmap. (B) Gene ontology and pathway enrichment
analysis of DEPs in Cluster 5. The biological process, cellular component, biological pathway, and molecular function are shown in blue, red, green, and purple,
respectively. (C) Protein-protein interaction network was constructed with DEPs; no connective DEPs were excluded. The average ratios of DEPs are reflected by
color intensity. Upregulated and downregulated DEPs are shown in red and green, respectively. Five DEPs included in the red ovals were further investigated by
Western blotting analysis.
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tumor-promoting function in PTC by regulating the MAPK/
EMT axis.

Knockdown of Asporin Inhibits Cell
Growth, Migration, and Invasion of Thyroid
Cancer Cells
To further examine the ability of asporin to enhance tumor
progression in thyroid cancer, we knocked down endogenous
asporin expression in thyroid cancer cell lines by transfection
with three siRNAs (Figures 4A, B). Compared to the cells
transfected with the scramble control, CCK-8 assays showed
that asporin knockdown inhibited the viability of BCPAP and
KTC-1 cells (Figures 3A, B). Furthermore, siASPN also
decreased the number of colonies in the colony formation
assays (Figures 3C, D), further indicating that asporin
knockdown inhibits the growth of thyroid cancer cells. Next,
we performed Transwell assays to examine the effects of asporin
knockdown on the invasive and metastatic potential of these
cells. We found that transfection with siASPN decreased the
migratory and invasive ability of BCPAP and KTC-1 cells
(Figures 3E, F). Interestingly, migration and invasion assays
showed that siASPN also significantly decreased the ability of
BHT101 cells (ATC cell line) to penetrate the Transwell
membrane with or without Matrigel-coating (Supplementary
Frontiers in Oncology | www.frontiersin.org 6
Figure 2). These results suggested that asporin knockdown
significantly inhibits the metastatic potential of thyroid
cancer cells.

Asporin Knockdown Impairs the Malignant
Phenotype of Thyroid Cancer Cells by
Inhibiting the MAPK/EMT Axis
Next, we investigated the molecular mechanism by which
asporin promotes the malignant phenotype in thyroid cancer.
TCGA-THCA cohort analysis indicated that asporin mRNA
expression was positively associated with MAPK pathway
activation and EMT-related mRNA expression. Western
blotting analysis showed that asporin knockdown reduced p-
ERK1/2 protein levels, but not t-ERK1/2 protein levels in BCPAP
and KTC-1 cells (Figures 4A, B). Furthermore, siRNA-mediated
silencing of asporin also resulted in the downregulation of EMT-
TFs, including SLUG, ZEB1, and ZEB2, which is the downstream
of the MAPK signaling pathway (Figures 4A, B). Of particular
note, we also found that siRNA-mediated silencing of asporin
resulted in the downregulation of p-ERK1/2, TWIST1, SLUG,
ZEB1, and ZEB2 protein levels, and upregulation of E-cadherin
in BTH101 cells (Supplementary Figure 3). These results
indicated that asporin knockdown inhibited the tumorigenicity
of thyroid cancer cells by hindering activation of the MAPK
A B E

C

D

FIGURE 2 | Validation of five differentially expressed proteins (DEPs) by Western blotting and IHC analyses. (A) VCAN, PLS3, SERP1NA1, CD55, and asporin protein
levels were validated by Western blotting analysis; b-actin was used as the loading control. (B) Quantification of the indicated five DEPs relative to b-actin. (C) The
average ratios of the indicated five DEPs were identified in the TMT-based proteomics data relative to b-actin. (D) Histopathological scoring of asporin in 29 paraffin-
embedded PTC tumorous tissues and paired normal tissues. *P < 0.05, **P < 0.01. (E) Representative images of immunohistochemical labeling of asporin in PTC
tumorous tissues and paired normal tissues. Asporin was expressed mainly in the extracellular matrix, cell membrane, and cytoplasm of PTC tumorous tissues, while a
very low or no signal was detectable in paired normal tissues. Paired normal (N) or tumorous (T) tissues are marked with dotted lines. Scale bars, 50 mm.
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TABLE 1 | Correlations of Asporin mRNA expression in tumorous tissues with clinicopathological characteristics.

Characteristics Asporin mRNA expression (Z scores)

No. Low Moderate High P-value
(≤-1) (-1 to 1) (≥1)

Age
<45 years 221 30 165 26 0.29
≥45 years 269 35 181 53

Sex
Male 130 18 91 21 0.263
Female 360 47 255 58

Multifocality
Solitary 262 41 174 47 0.056
Multiple 218 22 164 32

Tumor classification
T1+T2 303 41 235 27 <0.001
T3+T4 185 24 109 52

Lymph node classification
N0 225 33 169 23 <0.001
N1 215 27 136 52

AJCC Staging
Stage I+II 324 44 250 30 <0.001
Stage III+IV 164 21 94 49

BRAFV600Emutation
Yes 231 24 156 51 <0.001
No 245 39 181 25
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P-value indicates the probability from the nonparametric Mann–Whitney test. Bold text indicates P < 0.05.
A B

C D

E

F

FIGURE 3 | The knockdown of asporin inhibits thyroid cancer cell growth, migration, and invasion. (A) CCK-8 assay of the growth rates of control or siASPN
BCPAP cells. Data represents the mean ± SD of three independent experiments. **P < 0.01(si4-si5 cultured for 72-96 h) (B) Growth rates of control or siASPN KTC-
1 cells. **P < 0.01(si4-si5 cultured for 48-96 h,and si2 cultured for 96 h). (C) Representative images of colony formation in BCPAP and KTC-1 cells. (D) The number
of clones counted in three independent experiments. Data are expressed as mean ± SD. **P < 0.01. (E) Representative images of Transwell assays of BCPAP and
KTC-1 cell migration and invasion. (F) Cells that migrated across the chamber membrane were stained with 0.2% crystal violet solution and counted. Data
represents the mean ± SD. **P < 0.01.
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signaling pathway and downregulating its downstream EMT-
TFs to impair the migration and invasiveness of thyroid
cancer cells.

Asporin Interacts With HER2 and Activates
the HER2 Signaling Pathway
Numerous studies have shown that the MAPK signaling pathway
is activated by members of the EGF family, including EGFR and
HER2 (22). We investigated the ability of asporin to interact with
members of the EGF family in PTC using endogenous co-IP
assays. Asporin was coprecipitated with HER2 but not with
Frontiers in Oncology | www.frontiersin.org 8
EGFR and SRC (Figure 5A), and conversely, HER2 was
coprecipitated with asporin (Figure 5B). Furthermore,
immunofluorescence assays revealed the co-localization of
asporin and HER2 on the cell membrane and in the cytoplasm
of BCPAP and KTC-1 cells (Figure 5C). These results indicated
that asporin and HER2 form a complex. Knockdown of asporin
expression in BCPAP and KTC-1 cell lines reduced HER2, p-
HER2Y1248, p-SRCY418, p-EGFRY845, and p-EGFRY1173

expression, but not SRC and EGFR levels (Figures 5D, E).
These results suggested that asporin could bind HER2 to
maintain its expression level, and asporin knockdown could
A

C

B

FIGURE 4 | Asporin knockdown impairs the malignant phenotype of thyroid cancer cells by inhibiting the MAPK/EMT axis. (A) Knockdown of asporin using three
siRNAs (siASPN). Levels of proteins in the MAPK signaling pathway and its downstream EMT-TFs were downregulated in the siASPN cells, including p-ERK1/2,
SLUG, ZEB1, and ZEB2. The results presented are representative of at least 3 independent experiments. (B) Quantification of protein levels in control and siASPN
cells relative to b-actin. (C) TCGA-THCA cohort data analysis indicated that asporin mRNA expression was positively correlated with the expression of some EMT-
TFs mRNAs, including b-catenin, SLUG, ZEB1, and ZEB2.
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subsequently downregulate the expression of p-EGFR and p-SRC
in BCPAP and KTC-1 cell lines.

Afatinib and PLX4032 Mimic the
Effects of Asporin
Our results suggest that reduced MAPK pathway activity is due to
lower EGFR/HER2 signaling which mediates the decrease in EMT
regulating genes by Asporin knockdown. To confirm these results,
pharmacological inhibitor assays were performed to confirm
whether Afatinib (EGFR inhibitor) or PLX4032 (MAPK
inhibitor) can mimic the effects of Asporin knockdown on
SLUG, ZEB1, and ZEB2 expression. We found that BCPAP and
KTC-1 cells treated with Afatinib can downregulate p-EGFRY845,
p-ERK1/2, SLUG, ZEB1, and ZEB2 expression, but not t-ERK1/2
(Figure 6A). Furthermore, PLX4032 treatment results in the
downregulation of p-ERK1/2, SLUG, ZEB1, and ZEB2 protein
levels in BCPAP and KTC-1 cells, but not t-ERK1/2 (Figure 6B).
Frontiers in Oncology | www.frontiersin.org 9
Clinical Applications of Asporin in PTC
Our in vitro results raised the possibility that the upregulation of
asporin in serum represents a candidate biomarker in PTC.
Accordingly, we examined the serological asporin levels in 54
PTC patients and 11 healthy volunteers by ELISA. The serum
levels of asporin in PTC were higher than those in healthy
volunteers (P < 0.05) (Figure 7A). We then used ROC curve
analysis to determine the sensitivity and specificity of asporin as
a biomarker in PTC. The area under the ROC curve (AUC) of
asporin for discriminating PTC patients from healthy controls
was 0.73, and the optimal Youden’s index was 0.407 (sensitivity =
0.679, specificity = 0.727) (Figure 7B). More importantly, serum
levels of asporin in PTC-N1a and PTC-N1b patients were higher
than those of healthy volunteers and PTC-N0 patients (P < 0.01)
(Figure 7C). The AUC of asporin for discriminating PTC-N1a
and PTC-N1b patients with PTC-N0 patients was 0.84, and
the optimal Youden’s index was 0.59 (sensitivity = 0.667,
A D

C

E

B

FIGURE 5 | Asporin interacts with HER2 and activates the HER2 signaling pathway. (A, B) Endogenous co-immunoprecipitation (co-IP) assay revealed co-IP of
asporin with HER2, but not with EGFR and SRC, and conversely, HER2 was coprecipitated with asprorin; IgG was used as the isotype control. The results
presented are representative of at least 3 independent experiments. (C) Immunofluorescence staining of asporin (green) and HER2 (red) in BCPAP and KTC-1 cells.
Merged images with DAPI staining. Asporin colocalizes with HER2 in the cell membrane and cytoplasm. One representative result of at least 3 independent
experiments was shown. (D) Equal amounts of proteins in siASPN or control cells were analyzed by immunoblotting with the indicated antibodies. (E) Proposed
working model for asporin promoting thyroid cancer metastasis by regulating the HER2/SRC/EGFR/MAPK/EMT axis.
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specificity = 0.923) (Figure 7D). These results implicated asporin
as a serological biomarker that can be used to identify PTC
patients with or without lymph node metastasis. Furthermore,
we referred to the TCGA-THCA cohort to investigate the
potential correlation of asporin expression with OS or PFS.
Kaplan–Meier analysis indicated that high Z-scores for asporin
in tumorous tissues were associated with significantly worse PFS
(P = 0.027) and OS (P = 0.002) than those of patients with
normal/low Z-scores (Figures 7E, F). Therefore, elevated asporin
expression in tumorous tissue was found to correlate positively
with a poorer prognosis, thus, also implicating asporin as a novel
candidate prognostic biomarker.
DISCUSSION

Our study revealed distinct tumorous protein profiles among PTC
with different degrees of LNMs and showed that DEPs in
tumorous tissues are mostly enriched in the extracellular matrix,
metabolism, and cell growth. The proteomics data were validated
by Western blotting analysis of VCAN, PLS3, SERP1NA1, CD55,
and asporin, which were confirmed to be upregulated in PTC
tumorous tissues with different degrees of LNMs. Asporin was
found to be expressed mainly in the extracellular matrix, cell
membrane, and cytoplasm of PTC tumorous tissues, and
promoted thyroid cancer cell proliferation, migration, and
invasion. Asporin was also shown to co-localize with HER2 on
the cell membrane and in the cytoplasm of PTC cells.
Furthermore, we showed that the asporin/HER2/SRC/EGFR
axis upregulated the expression of EMT-TFs via the MAPK
signaling pathway (Figure 5E). Finally, ELISA assay implicates
asporin as a serological biomarker to identify PTC patients with or
Frontiers in Oncology | www.frontiersin.org 10
without lymph node metastasis, and high expression of asporin in
PTC tumorous tissues is a risk factor for poor prognosis.

In colorectal cancer, Wu et al. demonstrated that asporin
promoted cancer cell proliferation and metastasis via the EGFR/
SRC/cortactin signaling pathway (23). Furthermore, Ding et al.
suggested that asporin also promoted tumor growth and
metastasis in gastric cancer via the EGFR/ERK/MMP2 axis
(24). However, it is far from clear how asporin activates the
EGFR signaling pathway to upregulate the p-EGFR protein level.
Two previous studies suggested that HER2 and EGFR are
overexpressed in PTC tumorous tissues (25, 26) and that
HER2 and EGFR overexpression are positively associated with
extrathyroidal extension, LNM, and high TNM stage in PTC
(26). In the current study, we found that asporin interacted with
HER2 and asporin knockdown downregulated protein levels of
HER2, p-HER2Y1248, and p-EGFRY1171. Mounting evidence
shows that HER2 overexpression promotes EGFR expression
and activity (27–29). Furthermore, HER2/HER2, HER2/EGFR,
and HER2/HER3 levels were increased by HER2 overexpression,
resulting in activation of the MAPK and PI3K signaling
pathways, as well as stimulation of SRC kinases (30). In breast
cancer, Jeong and colleagues found that PMCA2 knockdown
disrupted the interaction between HER2 and HSP90 and
promoted the internalization and degradation of HER2,
resulting in a reduction in the protein levels of p-EGFR, HER3,
and p-HER3, but not EGFR (31). Furthermore, Yoon et al.
indicated that a6b4 integrin interacted with, and increased the
translation of HER2 through eIF4E, which resulted in p-EGFR
overexpression and activation of Ras to promote invasion in
breast cancer cells (32). However, the mechanism by which
asporin regulates HER2 expression in thyroid cancer remains
to be fully elucidated. However, these previous studies provide
A B

FIGURE 6 | Afatinib and PLX4032 mimic the effects of Asporin knockdown on SLUG, ZEB1, and ZEB2, expression. (A) Afatinib treatment can downregulate p-
EGFRY845, p-ERK1/2, SLUG, ZEB1, and ZEB2 expression, but not t-ERK1/2. (B) PLX4032 treatment results in the downregulation of p-ERK1/2, SLUG, ZEB1, and
ZEB2 protein levels, but not t-ERK1/2.
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good evidence that asporin may regulate HER2 expression at the
translational or post-translational level.

A growing body of evidence indicates that SCR activity is
necessary for HER2-mediated proliferation, survival, metastasis,
and angiogenesis (33), suggesting that SRC is the vital second
messenger of HER2. Furthermore, HER2 interacts with SRC to
increase its expression and activity (34, 35). SRC also increases
HER2/HER3 dimerization and HER2 activity (36), which indicates
that HER2 and SRC may create a regulatory feedback loop.
Interestingly, Biscardi et al. indicated that SRC also enhanced
EGFR activity by inducing phosphorylation of Tyr845 and
Tyr1101 (37). In accordance with previous studies, we also found
Frontiers in Oncology | www.frontiersin.org 11
that asporin knockdown in PTC cells downregulate protein levels
of HER2, p-SRCY418, and p-EGFRY845, but not the total levels of
SRC protein. Collectively, the asporin/HER2/MAPK/EMT axis
promoted the migration and invasion of thyroid cancer cells.

Nearly 36% of PTC patients are diagnosed with LNMs, which
are correlated with local tumor recurrence and cancer-specific
mortality (38). Therefore, it is important to accurately diagnose
the presence and level of LNMs. Although high-resolution
ultrasound imaging can be used to evaluate the extent of
primary tumors and LNMs of PTC (39), the overall sensitivity
is only 51%, and this imaging has limitations for the evaluation of
the deeply situated retropharyngeal and mediastinal lymph
A B

C D

E F

FIGURE 7 | Clinical analysis of asporin expression in serum and tumorous tissues. (A) The serum levels of asporin in 54 PTC patients and 11 healthy volunteers
were determined by sandwich ELISA. Data are expressed as mean ± SD. *P < 0.05, **P < 0.01. (B) Receiver-operator characteristic (ROC) curve analysis was used
to examine the diagnostic efficacy of serum asporin levels. ROC curve analysis of data for discriminating PTC patients and healthy volunteers. (C) Serum asporin
levels in patients with PTC-N0, PTC-N1a, and PTC-N1b. (D) ROC curve analysis of data for differentiating PTC-N0 from PTC-N1a and PTC-N1b.(E, F) Kaplan–Meier
curves and log-rank tests showing high expression of asporin is positively correlated with worse progression-free survival and overall survival of patients with PTC.
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nodes (38, 39). In the present study, we found that serum asporin
could not only be used to distinguish PTC patients from healthy
volunteers but also to discriminate PTC-N1a and PTC-N1b
patients from PTC-N0 patients. These results indicated that
the combination of serum asporin levels and ultrasound
imaging may be used to assess the probability that LNMs has
occurred and the extent.
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