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Cancer is one of the leading causes of death in the world, which is the second after heart
diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for
cancer treatment. The objective of this review is to discuss current advances in the
applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be
engineered in different ways so as to change the tumor microenvironment from cold
tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for
tumor suppressor gene (p53) and other proteins whose expression result in cell cycle
arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and
other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to
use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are
replication-defective recombinant human p53 adenoviral vectors that have been shown to
be effective against several types of cancer. Gendicine was approved for treatment of
squamous cell carcinoma of the head and neck by the Chinese Food and Drug
Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine
and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective
against some types of cancer. The Chiness FDA agency has also approved Oncorin for
the treatment of head and neck cancer. Ads that were engineered to express immune-
stimulatory cytokines and other immune-modulatory molecules such as TNF-a, IL-2,
BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of
cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and
adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-
deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1–MVA and Ad-
transduced Dendritic cells) that were tested as anticancer vaccines have been
demonstrated to induce strong antitumor immune response. However, the use of
adenoviral vectors in gene therapy is limited by several factors such as pre-existing
immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative
strategies must be continually developed so as to overcome the obstacles of using
adenoviral vectors in gene therapy.
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1 INTRODUCTION

In the past few decades, gene therapy for diseases such as cancer
using adenoviral vectors has been significantly advanced.
Adenoviruses (Ads) can be used either as replication-
competent Ads or replication-defective adenoviral vectors for
gene therapy (1, 2). The following are the characteristics that
made Ads one of the most favorable viruses for gene therapy:-1.
Ads have unique ability to infect wide range of cell types (broad
cell tropsim) and have the capacity to induce strong cell
mediated immunity and humoral response (3); 2. The genetics
of Ads has been well known and Ads have stable genome (4); 3.
Ads have lytic replication cycle. This lytic replication cycle causes
lysis of tumor cells (oncolysis) (5); 4. Adenoviral vectors have low
pathogenicity and relatively safe and well-tolerated (4, 6); 5. Ads
have large transgene carrying capacity about and can transduce
both in dividing and non- dividing cells (4, 7, 8) and 6. Ads can
infect professional antigen-presenting cells that are very effective
in presenting antigens to T-cells (9). The objective of this review
is to discuss current advances in applications of Ads in
cancer therapy.
2 GENERAL INFORMATION
ON ADENOVIRUSES

Ads are non-enveloped viruses with double stranded deoxy
ribonucleic acid (DNA) genome. The genome of Ads ranges in
size from 26 kb to 45 kb that is encompassed within icosahedral
capsid (10, 11). The Ads virion size ranges from 90-100 nm in
diameter. There are six kinds of proteins that constitute the
adenoviral capsid: penton, fiber, hexon, IX, VIII, and IIIa. The
IIIa involves in the assembly of the viral structure. The fiber and
penton proteins involve in the attachment and entry of the Ads
into host cells and the hexon constitutes most of the viral capsid
(12, 13). The proteins IIIa, VIII, and IX make up the virion core,
which are associated with the DNA genome. The VIII is
important for the stability of the viral capsid (14–16).

The genes of Ads can be categorized into two classes: as early
genes (five early genes) and late genes (five late genes). The Ads
bind to host cell through its receptors, which includes scavenger
receptors, CD46, integrin avb5 heparin sulfate proteoglycans,
sialic acid etc) and gains entry into the cytoplasm (17–20).

After entry into the target host cell by micropinocytosis (21,
22), Ads first express the five early proteins that are coded by the
five early genes (E1A, E1B, E2, E3 and E4 which are involved in
protein synthesis and DNA replication. Structural proteins (L1-
L5) are coded by the five late genes (15, 23, 24). Following
replication, the adenoviral virion leaves the host cell by killing the
host cell (lytic cycle). Newly produced Ads can infect wide range
of host cells including antigen presenting cells and
quiescent cells.

Ads belong to the family adenoviridae that is consisted of five
genera: Mastadenoviruses, Avidadenoviruses, Siadenoviruses,
Atadenoviruss and Ichtadenoviruse. The genus Mastadenovirus
is consisted of Ads that infects humans (human adenoviruses)
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and non-human primates (25). The genus Aviadenovirus is
consisted of Ads that are isolated from birds. Viruses that are
isolated from birds, ovine, bovine, deer and possum belong to the
genus Atadenoviruses. Ads that are isolated from fish belong to
the genus Ichtadenoviruses. The genus Siadenovirus includes
viruses that are isolated from invertebrates (25).

Human adenoviruses (HAds) are categorized into seven
species (A-G) that are further divided into 57 serotypes (Ad1-
Ad57) (1). Adenoviral serotyping is based on capsid proteins
(VIII, hexon), phylogenetic distance (≥10%) in adenoviral genes
that codes for protease, viral surface antigen neutralizing
antibodies, and DNA polymerase (26–28).

HAds have worldwide distribution. Humans can be infected
with more than one serotype or species of Ads that are usually
acquired in early childhood, which leads to lifelong immunity
(29). Ads account for 5% of common cold cases. Wild type Ads
often cause mild illness in immunocomptetent individuals,
which mainly affects the respiratory tract, eyes and digestive
system (30). However, HAds causes severe illness in
immunosuppressed individuals (31).

Ads induce diverse innate immune signaling pathways that
result in the secretion of a number of proinflammatory cytokines.
These proinflammatory cytokines result in the induction of
robust adaptive humoral and cellular immune responses. The
adaptive immune responses that develop against Ads include
both T cells and neutralizing antibodies against the viral surface
antigens such as hexon, penton, and fiber proteins (32–35).

Humans can be infected with different kinds of non-human
Ads because of their broad tissue tropism and the structural
similarity that they have with that of HAds. These characteristics
subjected to use the non-human Ads as a vector for gene therapy
and recombinant vaccine development so as to overcome the
pre-existing antibodies that exists against human adenoviral
vectors. There are numerous non-human adenoviral vectors
that have used for recombinant vaccine development and gene
therapy such as gorilla adenovirus vector (GC-46), chimpanzee
adenoviral vectors (ChAdOx1 nCoV-19, ChAd1, ChAd2,
ChAd3, ChAd5, ChAd6, ChAd7, and ChAd68); bovine
adenoviral vectors; fowl adenoviral vectors; canine adenoviral
vectors, ovine adenoviral vectors; porcine adenoviral vectors
(36–40).
3 CONSTRUCTION OF
ADENOVIRAL VECTORS

Adenoviruses have been engineered to make them efficient and
safe vectors for human use as gene therapy and vaccine vectors
by deleting certain genome sequences. So far three generations of
adenoviral vectors have been developed to further improve the
gene-carrying capacity and safety by deleting more genes. The
three generations of adenoviral vectors are as follows:-

3.1 First-Generation Adenoviral Vectors
In the first generation, two genes are deleted (E1 and E3) so as to
make the adenoviral vector replication defective, but keeping
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them to transduce host cells without killing them and liberating
nearly 8 kb of space in the genome for the transgene and
regulatory sequences (41, 42). These adenoviral vectors carry
native tissue transduction capability and efficiently express the
transgene in target host cells. The major challenge of the first-
generation adenoviral vectors is immunogenicity and
cellular toxicity.

3.2 Second Generation Adenoviral Vectors
In the second-generation adenoviral vectors, in addition to the
E1/E3 genes, E2 and E4 regions are also deleted (43, 44). The
second-generation adenoviral vectors provide additional space
for larger cargo sequences (10.5 kb) and eliminated the
possibility of generating replication-competent adenoviruses
during amplification. Immunogenicity and cellular toxicity are
still a major concern in the second-generation adenoviral
vectors (45).

3.3 Third Generation Adenoviral Vectors
Third-generation adenoviral vectors are also called high capacity
adenoviral vectors (HCAds) because they can accept cargo
sequences up to 36 Kb (43, 46–48). The HCAds were
generated by deleting all viral sequences except the ITRs and
the packaging signal (49). For replication of third-generation
adenovirus vectors in cel l cul ture , instead of the
complementation by the viral genes encoded by host cells, an
additional adenoviral helper virus is provided. Therefore, the
third-generation adenoviral vectors are also called helper
dependent or gutless adenoviral vectors (50, 51).

Third-generation vectors have several benefits over first and
second-generation adenoviral vectors, including less cellular
toxicity and reduced immunogenicity and the HCAds can
simultaneously encode multiple transgene cassettes (52, 53).
The disadvantage of the HCAds is the fact that they are more
complicated to first and second-generation adenoviral vectors
and also have possibility of helper virus contamination (54).
4 APPLICATION OF ADENOVIRUSES IN
CANCER THERAPY

4.1 Cancer Immune Profiles: Immune
Desert, Immune Excluded and Inflamed
Tumor
Human cancers can be categorized into three immune profiles
(immune phenotypes), depending on their immune status. The
three types of cancer immune profiles include: immune deserts
tumor, immune-excluded tumors and inflamed tumors. Immune
deserts are tumors devoid of immune infiltration, antigen
presentation (low major histocompatibility complex-I) and
high tumor cells proliferation as seen in tumors such as Head
and neck squamous cell carcinomas (HNSCC), glioblastomas,
prostate cancer, pediatric malignancies, hormone receptor
positive breast cancer (55–57). Immune excluded tumors are
tumors with suppressed tumor microenvironment represented
by T cells embedded in the tumor stromal microenvironment
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with high TGF-b signaling, myeloid inflammation, and
angiogenesis (58–61). Inflamed tumors have an army of T-cells
that are ready to destroy tumors inside the tumor micro-
environment. Inflamed tumors are associated primarily with
IFN-g signaling, high tumor PD-L1, TILs, B cells, and intact
antigen presentation (i.e., intact HLA and expression of MHC
class I on the surface of tumor cells) (58, 62, 63).

The factors that derive suppression of anti-tumor immunity
include; I. Increased frequencies of immune suppressive cells (such
as T regulatory cells, and Myeloid-derived suppressor cells
(MDSCs) (64–66); II. Impairing cytotoxic CD-8+ T-cells (CTLs)
activation and infiltration (67–69); III. Up regulating immune
checkpoint inhibitors receptors and their ligands (PD-1 and PD-L)
(70); IV. Secretion of immunosuppressive cytokines (64, 65); and
V. Escaping natural killer cells mediated killing of tumor (71).

Adenoviruses have become the promise of new therapeutic
strategy for cancer treatment. Adenoviral vectors can be engineered
in different ways so as to change the tumor microenvironment
(TME) from cold tumor to hot tumor, including; 1. By modifying
Ads to express cytokines, and other immune-modulatory
molecules; 2. By modifying Ads to deliver tumor suppressor gene
and code for tumor specific antigen. The other way to use Ads in
cancer therapy is to use oncolytic adenoviruses, which directly kill
tumor cells after replication (72–76)(Table 1).

4.2 Adenoviral Vectors Coding for Tumor
Suppressor Protein (p53)
One of the strategies that have been developed to use Ads in
cancer therapy is to use replication-deficient adenoviral vectors
to carry transgenes that codes for a tumor suppressor protein
(p53) or proteins that induce apoptosis or cell cycle arrest (74,
76). Wild-type p53 prevents development of cancer by inhibiting
the activation of oncogenes and inducing programmed cell death
(apoptosis) when the cell’s DNA repair functions are insufficient
to repair DNA damage (77). Suppression of p53 function is
common in human cancers and 50% of cancers have mutations
in the gene that codes for p53 protein (78, 79). For this reason,
the p53 gene has become one of the target genes for
transformation research of cancer gene therapy.

Gendicine is a replication-defective recombinant human p53
Ads vector (rAd-p53) expressing p53 proteins which inhibits the
uncontrolled division of cancer cells and induces apoptosis of
cancerous cells (84). Several studies that investigated the
therapeutic efficacy of gendicine against HNSCC have showed
good results. Gendicine combined with radiotherapy,
chemotherapy, and other conventional treatment regimens
demonstrated longer progression-free survival times than
conventional treatments alone with no serious side effects
except for transient fever or flu-like symptoms (80–87). For
example, (80), conducted a clinical trial with 29 patients. Sixteen
patients were treated with intratumoral injection of gendicine in
combination with radiotherapy and 13 patients were treated with
radiotherapy alone. The complete remission rate (also called
complete response) in the patients treated with a combination of
gendicine and radiotherapy was 5 times higher than the
radiotherapy alone group (75% Vs 15%) (80).
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Gendicine also showed promising results in treatment of
cervical cancer patients. The 5-year overall survival rate of
gendicine combined with radiotherapy group was 74.2% and
the 5-year overall survival rate of the radiation alone group was
56.7%. Both the 5-year overall survival rate and disease free
survival rate were significantly higher in the group treated with
combination therapy (gendicine combined with radiotherapy)
compared to the patients treated with radiation alone (88). In a
clinical study of recurrent uterine sarcoma treated with gendicine
combined with chemotherapy (89), the remission rate was
66.7%, and the disease control rate was 91.7%.

Gendicine was approved for treatment of squamous cell
carcinoma of the head and neck by the Chinese Food and
Drug Administration agency in 2003 as a first-ever gene
therapy product to be used in combination with chemotherapy
and have been in use for more than 15 years (90, 91). Gendicine
has been also shown to be effective for treatment of different
kinds of cancer in China including malignant glioma, epithelial
ovarian carcinoma, Hepatocellular cancer (HCC), and Non-
small cell lung cancer (NSCLC) (89–92).

Likewise, Advexin is a replication-defective recombinant
human p53 adenoviral vector expressing p53 proteins. Advexin
has a deletion on E3 and E1 genes that expresses a functional p53
protein from a Cytomegalovirus promoter (78, 79, 93). Advexin
is similar to gendicine except that the p53 in gendicine is
expressed from Rous Sarcoma Virus promoter (1). Advexin
was proved efficacious against bladder cancer, ovarian cancer,
prostate cancer, breast cancer, squamous cell carcinoma of the
head and neck, hepatocellular carcinoma, colorectal cancer,
squamous cell carcinoma of the oral cavity, oropharynx,
hypopharynx, and larynx and non-small cell lung cancer
(NSCLC) (92–95).

4.3 Oncolytic Adenoviruses as
Anticancer Virotherapy
Oncolytic viruses are viruses that that specifically infect and
replicate in a tumor cells and kill the cancer cells by their lytic
replication (73, 75, 96). Oncolytic Ads, particularly oncolytic
HAds are one of the leading candidate viruses for cancer
virotherapy because of their good safety profile and high
immunogenicity. Oncolytic Ads are genetically engineered Ads
which acquired traits that enables them to infect and
preferentially replicate in tumor cells (97). Oncolytic
adenoviral vector technologies have been approved in some
countries for treatment of cancer in humans (1, 75, 98). As
compared with normal and quiescent cells, generally, tumor cells
are more permissive to Ads (99), because of different reasons.
The first reason is that the entire pattern of gene expression in
cancer cells is conducive for Ad replication (100). The second
reason is the fact that specific viral entry receptor is highly
expressed in tumor cells. The other reason is the higher cell
division and metabolic rate that take place in cancerous cells than
that of normal and quiescent cells (101, 102). The advantage of
an oncolytic Ads is not only to specifically replicate in and lyse
tumor cells, but oncolytic adenoviruses can also stimulate potent
anti-viral and anti-tumor immune responses for tumor-specific
Frontiers in Oncology | www.frontiersin.org 4
antigens that are released following lysis of Ads infected tumor
cells (103–105).

Adenoviral vectors have been engineered to efficiently
undergo oncolytic replication in cancer cells without
replicating in healthy cells (106, 107). For example, ONYX-015
with a partial E1B gene deficiency is oncolytic adenoviral vector
that infects and replicate in tumor cells that lacks p53 but unable
to replicate in healthy cells expressing p53 (106). ONYX-015 has
been demonstrated to be effective and well-tolerated oncolytic
adenoviral vector that is reported to be more effective when given
in combination with different cancer chemotherapies (107, 108).
Oncorine (H101) is also a genetically modified oncolytic
adenoviral vector expressing p53 gene. The Chinese food and
drug administration agency has approved Oncorin for the
treatment of head and neck cancer in combination with
chemotherapy (93, 109).

4.4 Adenoviruses Expressing
Immunomodulatory Molecules
Adenoviruses can be used in cancer therapy by modifying the
viruses to stimulate antitumor immune response in different
ways including by expressing cytokines, and other immune-
modulatory molecules (72, 110–112).

4.4.1 Interferon Armed Adenoviruses
Interferons (IFNs) are the first group of cytokines that
demonstrated efficacy in the treatment of malignancies. IFN
signaling is mediated by binding of IFNs to their receptors and
subsequent activation of Janus tyrosine kinase (JAK)-STAT
signaling pathway (113). Interferon (IFN) has a strong
antitumor effect and has been used in the treatment of
pancreatic cancer. Some studies showed that IFN-a
significantly prolongs survival rate (by 2 to 5 years) (114–116).
However, there are limitations in using IFN-based therapies,
including dose-limiting systemic toxicities and low intratumoral
concentration of IFN because of its short half-life in the
bloodstream (117, 118). In response to this, oncolytic
adenoviruses have been engineered to express IFN, which
showed positive outcomes in treatment of cancer.

Armstrong et al. (119, 120) has reported oncolytic
adenoviruses expressing human IFN-a as a promising
platform for selective, long-term expression of IFN in human
pancreatic cancer tissues (119, 120). Armstrong et al. used the
oncloytic adenovirus Ad5/Ad3-Cox2-DE3-ADP-IFN in their
study, which was developed to selectively replicate within
cancer cells expressing cyclooxygenase 2 (Cox2). In order to
improve the infectivity and oncolysis of the oncolytic
adenoviruses, they made genetic modification in the virus to
include an Ad5/Ad3 chimeric fiber and overexpress the
adenovirus death protein (ADP). The expression of adenovirus
death protein (ADP) occurs during the late stage of infection a
lytic infection. ADP promotes the release of progeny virus
(virion) by accelerating the lysis and death of the host cell (121).

Similarly, other researchers have also reported as oncolytic
adenoviruses expressing IFN-a have promising outcomes in
treatment of cancer. The researchers reported that an oncolytic
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adenovirus (OAd-hamIFN) that was investigated in an
immunocompetent Syrian hamster model of pancreatic ductal
adenocarcinoma showed efficient viral replication in tumor,
significant inhibition of tumor growth, and enhanced survival
when used in combination with chemo therapies and radiation
therapies (122, 123). Likewise, studies conducted by Tao etal.
(124) have shown that significant tumor regression of bladder
cancers occurred following administration of an adenovirus
expressing human interferon a (Ad-IFNa) using a mouse
superficial bladder cancer model in which human bladder
tumors are growing (124).

4.4.2 GM-CSF Expressing Adenoviruses
(ONCOS-102)
Granulocyte macrophage colony-stimulating factor (GM-CSF)
promotes activation of T-cells and maturation of dendritic cells
(125, 126). Therefore, an immunotherapy using adenoviruses
that express GM-CSF transgene can be an effective anti-tumor
therapy. ONCOS-102 is an oncolytic adenovirus that contains
GM-CSF transgene (127). A clinical study (phase-I) in patients
with advanced solid tumors including colon, lung, and ovarian
cancers demonstrated a strong immune cell infiltrate into tumors
without dose-limiting toxicities (127).

4.4.3 LOAd703 Expressing 4-1BBL and
Trimerized CD40L
The other oncolytic adenovirus that expresses immunostimulatoy
cytokine is LOAd703. LOAd703 is armed with 4-1BBL and
trimerized CD40L that was shown to replicate and kill pancreatic
cancer cells via oncolysis in both in vitro and in vivo assays (128).

4.4.4 TILT-123 (Expressing TNF- a)
TILT-123 is an oncolytic adenovirus that incorporates
transgenes for human tumor necrosis factor alpha (TNF-a)
and interleukin-2 (IL-2). TNF-a and IL-2 were shown to be
promising T cell stimulating factors when used in combination
with adoptive cell therapy (129, 130).

4.4.5 IL-12 and Other Cytokines Armed
Adenoviruses
Interleukin-12 (IL-12) is a proinflammatory cytokine that
initiates antitumor immune responses by promoting the
generation of tumor-specific cytotoxic T lymphocytes (CTLs)
and activating natural killer (NK) cells and CD4+ T cells (131,
132). Several studies demonstrated promising antitumor effects
of IL-12 in mice having solid tumor and hematologic
malignancies (133–137). However, findings from clinical trials
indicated severe side effects of systemic administration of IL-12
that markedly dampened hopes of the successful use of this
cytokine in cancer patients (138). But, the use of Ads containing
IL-12 transgene seems critical for maximizing the density of IL-
12 that reaches the tumors and alleviating the toxicity.

Ads that were engineered to express IL-12 have been shown
to enhance immune stimulation and antitumor effect in a clinical
trial (139) and pre-clinical studies (140). Likewise, a study by
Wang et al. showed that oncolytic adenovirus (Ad-TD-nsIL-12)
Frontiers in Oncology | www.frontiersin.org 5
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against pancreatic cancer in Syrian hamster models without
toxicity (141). Similarly, a replication-deficient adenoviral
vector encoding human IL-12 p70 transgene (Ad-RTS-hIL-12)
was also shown to have no toxic effect in phase one clinical
trial (142). A recent trial found that intratumoral injection
of Ad-RTS-hIL-12 was safe in patients with recurrent
glioblastoma (142).

In addition to IL-12, there are also other cytokines, such as IL-
24 and IL-13 that have been used to arm adenoviruses and have
shown promising immune-activating properties in multiple
preclinical cancer models (143–145). RANTES is another
cytokine engineered in Ad that has been shown to enhance
ant icancer effec t . In murine models of mammary
adenocarcinoma and lymphoma, Ad-RANTES-E1A eradicated
established tumors and inhibited metastases by recruiting DCs,
macrophages, NK cells , and CD8+ T cells into the
immunologically cold tumors (146).

4.4.6 Adenoviruses Armed With Bispecific T Cell
Engager (BiTE)
Bispecific T cell engager (BiTE) is a kind of artificial antibody
that represents an innovative immunotherapy approach which
enhances patients’ immune response to tumors. BiTE has dual
antigen specificity, allowing them to bind to two unique antigens
at the same time, i.e. the BiTE bind simultaneously to both tumor
associated antigen and T cell (usually CD3), ultimately
stimulating T-cell activation, tumor killing and cytokine
production (147). BiTE has been shown to be promising
immunotherapy for the treatment of cancer in preclinical and
clinical studies (148, 149). The therapeutic efficacy of BiTE can
be improved by using BiTE in conjunction with adenoviruses.

Pomés et al. tested weather an OAd expressing FAP-targeting
BiTE improve antitumor efficacy (150). FAP-BiTE (FBiTE)
comprises two single chain variable fragments (ScFvs) joined
by a flexible Gly-Ser linker. One scFv arm binds mouse and
human Fibroblast Activation Protein (m/hFAP), while the other
binds human CD3epsilon on the T cell receptor (TCR). The
study showed that the FBiTEs activate and re-direct T-cells to
FAP+ cells, which leads to enhance cytotoxicity in vitro and
improve antitumor efficacy in vivo.

Likewise, Alemany group engineered an oncolytic adenovirus
expressing an EGFR-targeting BiTE that showed improved T
cell-mediated killing of cancer cells both in vivo and in vitro
(151). They also demonstrated that anti-EGFR BiTE-armed OAd
in combination with adoptive CAR-T cell therapy results in
improved antitumor efficacy and prolonged survival of mice as a
result of intratumoral T cell activation by BiTE (152).

Similarly, another research group (Fisher group) that
developed BiTE armed oncolytic adenovirus (EnAd-SA-
EpCAM) reported promising results in use of BiTE expressing
adenoviruses against cancer (153). The BiTE of EnAd-SA-EpCAM
binds to epithelial cell adhesionmolecule (EpCAM) in cancer cells.
The Fisher group reported that the EnAd-SA-EpCAM effectively
activate endogenous T cells within the immune-suppressive
microenvironment and exhibited killing of endogenous tumor
cells without the addition of exogenous T cells (153).
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Recently, the Fisher group engineered another BiTE armed
oncolytic adenovirus (EnAd-FAP-BiTE), which is targeted
fibroblast activation protein (FAP) in cancer-associated
fibroblasts (CAFs). CAFs are the main cellular component of
solid tumor TME. The EnAd-FAP-BiTE induced the activation
of tumor-infiltrating T cells that target and kill CAFs (154).
Likewise, another BiTE armed adenovirus (ICO15K-FBiTE) that
was developed by the Fisher research group was shown to
enhance overall antitumor efficacy without increasing the
toxicity in mouse model (154).

4.4.7 ADV/HSV-TK
ADV/HSV-TK is an adenoviral vector expressing the herpes
simplex virus (HSV) thymidine kinase (TK) gene. The HSV-TK
protein has two principal functions, including 1. TK is a
superantigen that stimulates a potent immune reaction and
2. A nucleotide analog product of prodrug phosphorylation
lead to the death of dividing cancer cells (155). Herman et al.
studied ADV/HSV-TK in combination with ganciclovir for the
treatment of human prostate cancer (156). They reported that
injection of ADV/HSV-TK into the prostate gland in the region
with the greatest concentration of tumor cells resulted in
significant reduction in tumor burden. Herman et al. also
showed that ADV/HSV-TK was proven safe, with minimal
toxicity (156). Likewise, other researchers also made similar
observation on the efficacy and toxicology of ADV/HSV-TK
against glioma, retinoblastoma, and mesothelioma (157–159).

4.5 Combination Therapy Using
Adenoviruses and Chimeric Antigen
Receptor (CAR) T Cells
One of the strategies that have been used for the immunotherapy
of cancer is adoptive cell therapy, that includes chimeric antigen
receptor (CAR) T cells, tumor-infiltrating lymphocytes (TIL),
and T cell receptor modified (TCR) T cells (160). TCR-T cells are
designed to encode receptors that specifically recognize cancer-
specific antigens, and function throughMajor Histocompatibility
Complex (MHC)-dependent mechanism, that limits their use
(161). Whereas, CAR-T cell therapy functions through MHC-
independent mechanism. CAR-T cell has been effective in the
treatment of different types of cancer, which includes chronic
lymphocytic leukemia and non-Hodgkin’s lymphoma (162, 163).
However, the use of CAR-T cells as a monotherapy has not
demonstrated much success in solid tumors because of
immunosuppressive tumor microenvironment (TME) and
poor tumor infiltration of CAR-T cells (164). Combination
therapy with adenoviruses viruses provides one potential
strategy for improvement of CAR-T therapy in solid tumors.

A study conducted by Watanabe and his colleagues
demonstrated that the combination of oncolytic adenoviruses
(expressing TNF-a and/or IL-2) and mesothelin-redirected CAR-
T cells (meso-CAR-T) overcomes the immunosuppressive nature of
the pancreatic cancer TME (165). Watanabe et al. demonstrated
that tumors treated with the combination of the virus expressing
TNF-a and IL-2 (Ad5/3-E2F-d24-TNF-a-IRES-IL-2 (OAd-TNFa-
IL2) and meso-CAR-T cells were infiltrated with significantly more
CD4+ and CD8+ T cells compared to monotherapy with meso-
Frontiers in Oncology | www.frontiersin.org 6
CAR-T cells, or a combination with meso-CAR-T cells and the
parent adenovirus lacking cytokine expression (165). They also
showed that meso-CAR-T cells in combination with OAd-TNFa-
IL2 resulted in significantly higher accumulation of CAR-T cells at
the tumor site when compared to meso-CAR-T monotherapy.

Likewise, a study that was done by a Suzuki group
demonstrated better efficacy of CAR-T cell in treatment of
prostate cancer when used in combination with oncolytic
adenoviruses. In order to improve the efficacy of the CAR-T
cell therapy, this research group (Suzuki group) used a
combinatorial adenovirus vector (oncolytic adenovirus
(Ad5D24) and helper-dependent adenovirus expressing a mini
anti-PD-L1 antibody (HDAdPD-L1) collectively termed CAd-
VECPDL1) in combination with human epidermal growth factor
receptor 2 (HER2)-specific CAR-T cells (166). The findings
showed that using this combination in an NSG mouse model
was more effective in reducing tumor size and prolong survival of
mice with prostate cancer (166).

The Suzuki group further modified the CAd-VECPDL1
vector by incorporating IL-12 (CAdVECIL12_PDL1) and
tested it in a head and neck squamous cell carcinoma
(HNSCC) model (167, 168). In a xenograft model of NSG
mice (NOD scid gamma mouse), the combination of HER2-
CAR-T cells and CAdVECIL12_PDL1 virus significantly
prolonged survival of treated animals to more than 100 days as
compared to 21–24 days in the control groups, and HER2-CAR-
T cells were detected in the tumors of surviving mice over 100
days after initial therapy (168). The research group also used an
orthotopic HNSCC model, establishing both primary tumors
and lymphatic metastases, to test the aforementioned
combination therapy. Mice that received both HER2-CAR-T
cells and CAdVECIL12_PDL1 had improved tumor growth
control at both primary and metastatic sites, maintained body
weight, and had prolonged survival when compared to untreated
and monotherapy groups (168). Taken together, combination
therapy with oncolytic viruses provides one potential strategy for
improvement of CAR-T therapy in solid tumors.

Tumor xenograft animal models provide us a research tool for
preclinical drug response evaluation by determining anti-tumor
efficacies; toxicity, tumorgenesis, pharmacokinetics and
pharmacodynamics (169, 170). In addition, this research tool
enables to have a better understanding on the involvement of
certain oncogenes or tumor suppressors in tumor development
(170). Mice are the most commonly used animals for tumor
xenograft models. The advantageous of using mice as tumor
xenograft models include: - I. The presence of comparable
genome size with humans, II. Short reproductive cycle, III.
Large litter size; IV. Low cost; V. Ease of manipulation (170).

4.6 Combination Therapy Using
Adenoviruses and Antibodies Against
Immune Checkpoint Proteins
4.6.1 Immune Checkpoint Inhibition
Immune checkpoints are regulators of the immune system. Immune
checkpoints pathways prevent the immune system from attacking its
own cells. Immune checkpoints works by means of immune check
point proteins, including programmed cell death 1 protein (PD-1)
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and programmed cell death protein-ligand 1 (PD-L1), and cytotoxic
T-lympotcyte antigen-4 (CTLA-4). One of the mechanisms by
which tumor cells evade immunesurveillance is by activation of
immune checkpoint pathways that suppress antitumor immune
responses. PD-1 is the transmembrane programmed cell death 1
protein, which interacts with PD-L1 (PD-1 ligand 1, or CD274). The
binding of PD-L1 on cancerous cell with PD-1 on T-cell surface
results in inhibition of T-cell activity. Therefore, antibodies that bind
with PD-L1 and or PD-1 can block the interaction of PD-L1 and
PD-1, allowing T-cells to attack the tumor.

Immune checkpoint inhibitors therapy is a kind of
immunotherapy that work by blocking the binding of checkpoint
proteins (PD-1, PD-L and CTLA-4) with partner proteins so that T-
cell became free and active to attack cancer cells. Ipilimumab is an
anti-CTLA-4 antibody (that blocks CTLA-4 ligand and prevents
inhibition T-cells) that was approved by the United States food and
drug administrations (U.S. FDA) in 2010 for the treatment of
advanced melanoma (171). However, the systemic administrations
of immune checkpoint inhibitors have been shown to cause severe
immune-related adverse events (172–174). One of the strategies that
can be employed to overcome these obstacles of using immune
checkpoint inhibitors (such as anti-PD-L1, anti-PD-1 and anti-
CTLA-4) in cancer therapy is to utilize immune checkpoint
inhibitors in combination with oncolytic adenoviruses.

4.6.1.1 Ad5/3-D24: Adenovirus Expressing
Anti-CTLA-4 Antibodies
Ad5/3-D24 is an oncolytic adenovirus that was engineered to
code for anti-CTLA4 antibody (175). Promising results have
been achieved with the oncolytic adenovirus armed with anti-
CTLA-4 antibodies (Ad5/3-D24) in mouse model. The local
expression of anti-CTLA-4 antibody following administration
of Ad5/3-D24-CTLA4 resulted in activation of T cells (175). In
addition, a significantly higher concentration of antitumor
antibody was produced, while plasma levels remained at safe
concentrations. The anti-CTLA-4 antibodies also showed direct
proapoptic effect both in vivo and in vitro (175).

4.6.1.2 Ad5-CMV-mIL2 and Ad5-CMV-mTNF- a in
Combination With Anti-PD-1 Antibodies
Cervera-Carrascon and his colleagues that tested nonreplicating
vectors expressing IL-2 (Ad5-CMV-mIL2) and TNF-a (Ad5-
CMV-mTNF- a) in combination with programmed cell-death
protein 1 (PD-1) blocking antibodies in a mouse model
demonstrated complete regression of murine melanoma
tumors, and prolonged survival of mice (176). Furthermore,
they showed that the viral infection shifted the cytokine profile
of the tumor microenvironment towards T-helper type 1,
indicating that non-replicating adenoviral vectors significantly
improve antitumor immunity (176).

4.6.1.3 DNX-2401 (Tasadenoturev) in Combination
With Pembrolizumab
DNX-2401 is a replication-competent oncolytic adenovirus that
selectively infects cancer cells lacking the normal retinoblastoma
(Rb) protein signaling pathway (177). Aiken et al. tested DNX-
2401 in combination with intravenous pembrolizumab (PD-1
immune checkpoint inhibitor) in patients with recurrent glioma
Frontiers in Oncology | www.frontiersin.org 7
and the findings showed that treatment of glioma with
combination of DNX-2401 and pembrolizumab significantly
improves the disease burden (178).

4.6.1.4 ONCOS102 in Combination With Pembrolizumab
Li et al. investigated the recombinant oncolytic adenovirus
ONCOS -102 in comb in a t i on w i t h th e an t i body
pembrolizumab (PD-1 immune checkpoint inhibitor) in
patients with locally advanced or unresectable melanoma
(161). They reported that combination therapy with ONCOS-
102 and pembrolizumab resulted in regression of the disease and
increases in circulating proinflammatory cytokines, and tumor
specific T cells without dose limiting toxicities (161).

4.7 Adenoviral Vectors as Recombinant
Anticancer Vaccines
Adenoviral vectors can also be used as a platform for anticancer
vaccine development. This is based on the fact that adenoviral
vectors can be engineered to stimulate antitumor immune
response by expressing tumor-antigens. Replication-deficient
adenoviral vectors are one of the viral vectors that have been
extensively used as recombinant cancer vaccines as they cause
potent cell mediated (cytotoxic CD8 T cells responses) and
humoral immune response against transgenes expressed by the
adenoviral vectors (1).

Cytotoxic CD8+ T cells are major constituent of anti-cancer
immunity. The TCR of CD8+ T cells recognize tumor antigen
presented by MHC-I and when bound, the cytotoxic CD8+ T
cells triggers its cytotoxic activity. However, some tumor cells
lower their MHC-I expression and avoid being detected by
cytotoxic CD8+ T cells (179, 180). Another way that tumor
cells use to escape cytotoxic CD8+ T cells by is to stop expressing
molecules essential for co-stimulation of cytotoxic CD8+ T cells
such as CD 86 or CD80 (181, 182).

4.7.1 ETBX-011(Ad5-CEA)
ETBX-011(also called Ad5-CEA) is an adenoviral vector-based
cancer vaccine that is engineered to express a modified
carcinoembryonic antigen (CEA) which contains the highly
immunogenic epitope CAP1-6D. CEA is found in different
kinds of cancer cells. ETBX-011 induces potent CEA-specific
cell-mediated immune responses with antitumor activity (183).
ETBX-011 is well-tolerated in metastatic colorectal cancer
patients and has potential survival benefit (184, 185). This
study showed evidence of a potential survival benefit: 25
patients treated at least twice with ETBX-011 exhibited a 12-
month overall survival probability of 48% and a mean overall
survival of 11 months (184, 185).

In order to overcome the challenge posed by tumor
heterogeneity, such as the diversity of tumor associated
antigens (TAA), a Tri-Ad vaccine (a combination of ETBX-011
with three different human TAA-expressing Ad vector vaccines
(ETBX-011, ETBX-061, and ETBX-051) have been developed
and tested in phase I clinical trial. The first, ETBX-061, is an
Ad5-based adenovirus vector vaccine with the same backbone as
the ETBX-011, but expressing a modified human mucin 1
(MUC1) gene. The modified MUC1 gene contains agonist
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epitopes designed to increase CTL antitumor immune responses.
The other, ETBX-051 or Ad5-brachyury, encodes the entire
brachyury gene with a deletion of 25 amino acids involved in
DNA binding, and modified to express an enhancer T cell
epitope (186). The Tri-Ad vaccine regimen induces antitumor
cytotoxic T cell (CTL) responses and was proven safe and well
tolerated in treatment of advanced cancer (187).

4.7.2 Ad5-PSA
Ad5-PSA is replication-deficient adenoviral vector that is
engineered to express human prostate specific antigen (PSA).
Ad5-PSA stimulates potent anti-PSA T cell responses and causes
the destruction of PSA-secreting tumor cells both in preclinical
(188) and clinical (189–191). Furthermore, Ad5-PSA prolongs
survival and was demonstrated safe in patients with recurrent
and hormone refractory prostate cancer (189–191).

4.7.3 Ad-E6E7 in Combination With and Ad-MAGEA3
Ad-E6E7 is another replication-deficient adenovirus-based anti-
cancer vaccine, which expresses human papillomavirus (HPV)
genes E6 and E7 (192, 193). MG1-E6E7 is an oncolytic maraba
virus strain which also expresses the HPV genes E6 and E7. The
combination of Ad-E6E7 and MG1-E6E7 induced potent tumor-
specific responses in various mouse cancer models (194). In
addition, the combination of Ad-E6E7 with MG1-E6E7 was
proven to significantly prolong survival of mice with HPV-
associated cancer (194).

4.7.4 ChAdOx1–MVA
Cappuccini et al. investigated the immunogenicity and efficacy of
ChAdOx1–MVA against prostate cancer in mouse model (195).
They reported that the ChAdOx1–MVA induced tumor specific
cell mediated immune response. Furthermore, the ChAdOx1–
MVA was proven to prolong the survival of the mice when used
in combination with anti-PD-1 antibody (195).

4.7.5 Adenovirus-Transduced Dendritic Cells
The other approach to use adenoviral vectors for anticancer
vaccine is the use Dendritic cells (DC)-based adenoviral vaccines.
In this approach, DCs are transduced ex vivo with Ads encoding
cancer specific antigens. The advantageous of transducing DC ex
vivo instead of injecting Ads in vivo include: 1. Ex vivo
transduction of DC overcomes pre-existing anti-viral
immunity and induce effective anti-tumor responses (196, 197)
and 2. Ex vivo transduced DC induces lower anti-viral antibody
responses than that of Ads injected in vivo (196, 198).

Ad-transduced DCs have shown positive outcomes against
both solid tumor and hematologic cancers (4, 66, 199).
Butterfield et al. (199) tested an autologous DCs transduced ex
vivo with Ads encoding the full-length melanoma antigen
MART-1/Melan-A. They reported that the autologous DC-
based adenoviral vaccine significantly induced cell mediated
immune response (CD+8-T cells response) in metastatic
melanoma patients (199). Similarly, in patients with advanced
NSCLC, injections of autologous DCs resulted in induction of
systemic tumor antigen-specific immune responses with
enhanced CD8+T-cell infiltration (4).
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4.7.6 Recombinant Gorilla Adenovirus HPV
Vaccine (PRGN-2009)
Pellom et al. evaluated PRGN-2009, a therapeutic gorilla
adenovirus HPV vaccine containing multiple cytotoxic T cell
epitopes of the viral oncoproteins HPV 16/18 E6 and E7,
including T cell enhancer agonist epitopes. The study revealed
that PRGN-2009 treatment reduced tumor volume and increased
CD8+ and CD4+ T cells in the tumor microenvironment of
humanized mice bearing the human cervical tumor SiHa. The
PRGN-2009 monotherapy in the syngeneic TC-1 model also
reduced tumor volumes and weights, generated high levels of
HPV16 E6–specific T cells, and increased multifunctional CD8+
and CD4+ T cells in the tumor microenvironment (40).
5 CHALLENGES AND SOLUTIONS OF
USING ADENOVIRAL VECTORS IN
CANCER THERAPY

The application of adenoviral vectors in cancer therapy and
vaccine development is severely hampered by different factors
including pre-existing immunity to the most common Ad
vectors infecting the human population (207, 208);
immunodominance of adenoviral antigens over the vaccine
transgene antigen(s), and heterologous immunity with other
pathogens (209, 210). The following are the details of the
challenges and solutions of using adenoviral vectors in cancer
therapy and vaccine development.

5.1 Pre-Existing Immunity in the Host
Pre-existing immunity of Ad vectors infecting the human
population is the major factor that hampers the application of
adenoviral vectors in cancer therapy and vaccine development
(207, 208). The HAdV5 is the common serotype that infects
humans, especially in developing countries (33, 211). HAd capsid
proteins, particularly the hexon protein is very immunogenic
(212). The host’s adaptive immunity arm detects the hexon
protein and releases serotype-specific neutralizing antibodies
(nAb) that block a post-entry step (213, 214). Therefore, during
second contact with the same adenovirus serotype, the host nAb
could rapidly neutralize it. In addition to the humoral immune
response (antibodies), strong and sustained CD8+ T-cell
responses follow adenoviral infections (3). Up to one-third of
circulating T-cells against HAd have been reported to be CD4+ T-
cells specific for a hexon epitope conserved between HAd
serotypes. Thus, the host’s preexisting CD4+ T-lymphocytes
might promptly respond to various subsequent adenovirus
serotypes in either blood or gut (215). The following are the
strategies that have been used to overcome the challenges of
preexisting immunity in using adenoviral vectors.

5.1.1 Use of Non-Human Adenoviral Vectors
Non-human adenoviruses have been used to overcome the challenge
of preexisting human adenoviral immunity. The commonly used
nonhuman adenovirus vectors include gorilla adenovirus and
chimpanzee-derived adenovirus vector (ChAd) (40). Several
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chimpanzee adenoviral vector-based vaccines, such as ChAd7 for
Ebola virus, ChAd6 for rabies, and ChAd6, ChAd7, and ChAd9 for
malaria, have shown high efficacy in animal models (216).
Furthermore, ChAd63-based malaria and ChAd3-based hepatitis
C virus vaccines have shown to be safe and highly immunogenic in
phase I clinical trial (217, 218). Despite low seroprevalence of ChAd
vectors in humans, pre-existing cross-reactive T cells against many
conserved viral antigens are still a major concern. HAd-induced
ChAd cross-reactive T cells have been reported against ChAd6,
ChAd7, ChAd24, ChAd32, and ChAd68 (35, 38, 219, 220).

In addition to chimpanzee adenoviruses, several other
adenoviruses derived from animals such as bovine, porcine,
Frontiers in Oncology | www.frontiersin.org 9
ovine, canine, and fowl are have been explored for vector
development (221–224). The human population lack nAbs
against these adenoviruses, and therefore, the vectors derived
from these adenoviruses could be more efficacious in comparison
to HAd and ChAd. The mouse models with experimentally
induced pre-existing immunity by the administration of HAd
vector demonstrated a lack of nAbs and CD4+ T cells against
PAd3 and BAd3 (225). Furthermore, BAd3- or PAd3-based
influenza virus vaccine demonstrated high efficacy even in the
presence of pre-existing HAd5 immunity. There was also no
effect of pre-existing HAd5 immunity on transgene expression,
immunogenicity, and efficacy in animal models.
TABLE 1 | Clinical trials using replicating and non-replicating adenoviral vectors for cancer therapy.

No Ad vector Transgene Cancer Phase Reference

1 ChAdOx1–MVA STEAP1 Prostate cancer Preclinical 195
2 Ad-IFN/Syn 3 INF-a Bladder cancer Preclinical

trail
124

3. Ad5-yCD/
mutTKSR39rep-hIL-
12

Cytosine
deaminase,
HSV-tK, hIL-
12

metastatic Prostate cancer I NCT03281382

4. SCH-58500 P53 Primary ovarian cancer, fallopian cancer and peritoneal cancer I 200
5. ONCOS-102 GM-CSF Melanoma I 127
6. Adv-tk (GMCI) Adv-tk Pediatric brain tumors I 201
7 Ad-RTS-hIL-12 IL-12 Glioblastoma or malignant glioma; Advanced or metastatic breast cancer; recurrent or

progressive melanoma
I 142

8 Ad-E6E7 and MG1-
E6E7

HPV E6/E7 HPV-associated cancer I 194

9 TILT-123 hTNF-a, hIL-2 Advanced melanoma I 202
10 ADV/RSV-TK HSV-TK prostate cancer; glioma, retinoblastoma, mesothelioma I 156–159
11 BG00001 INF-b Pleural melanoma I
12 DNX-2440 OX40L Glioblastoma I NCT03714334
13 Ad/PNP+ fludarabine PNP Head and neck squamous cell carcinoma 1 203
14 ETBX-011, ETBX-

061, and ETBX-051
(Tri-Ad vaccine)

TAA Advanced cancer I 187

15 Ad5-yCD/
mutTKSR39rep-hIL-
12

Cytosine
deaminase,
HSV-tK, IL-12

Prostate cancer I NCT02555397

16 Ad5-PSA PSA Prostate cancer; recurrent/hormone refractory prostate cancer I/II 189–191
17 Advexin (rAd-p53) P53 squamous cell carcinoma of the oral cavity, oropharynx, hypopharynx, and larynx; colorectal

cancer, HCC, NSCLC, prostate cancer, breast cancer, ovarian cancer, bladder cancer,
glioma, and squamous cell carcinoma of the head and neck

I/II 92–95

18 AdHSV-tk/GCV HSV-tk Ad-
hCMV- Flt3L

High-grade malignant gliomas I/II 204

19 ETBX-011 CEA Metastatic colorectal cancer I/II 183–185
20 Ad-MAGEA3 MAGE-A3 Advanced/Met., MAGE-A3+ Solid Tumors, NSCLC I/II NCT02285816
21 LOAd703 CD40L, 4-

1BBL
Pancreatic cancer, bacillary cancer, collateral cancer I/II NCT03225989

22 Ad-MAGEA3 MAGE-A3 NSCLC I/II NCT02879760
23 Adv/tk (GMCI) HSV-tk Advanced non-metastatic pancreatic adenocarcinoma II II NCT02446093
24 Ad5-SGE REIC/Dk3

(MTG201)
REIC/Dkk3 Relapsed malignant pleural mesothelioma II 205

25 Adv/HSV-tk HSV-tk Metastatic non-small cell lung carcinoma and uveal melanoma II NCT02831933
26 DNX-2401 Recurrent glioma II NCT02798406
27 Adv/tk HSV-tk Advanced hepatocellular carcinoma III 206
28 rAd-IFN/Syn-3

(instiladrin)
INFa-2b High grade non-muscle invasive bladder cancer III

29 Oncorine or H101 head and neck cancer III 93, 109
30 Gendicine (rAd-p53) P53 head and neck squamous cell carcinoma, malignant glioma, HCC, NSCLC and epithelial

ovarian carcinoma
III 89–92
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5.1.2 Heterologous Prime-Boost Strategy
Heterologous prime-boost strategy is another strategy to avoid
pre-existing adenoviral vector immunity. Unlike homologous
prime-boost immunizations, in this strategy, the priming and
boosting are done by using different antigen delivery vehicle and/
or vectors derived from either different serotypes of the same
species or vectors from completely different host species. For
instance priming with ChAd68 and boosting with ChAd1 or
priming with DNA and boosting with HAd5 (226). Studies have
shown that the heterologous prime-boost induces more robust
immune responses compared to single vaccination or
homologous prime-boost immunizations. The cellular immune
responses induced by DNA prime and HAd boost were not
affected by pre-existing HAd5 immunity. A preclinical study
involving Plasmodium or SARS antigens encoded by Modified
Vaccinia Ankara (MVA)/adenoviral vector as prime/boost
showed induction of robust T cell and Ab responses of higher
magnitude compared to Ad/DNA regimens (218, 227–229).

5.1.3 Routes of Immunization
Studies showed that different route of vaccinations can overcome
the detrimental effect of pre-existing immunity. This result is
partly due to evasion of tissue-resident Ad-specific T cells when
using different routes of immunization. Tissue resident CD8
memory T cells are not systemic and do not prevent Ad vector
infection in distant tissues (230–232). In preclinical study,
HAd5-induced protective immune responses by intranasal/
intratracheal immunization were not affected by pre-existing
HAd5 immunity that had been induced by intramuscular
administration of an unrelated HAd5 vector (233).

5.2 Immunodominance Over
Transgene Immunity
Adenoviruses induce potent cell and antibody immune responses.
A study has shown that adenoviral-derived epitopes can dominate
over the transgene-derived epitopes and hinder the induction of
transgene-specific immunity. This impairment of transgene-
specific immune responses in naive vaccines is due to immune
competition. Epitopes derived from an adenovirus vector were
shown to inhibit the induction of HIV GagL85-93-specific CD8+
T cells (234). This study demonstrated that competition occurs at
the level of responding CD8+ T cells, and co-immunization with
an interleukin 2-encoding plasmid restored GagL85-93-specific
CD8+ T cell responses in the presence of an adenoviral hexon486-
494 epitope. The study suggests that adenoviral antigen-specific T-
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cell immunity is primed efficiently during adenoviral vector-based
immunization, which can limit the immunogenicity of adenoviral
vector-encoded transgenic antigens. This study suggest the need
for modifications of adenoviral vector or the transgene used in
immunization to dominate over the adenoviral vector-specific
epitopes and induce more effective transgene specific immunity.

5.3 Heterologous Immunity Induced by
Adenoviral Antigens
The other challenge of using adenoviral vectors in gene therapy is
cross-reactive immune response induced by adenoviruses. For
example, nAbs and T cells against HAd2 cross react with HAd35
and reduce the immunogenicity and efficacy of the HAd35
vectors (235, 236). Other studies showed that nAbs and T cells
against HAd cross react with ChAd (ChAd6, ChAd7, ChAd24,
ChAd32, and ChAd68) (35, 38, 219, 220). Adenoviruses can also
induce robust cross-reactive immune responses against unrelated
pathogen such as hepatitis C virus (HCV) antigens (209).
Therefore, a careful evaluation of adenoviral-induced cross-
reactive immune responses is needed before using adenoviruses
in gene therapy and vaccine development.

6 CONCLUSIONS

Adenoviruses viruses have become the promise of new
therapeutic strategy for cancer treatment. Adenoviral vectors
can be engineered in different ways for cancer treatment
including; 1. By modifying adenoviruses (Ads) to deliver
transgenes that codes for tumor suppressor gene (p53) and
other proteins whose expression result in cell cycle arrest; 2. By
modifying Ads to express tumor specific antigens, cytokines, and
other immune-modulatory molecules; 3. The other strategy is
using oncolytic adenoviruses. However, the use of adenoviral
vectors in cancer therapy is limited by several factors such as pre-
existing immunity to adenoviral vectors; immunodominance of
adenoviral antigens over the vaccine transgene antigen(s); and
heterologous immunity with other pathogens. Thus, innovative
strategies must be continually developed so as to overcome the
obstacles of using adenoviral vectors in gene therapy.
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