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Purpose: We aimed to construct predictive models for the overall survival (OS),
progression-free survival (PFS), and distant metastasis-free survival (DMFS) for
nasopharyngeal carcinoma (NPC) patients by using CT-based radiomics.

Materials and Methods: We collected data from 197 NPC patients. For each patient,
radiomic features were extracted from the CT image acquired at pretreatment via
PyRadiomics. Feature selection was performed in two steps. First, features with high
inter-observer variability based on multiple tumor delineations were excluded. Then,
stratified bootstrappings were performed to identify feature combinations that most
frequently achieved the highest (i) area under the receiver operating characteristic curve
(AUC) for predicting 3-year OS, PFS, and DMFS or (ii) Harrell’s C-index for predicting time
to event. Finally, regularized logistic regression and Cox proportional hazard models with
the most frequently selected feature combinations as input were tuned using cross-
validation. Additionally, we examined the robustness of the constructed model to variation
in tumor delineation by simulating 100 realizations of radiomic feature values to mimic
features extracted from different tumor boundaries.

Results: The combined model that used both radiomics and clinical features yielded
significantly higher AUC and Harrell’s C-index than models using either feature set alone
for all outcomes (p < 0.05). The AUCs and Harrell’s C-indices of the clinical-only and
radiomics-only models ranged from 0.758 ± 0.091 to 0.789 ± 0.082 and from 0.747 ±
0.062 to 0.767 ± 0.074, respectively. In comparison, the combined models achieved AUC
of 0.801 ± 0.075 to 0.813 ± 0.078 and Harrell’s C-indices of 0.779 ± 0.066 to 0.796 ±
0.069. The results showed that our models were robust to variation in tumor delineation
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with the coefficient of variation ranging from 4.8% to 6.4% and from 6.7% to 9.3% for AUC
and Harrell’s C-index, respectively.

Conclusion: Our results demonstrated that using CT-based radiomic features together
with clinical features provided superior NPC prognostic prediction than using either clinical
or radiomic features alone.
Keywords: nasopharyngeal carcinoma, prognosis, radiomics, imaging biomarkers, computed tomography
1 INTRODUCTION

Nasopharyngeal carcinoma (NPC) is one of the most malignant
head and neck cancers worldwide and is endemic in Southeast
Asia and Southern China (1, 2). According to the International
Agency for Research on Cancer, there were about 130,000 new
cases of nasopharyngeal carcinoma in 2020 (3). The mainstay
treatment of NPC is intensity-modulated radiation therapy
(IMRT) with chemotherapy. However, the treatment strategies,
e.g., concurrent chemoradiotherapy (CCRT), CCRT followed
by adjuvant chemotherapy, or induction chemotherapy
followed by CCRT need personalized data for therapeutic
planning (4).

In NPC, clinical staging according to the American Joint
Committee on Cancer (AJCC) is conventionally used to guide
the optimal treatment and determine cancer prognosis (5–8).
Until recently, plasma Epstein–Barr virus (EBV) DNA has been
widely used for early detection, prognostication, and monitoring
of treatment response of NPC (8–12). Nevertheless, the EBV
DNA level was undetectable up to 40% in non-Chinese series
(13). Therefore, an additional effective biomarker is needed to
improve the prognostic performance.

Medical imaging is a routine practice in oncologic patient
management for tumor diagnosis and staging, treatment
planning, and response monitoring. Computed tomography
(CT) and magnetic resonance imaging (MRI) are common
modalities in NPC imaging. Tumor appearance in radiographic
images and demographic features such as patients’ age, tumor
stage, and performance status were used to select an appropriate
treatment. However, conventionally, the radiologic tumor
description is provided qualitatively by focusing on tumor size
and anatomical extension without considering intratumoral
heterogeneity, which is predictive of the prognostic outcomes
(14, 15). Radiomics, an emerging technique for tumor
characterization, is the process of converting medical images
into minable high-dimensional data (16–19). It refers to the
extraction of quantitative features, so-called radiomic features,
which describe detailed tumor characteristics, from whole tumor
mass. Examples of radiomic features include tumor size,
geometry, voxel intensity, and texture patterns. Several studies
showed potential of radiomic features in head and neck cancer
prognostic prediction. Aerts et al. (20) found that the radiomics
model was able to capture intratumoral heterogeneity and was
significantly associated with the gene-expression profile pattern.
Moreover, results from various studies showed high correlation
between radiomic features and prognostic outcomes, such as in
2

head and neck cancer (21, 22), esophageal cancer (23, 24), and
nasopharyngeal cancer (25, 26).

In NPC, several studies on radiomics also showed great
promise for prognosis. Du et al. (25) used pretreatment
contrast-enhanced T1- or T2-weighted MRI to construct
predictive models for 3-year disease progression after IMRT
treatment. The results showed that combining radiomics with
other clinical features including age, sex, and TNM staging
yielded higher prognostic performance than using clinical
features alone. Similarly, Ming et al. (26) found that combining
clinical features with MRI-based radiomics yielded higher
performance. Some studies integrated pretreatment Epstein–Bar
virus (EBV) DNA information as part of clinical features (27–29).
The combined model of clinical and radiomic features yielded the
highest prognostic performance in these studies as well.

In countries with limited resources, CT scans are more widely
used and accessible than MRI because they are typically less
expensive. However, while there were several research studies
that used MRI data of non-metastasis NPC patients, none of
them investigated the predictive value of CT-based radiomics in
NPC. Therefore, in our study, we used CT-based radiomics to
build the predictive model for NPC. We hypothesized that CT
information, like MRI’s, should also improve the predictive
performance. Moreover, if successful, our model would be
beneficial for centers without an MRI simulator.

Specifically, we developed prognostic models for NPC based
on conventional clinical features, pretreatment CT radiomic
features, and the combination of the two. We compared their
prognostic performances in terms of overall survival (OS),
progression-free survival (PFS), and distant metastasis-free
survival (DMFS) at 3 years as well as time-to-event outcomes.
2 MATERIALS AND METHODS

2.1 Dataset
Data from newly diagnosed NPC patients at King Chulalongkorn
Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand,
between October 2010 and September 2015 were collected.
This group of patients was part of the patients who were
enrolled in a previously reported randomized study comparing
the IMRT technique between sequential versus simultaneous
integrated boost technique (30). This study was approved by the
Institutional Review Board of Faculty of Medicine, Chulalongkorn
University, Bangkok, Thailand (IRB no. 745/61). The inclusion
criteria of this study were as follows: (a) newly diagnosed with NPC
January 2022 | Volume 12 | Article 775248
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patients, (b) no evidence of distant metastasis, (c) at least 3-year
follow-up time, (d) underwent CT and MRI simulation,
(e) received the IMRT with chemotherapy, and (f) available
pretreatment plasma Epstein–Barr virus (EBV) DNA level. The
clinical data included sex, age, and tumor staging. Patient were
restaged according to the 8th edition of the American Joint
Committee on Cancer (AJCC) TNM staging system (5). Patients
with more than T1 or positive nodal disease received IMRT 70 Gy
in 33–35 fractions with a concurrent chemotherapy by weekly
cisplatin 40 mg/m2 for a maximum of seven cycles. Cisplatin 80
mg/m2 and 5-fluorouracil (5-FU) 1,000 mg/m2/24 h were given as
adjuvant chemotherapy over a 96-h continuous infusion at 4-week
intervals for three cycles.

2.2 Region of Interest Segmentation
For each patient, the gross tumor volume (GTV) of the primary
tumor in the nasopharynx was contoured on CT images by the
treating radiation oncologist. When a GTV was drawn, the co-
registered MR image was also presented. Of 197 patients, thirty
patients were randomly selected and their GTVs were
additionally contoured by two radiation oncologists. This
created a multiple tumor delineation dataset (with 3 GTVs for
each of these 30 patients) for testing inter-observer variability.

2.3 Model Construction
2.3.1 Radiomic Feature Extraction
To ensure the spatial consistency in the radiomics analysis, all CT
images were resampled into 0.5 × 0.5 × 3 mm3 voxels. A total of
842 radiomic features per GTV were calculated via Pyradiomics
version 2.0.0 (31). The extracted features were classified into four
feature classes (20), including the shape-based class, first-order
intensity class, texture-based class, and wavelet-based class.

2.3.2 Radiomic Feature Selection
After feature extraction, the number of features was reduced via a
feature selection process to prevent model overfitting. To select
robust and informative features, we performed inter-observer
variability test and univariate analysis as follows.

2.3.2.1 Inter-Observer Stability Test
The multiple delineation dataset was used for the inter-observer
variability test. Good radiomic features should be consistent
regardless of the radiation oncologist who drew the contour.
The intra-class correlation (ICC) analysis was used to assess the
correlation of features from multiple regions of interest (ROIs).
According to a study of Koo et al. (32), features whose ICC values
were less than 0.5 were excluded from further analyses.

2.3.2.2 Feature Performance Analysis
To assess the feature’s performance, a univariable analysis using
logistic regression and Cox proportional hazard regression
analysis for the binary outcome [having survived (OS), being
disease-free (PFS), and being DMFS at 3 years] and survival
outcomes, respectively, was performed. We repeatedly sampled
80% of the dataset with stratification for 100 times to calculate
the area under the receiver operating characteristic (ROC) curve
(AUC) and Harrell’s C-index. For each repeat, each outcome,
and each radiomic feature class (20), the top single feature that
Frontiers in Oncology | www.frontiersin.org 3
yielded the highest AUC or C-index on the training set was
selected. The most frequently selected set of 4 radiomic features
was chosen for subsequent radiomics model construction.

2.3.3 Clinical Feature Selection
All clinical features including age, sex, T-stage, N-stage, overall
stage (AJCC 8th edition), and pretreatment plasma EBV DNA
level (cutoff = 2,300 copies/ml) (13) were initially included into
the multivariate logistic regression or Cox proportional hazard
models. Then, backward feature elimination was performed to
repeatedly remove unimportant features with Wald test p-values
greater than 0.1 until no feature can be removed. This process
was repeated 100 times by sampling 80% of the dataset with
stratification. The most frequently retained set of clinical features
were selected for subsequent clinical-only model constructions.

For the combined models which used both clinical and
radiomic features, backward feature elimination of clinical
features was performed similarly as described, with two
additional constraints: the set of 4 radiomic features selected
above were always retained in the models, and at least one
clinical feature must remain in each model. The most frequently
retained set of clinical features were selected for subsequent
combined model constructions.

2.3.4 Prognostic Model Construction
For binary outcomes, which were 3-year OS, 3-year PFS, and 3-
year DMFS, logistic regression models were built. L1 (Lasso) or L2
(Ridge) regularizations with inverse strength ranging from 0.001
to 10 were considered. For time-to-event outcomes, Cox
proportional hazard regression models were used. Elastic net
regularizations with strength ranging from 0.001 to 10 and L1/
L2 ratio ranging from 0.001 to 1 were considered. The best
hyperparameters were selected based on AUC or Harrell’s C-
index from 20 realizations of 5-fold cross-validation (for a total of
100 repeats). Regularized model developments were performed in
Python using the LogisticRegression module of scikit-learn library
and the CoxPHFitter module of lifelines library (33, 34). The
overall process of model construction is shown in the Figure 1.

2.4 Model Comparison (Statistical
Analysis)
The sign test in the scipy package with default settings was used
to compare the Radiomics, Clinical, and Combined models and
the model that used only tumor volume. The Benjamini/
Hochberg procedure was used for multiple-comparison
correction. We also constructed the Kaplan–Meier plot for 100
repeats of the test set, where patients were classified as high risk if
their predicted scores were higher than the median and vice
versa. All statistical analyses, except sign test and log-rank test
which were analyzed in Python, were performed using STATA
version 15.0 (StataCorp LLC, Texas, USA) (35).

2.5 Testing Model Robustness to Variation
in Radiomic Feature Extraction
To investigate the model’s robustness to the variation in tumor
delineation by different radiation oncologists, we generated 100
realizations of a normal random vector whose mean was equal to
January 2022 | Volume 12 | Article 775248
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the radiomic features extracted and whose variance was equal to
the sample variance calculated on the multiple-delineation
dataset. For each outcome (OS/PFS/DMFS and binary/
time-to-event), we computed the mean and standard deviation
of the corresponding AUC or Harrell’s C-index across 100
realizations (Figure 2).
3 RESULTS

3.1 Patient Characteristics
A total of 197 patients had non-metastatic nasopharyngeal
cancer, and approximately 80% of them were classified as
undifferentiated carcinoma (Table 1). For tumor (T)
classification, the proportion of patients was 22.3%, 37.1%,
24.4%, and 16.2% for T1, T2, T3, and T4, respectively. For
node (N) classification, the proportion was 3.0%, 24.4%, 49.2%,
and 23.4% for N0, N1, N2, and N3, respectively, while for stage
grouping, the proportion was 0.5%, 14.2%, 49.2%, and 36.1% for
stages I, II, III, and IVA, respectively. Fifty percent of patients
had pretreatment plasma EBV DNA level ≥2,300 copies/ml. The
median age was 50 years (interquartile range: 43 to 56), and
79.2% were male. The median follow-up time was 4.9 years.

3.2 Radiomics Model
Out of 842 features, we found that 384 features passed the ICC
criterion for the inter-observer stability test. Across 100
bootstrap repeats, the set of four features (one for each class)
which was most frequently selected for each type of outcome is
listed in Table 2. Interestingly, “original_firstorder_Uniformity”
from the first-order class was consistently selected in all binary
Frontiers in Oncology | www.frontiersin.org 4
and time-to-event outcomes. For the texture class,
“original_glfm_DependenceNonUniformity” was selected for
OS outcomes while “original_glrlm_GrayLevelNonUniformity”
was selected for PFS and DMFS outcomes.

3.3 Clinical Model
The results from 100 bootstraps showed that the models for both
binary and time-to-event outcomes selected the same feature
sets. For OS and PFS outcomes, frequently selected clinical
features were age, T-stage, and pretreatment EBV DNA level.
For DMFS, age, T stage, N stage, and pretreatment EBV DNA
level were selected.

3.4 Combined Model
We found that age and pretreatment EBV DNA level were
commonly selected across all outcomes in the combined
models. Furthermore, N stage was also selected in the model
for the time-to-event DMFS outcome (Table 2).

3.5 Classification and Evaluation
The results of multivariate analyses showed that the combined
model yielded the best performance in every outcome as
compared to the clinical and the radiomics models (Figure 3).

For binary outcome predictions, the combined model yielded
AUCs of 0.817 ± 0.016 to 0.844 ± 0.018 and 0.801 ± 0.075 to
0.813 ± 0.078 on the training and test sets, respectively. In
comparison, the AUCs of the clinical and radiomics models
ranged from 0.769 ± 0.023 to 0.804 ± 0.024 on the training set
and from 0.758 ± 0.091 to 0.789 ± 0.082 on the test set.

Harrell’s C index from the combined model in predicting time-
to-event outcomes ranged from 0.791 ± 0.015 to 0.815 ± 0.017 and
FIGURE 1 | Overall process in this study.
January 2022 | Volume 12 | Article 775248
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from 0.779 ± 0.066 to 0.796 ± 0.069 on the training and the test
sets, respectively. These were higher than those from the clinical
(0.767 ± 0.016–0.781 ± 0.017 and 0.756 ± 0.066–0.767 ± 0.074)
Frontiers in Oncology | www.frontiersin.org
)
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and the radiomics models (0.747 ± 0.014–0.759 ± 0.018 and
0.747 ± 0.062–0.749 ± 0.077) on both the training and test sets.
The performances of the combined model were significantly
higher than those of the clinical or the radiomics model for all
outcomes (p < 0.05).

The tumor volume yielded AUCs of 0.746 ± 0.024 to 0.773 ±
0.017 and 0.747 ± 0.097 to 0.776 ± 0.083 on the training and test
sets, respectively. Harrell’s C index from the tumor volume
ranged from 0.731 ± 0.022 to 0.744 ± 0.014 and from 0.734 ±
0.099 to 0.746 ± 0.064 on the training and test sets, respectively.
The tumor volume yielded significantly lower AUC and Harrell’s
C-index than those of the combined model for all outcomes (p <
0.001). Comparison of the tumor volume with the radiomics
model in the test sets showed no significant difference between
them in terms of AUC in OS, PFS, and DMFS predictions, and in
terms of C-index in DMFS. For the other outcomes (OS and PFS
predictions based on Harrell’s C-index), the radiomics model
yielded higher performance metrics than the tumor volume with
p < 0.05.

The Kaplan–Meier plot for the test sets showed a significant
separation (log-rank test p < 0.001 in all 100 repeats) between the
survival curves of the high-risk and low-risk groups, which were
defined by the median of predictions as described in Section
2.4 (Figure 4).

3.6 Model Robustness to Variation in
Radiomic Feature Extraction
After adding uncertainty to the radiomic feature values and
reconstructing the models, we found that the mean and standard
deviation among 100 computed AUC values were 0.886 ± 0.043,
0.818 ± 0.052, and 0.781 ± 0.047 in OS, PFS, and DMFS,
TABLE 1 | Patient characteristics.

Characteristics n = 197 patients (%

Median age (years) (IQR) 50 (43 to 56)
Sex
Male 156 (79.2)
Female 41 (20.8)

T classification
T1 44 (22.3)
T2 73 (37.1)
T3 48 (24.4)
T4 32 (16.2)

N classification
N0 6 (3.0)
N1 48 (24.4)
N2 97 (49.2)
N3 46 (23.4)

Stage group
I 1 (0.5)
II 28 (14.2)
III 97 (49.2)
IVA 71 (36.1)

Pretreatment plasma EBV DNA level
Undetectable or < 2300 copies/ml 100 (50.76)
≥2,300 copies/ml 97 (49.24)
Median EBV value (copies/ml) (IQR) 7,795 (3150 to 18000

Pathologic classification
Undifferentiated carcinoma 159 (80.71)
Differentiated non keratinizing carcinoma 37 (18.78)
Poorly differentiated squamous cell carcinoma 1 (0.51)
FIGURE 2 | Process of model robustness to radiomic feature variation due to segmentation.
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respectively. On the other hand, Harrell’s C-indices were 0.860 ±
0.064, 0.757 ± 0.070, and 0.819 ± 0.055 in OS, PFS, and DMFS,
respectively. The corresponding coefficient of variation ranged
from 4.8% to 6.4% and from 6.7% to 9.3% for AUC and Harrell’s
C-index, respectively.
4 DISCUSSION

Clinical data such as TNM staging (5), age, and blood test (EBV
concentration level) were traditionally used for predicting
prognosis in NPC patients and determining treatment strategy.
Based on Lertbutsayanukul et al. (13), the optimal cutoff value for
plasma EBV DNA for predicting OS, PFS, and DMFS was 2,300
copies/ml. Hence, the same cutoff was applied in our analysis.
This transformed the pretreatment plasma EBV DNA level into a
discrete variable. In our study, we constructed NPC tumor
prognostic models using various combinations of CT-based
radiomic features and clinical features. The corresponding
AUC and Harrell’s C-index of OS, PFS, and DMFS outcomes
for each constructed model were used to compare performances
and identify the best models.

The combined model incorporating both clinical and
radiomic features was superior to the clinical or radiomics
model for OS, PFS, and DMFS predictions. This demonstrated
the predictive value of quantitative information extracted from
medical images when used in conjunction with conventional
clinical features. Beyond the volumetric measurement, radiomic
features also described tumor characteristics, especially
intratumor heterogeneity, which has been shown to be related
to tumor prognosis.

In our predictive models, we found that the most frequently
selected radiomic features from the shape class were
“original_shape_MajorAxisLength” and “original_shape_
SurfaceArea.” Features in the shape class represent the size and
shape of the ROI, independently of the gray-level intensity
distribution. Both “original_shape_MajorAxisLength,” which was
calculated by using the largest principal component, and
Frontiers in Oncology | www.frontiersin.org 6
“original_shape_SurfaceArea,” which indicated the total surface
area of the ROI, were related to the tumor size. From the first-order
class, the most frequently selected radiomic feature was
“original_firstorder_Uniformity,” which indicated homogeneity
of the ROI intensity. For the texture and wavelet classes, the
most frequently selected radiomic features were “gldm_
DependenceNonUniformity,” “glrlm_GrayLevelNonUniformity,”
and “glrlm_RunLengthNonUniformity.” These features
measure similarity of gray-level patterns in the ROI. For
“gldm_DependenceNonUniformity” which measured the
similarity in dependency throughout the image, a lower value
indicated more heterogeneity in the ROI and poorer prognosis.
The “glrlm_GrayLevelNonUniformity” feature measured
the similarity in gray-level intensity in the image, with a lower
value indicating more tumor homogeneity. Similarly, the
“glrlm_RunLengthNonUniformity” feature measured the
similarity in run lengths throughout the images, with a lower
value indicating more heterogeneity in the tumor. Most of the
selected features in texture and wavelet classes reflected the pixel
intensity distribution of ROI, which can be observed with the
naked eye in tumors with poor prognoses (31). Apart from
radiomic features, clinical features such as age and pretreatment
plasma EBV DNA level were also frequently selected by the
backward feature elimination process. This finding is in
concordance with those of previous studies which have explored
the correlation between age and disease prognosis in patients with
NPC. It has been reported that younger patients had a better
prognosis than older patients (36–39), and that plasma EBV DNA
levels were linked to NPC early identification, prognostication, and
treatment response (8–12).

Variability among observers remains a challenging issue in
manual tissue segmentation, particularly for tumor delineation.
In addition to intra-class correlation (ICC) analysis, which was
performed to select consistent features for model construction,
we also evaluated our model’s robustness. Specifically, we
simulated the variation across observers based on tumor
delineations by three radiation oncologists to generate
synthetic radiomic feature values. The results showed that our
TABLE 2 | Most frequently selected features of OS, PFS, and DMFS in each class on NPC patients.

Statistical analysis Feature
group

Feature name

OS PFS DMFS

Logistic regression
(binary outcome)

Shape original_shape_MajorAxisLength original_shape_MajorAxisLength original_shape_MajorAxisLength
First order original_firstorder_Uniformity original_firstorder_Uniformity original_firstorder_Uniformity
Texture original_gldm_DependenceNonUniformity original_glrlm_GrayLevelNonUniformity original_glrlm_GrayLevelNonUniformity
Wavelet wavelet-

LHL_gldm_LargeDependenceEmphasis
wavelet-
LHL_glrlm_GrayLevelNonUniformity

wavelet-HHL_ngtdm_Busyness

Clinical age age age
plasma EBV DNA level plasma EBV DNA level plasma EBV DNA level

Cox regression
(time-to-event
outcome)

Shape original_shape_MajorAxisLength original_shape_SurfaceArea original_shape_SurfaceArea
First order original_firstorder_Uniformity original_firstorder_Uniformity original_firstorder_Uniformity
Texture original_gldm_DependenceNonUniformity original_glrlm_GrayLevelNonUniformity original_glrlm_GrayLevelNonUniformity
Wavelet wavelet-LHL_glrlm_RunVariance wavelet-

HLL_glrlm_RunLengthNonUniformity
wavelet-
HLL_glrlm_RunLengthNonUniformity

Clinical age age age
plasma EBV DNA level plasma EBV DNA level plasma EBV DNA level

N stage (8th edition)
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FIGURE 4 | Kaplan–Meier plot for OS, PFS, and DMFS stratified by the median of the combined model’s score.
A D

B E

C F

FIGURE 3 | Boxplots of AUC values for (A) OS, (B) PFS, (C) DMFS, and C-indices for (D) OS, (E) PFS, and (F) DMFS of the clinical, radiomics, and combined models.
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models were robust with coefficient of variations less than 10%
for both AUC and Harrell’s C-index.

There have been radiomics studies on NPC prognosis. MRI-
based radiomics showed great promise for the prognosis of non-
metastasis NPC patients (25, 27, 28, 40). Peng et al. (29)
employed PET/CT-based radiomics as well as several clinical
features to build a model to predict disease-free survival. They
demonstrated that a radiomics model based on PET/CT
outperformed a clinical model. In contrast to our findings, the
clinical model produced better predictive performance than CT-
based radiomic features. Furthermore, to the best of our
knowledge, the only CT-based radiomics study on NPC was
Zhu et al. (41), which used CT-based radiomic and clinical
features including plasma EBV DNA level to predict local
recurrences after IMRT in a cohort of 156 NPC patients from
a hospital in China. Their results were also consistent with our
findings even though we studied CT-based radiomics for OS,
PFS, and DMFS prediction in non-Chinese patients.

Limitations of this study were that it was a retrospective study in
a single center and that tumor delineation was based on CT images
withMR images shown side by side. However, our findings serve as
a proof of principle that CT-based radiomics is useful and we could
identify important radiomic features that would be beneficial for
future research. One of our future directions would be to construct
a predictive model using radiomics from ROI drawn from CT
images without support from MR images. Most importantly, the
proposed predictive models should be further validated in a larger
dataset from multiple centers or in patients who had induction
chemotherapy followed by concurrent chemoradiation. The
strength of this study includes a homogeneous group of patients
who had been treated with IMRT concurrent with chemotherapy
followed by adjuvant therapy. To the best of our knowledge, this is
the first and largest study evaluating CT-based radiomics combined
with clinical features on non-Chinese nasopharyngeal cancer
patients to predict OS, PFS, and DMFS.

In conclusion, our study showed that CT-based Radiomic
features, when used in conjunction with conventional clinical
features, were able to improve the prognostic prediction
performance for OS, PFS, and DMFS in NPC patients. This
has a positive impact, especially for non-MRI institutes, on the
Frontiers in Oncology | www.frontiersin.org 8
screening of high-risk patients for aggressive therapeutic
treatment strategies.
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