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Fibroblast growth factor receptor (FGFR) inhibitors (FGFRis) are a potential therapeutic
option for squamous non-small cell lung cancer (Sq-NSCLC). Because appropriate
patient selection is needed for targeted therapy, molecular profiling is key to
discovering candidate biomarker(s). Multiple FGFR aberrations are present in Sq-
NSCLC tumors—alterations (mutations and fusions), amplification and mRNA/protein
overexpression—but their predictive potential is unclear. Although FGFR1 amplification
reliability was unsatisfactory, FGFR mRNA overexpression, mutations, and fusions are
promising. However, currently their discriminatory power is insufficient, and the available
clinical data are from small groups of Sq-NSCLC patients. Here, we focus on FGFR
aberrations as predictive biomarkers for FGFR-targeting agents in Sq-NSCLC. Known
and suggested molecular determinants of FGFRi resistance are also discussed.

Keywords: fibroblast growth factor receptor, FGFR inhibitors, squamous non-small cell lung cancer (Sq-NSCLC),
molecular biomarkers, targeted therapy, FGFR1, FGFR2, FGFR3
INTRODUCTION

Lung cancer is the most common cause of cancer-related death worldwide (1). Non-small cell lung
cancer (NSCLC) accounts for over 75% of all lung cancer cases, and 20–30% are squamous non-
small cell lung cancers (Sq-NSCLC). The prognosis of patients with advanced Sq-NSCLC is poor
and immune checkpoint inhibitors (pembrolizumab, atezolizumab, or cemiplimab in tumors with
PD-L1 expression≥50%; pembrolizumab plus carboplatin/nab-paclitaxel chemotherapy or
nivolumab and ipilimumab plus 2 cycles of platinum-based chemotherapy regardless of PD-L1
expression) are the only first line systemic therapies approved by both the FDA (US Food and Drug
Administration) and the EMA (European Medicines Agency) (2). However, in a randomized trials,
approximately 30-40% of patients responded to first-line checkpoint inhibitors (2, 3). It is important
to identify new targeted therapies and reliable predictive molecular biomarkers for Sq-NSCLC.
Since, FGFR aberrations have been found in targetable oncogenic pathways (4), the FGFR inhibitors
emerged as potential targeted therapy agents with promising therapeutic effects assessed in distinct
clinical trials [reviewed in (5–7)]. Accordingly, in April 2019 the first FGFR inhibitor (FGFRi),
erdafitinib, was approved by the FDA for patients with locally advanced or metastatic urothelial
carcinoma with FGFR2 and FGFR3 genetic alterations. In April 2020, the FGFR1/2/3 inhibitor
pemigatinib was granted approval and recently, in May 2021, the pan-FGFR1–4 inhibitor BGJ398
(infigratinib) was approved for the treatment of unresectable locally advanced or metastatic
cholangiocarcinoma with FGFR2 fusion or other rearrangements.
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Sq-NSCLC is a target for FGFRi therapy because of the high
rate of amplifications in fibroblast growth factor receptor 1
(FGFR1). Accordingly, FGFR1 amplification and overexpression
are promising predictive markers for FGFRi therapy in Sq-
NSCLC. However, most early phase clinical trials with new
FGFRis showed only a partial response (8–11).

Appropriate patient selection is needed for targeted therapy.
This review focuses on FGFR aberrations as reliable predictive
biomarkers for response to FGFRis in Sq-NSCLC.
FGFR SIGNALING PATHWAY—
STRUCTURE AND NORMAL FUNCTION
OF FIBROBLAST GROWTH FACTOR
RECEPTORS

FGFR1-4 are located on four chromosomes and consist of 18
exons (start codon in exon 2). The proteins encoded by FGFR
genes are members of the fibroblast growth factor family,
consisting of 18 ligands acting via four highly conserved
tyrosine kinase receptors (FGFR 1–4). Each FGFR consists of
an extracellular region, composed of three immunoglobulin-like
domains (IgI–IgIII), a single hydrophobic transmembrane
domain, and a cytoplasmic tyrosine kinase domain (Figure 1,
Supplemental Figure S1 and Table S1). FGFRs have multiple
alternative splice isoforms with tissue-specific expression (Figure
S1). These are generated by deletion of the IgI domain and/or
acid box or by a sequence change in the carboxy-terminal half of
the IgIII domain, transforming isoform IIIb into IIIc (FGFR1–3)
(12, 13). The extracellular domains interact with fibroblast
growth factors (FGFs): FGFR1 binds both acidic and basic
FGF; FGFR2 binds acidic, basic, and/or keratinocyte FGFs,
depending on the isoform; FGFR3 binds acidic and basic FGFs;
and FGFR4 binds acidic FGFs (Supplemental Table S1) (14).
FGF ligand binding leads to dimerization of FGFR followed by its
activation by sequential autophosphorylation of tyrosine
residues (Figure 2). FGFR signaling activates the phospho-
inositide-3-kinase (PI3K)/AKT, signal transducer and activator
of transcription (STAT), and mitogen activated protein kinase
(MAPK) pathways (15). FGFRs participate in the regulation of
multiple biological activities, including tissue repair;
angiogenesis; and cell proliferation, differentiation, migration,
and survival (14–16). The four FGFR proteins are expressed in a
number of tissues under normal conditions (Table S1).
Aberrations of FGFR1–4 genes are associated with a broad
range of developmental disorders, such as craniosynostosis and
dwarfing syndromes, and with cancers (15).
FGFR1-4 GENETIC ABERRATIONS IN
CANCERS

Deregulated FGF/FGFR signaling associated with FGFR
aberrations is observed in various cancers (Supplemental
Table S2), including lung cancer (Table 1). Activation of
Frontiers in Oncology | www.frontiersin.org 2
effectors of FGFR cancer-related signaling pathways (PI3K/
AKT, STAT and MAPK) affects cell proliferation, survival,
metabolism, migration, and cell cycle. Furthermore, FGFs
released from tumor and stroma may increase autocrine and
paracrine signaling and initiate angiogenesis (13) (Figure 2).

Preclinical studies have shown that inhibition of FGF/FGFR
signaling induces apoptosis in lung cancer cell lines via oxidative
stress and impairs tumor growth in xenograft models (40, 41).
The FGFR pathway may be altered by gene amplification, mRNA
overexpression, and mutation and chromosomal rearrangement
(gene fusion). Moreover, alternatively spliced FGFR isoforms
participate in oncogenic signaling, promoting tumorigenesis.

FGFR Gene Amplification
FGFR amplification is a main mechanism of FGFR signaling
activation and is critical for cancer cell proliferation and survival.
It is the most common FGFR alteration in various cancer types
(reviewed in (5, 16, 22). FGFR1 amplification is frequent in Sq-
NSCLC (4.6–22%, Table 1) and in breast cancer (5–15%), but is
less common in other cancer types such as ovarian (5%) and
colorectal (2%) carcinomas (4, 18, 22, 42) (Supplemental
Table S2).

FGFR1 Amplification in Preclinical In Vitro and
In Vivo Studies
It has been proposed to be a biomarker of FGFRi efficacy in
advanced Sq-NSCLC, and preclinical in vitro and in vivo studies
yielded promising results. For example, FGFRis such as
PD173074 (selective FGFR1–3 inhibitor) (17, 43), AZD4547 (a
potent inhibitor of FGFR1–3) (19), nintedanib (multikinase
inhibitor targeting FGFR, VEGFR, and PDGFR) (20), dovitinib
(multitarget inhibitor of RTKs: FLT3/c-Kit, FGFR1–3, and
VEGFR1–4) (37), BGJ398 (infigratinib) (44), and ponatinib
(AP24534, a multitarget pan-FGFRi) (21, 45, 46) resulted in
cell growth inhibition and apoptosis of lung cancer cell lines with
FGFR1 amplification (NCI-H520, LK-2, and NCI-H1703
[squamous cell carcinoma] (19–21, 40, 42–46) and NCI-H1581
[large-cell carcinoma] (17, 40, 43, 45, 46). By contrast, a
squamous lung carcinoma cell line with the wild-type FGFR1
gene copy number (NCI-H2170) was insensitive to those
inhibitors (17, 19, 40, 43). Preclinical in vivo studies based on a
primary, FGFR1-amplified Sq-NSCLC xenograft revealed the
therapeutic efficacy of some FGFRis. Nintedanib inhibited the
growth of tumors formed by FGFR1-amplified NCI-H520 and
LK‐2 cells (20); PD173074 shrunk xenografted FGFR1-amplified
NCI-H1581 cell tumors; and AZD4547 led to significant tumor
growth inhibition (TGI > 94–199%) in four of five FGFR1-
amplified patient-derived squamous lung cancer models (47).
However, the predictive value of FGFR amplification was not
confirmed by other in vitro studies. Two FGFR1 non-amplified
cell lines were sensitive to AZD4547 (19). An FGFR1-amplified
lung cancer cell line (NCI-H520) was not sensitive to PD173074
or AZD4547 (17, 48), and FGFR1-amplified squamous lung cell
lines derived from metastatic sites (HCC95 and SKMES1) were
insensitive to ponatinib and AZD4547 (19, 21). Additionally,
SKMES1 cells were sensitive to dovitinib (40). Nevertheless, the
majority of the promising preclinical evidence resulted in FGFR1
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amplification being proposed as a predictive biomarker of FGFR
inhibition in advanced Sq-NSCLC.

FGFR1 Amplification in Clinical Trials
Consequently, it has been a key inclusion criterion in phase I/II
clinical trials in solid tumors, particularly in Sq-NSCLC. However,
most clinical trials in patients with Sq-NSCLC have indicated
considerable weakness of FGFR amplification as a biomarker. A
complete response (CR) or partial response (PR) to FGFRis has
been reported for a few patients; most had stable disease (SD) or
disease progression (P). In a phase Ic multicenter study of
AZD4547 (NCT00979134), 1 of 24 patients with FGFR-
amplified Sq-NSCLC achieved a PR (12 weeks) (49). Similarly,
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in a phase Ib study, 1 of 13 patients (8%) achieved PR (PFS, 5.4
months), 4 (31%) showed SD and 8 (61%) exhibited P. Changes in
tumor size ranged from shrinkage by 35% to growth by 35% (23).
Likewise, in a phase II lung-MAP clinical substudy (SWOG
S1400D, NCT02965378), 1 of 23 patients (4.3%) with FGFR1
amplification presented a PR (2.9 months) to AZD4547 (11).
More promising results were reported in a phase I clinical study of
BGJ398 (NCT01004224) (10) and a phase II study of >dovitinib
(NCT01861197) (9). In both studies, ~ 11% of patients with
FGFR1-amplified Sq-NSCLC achieved PR (4/36 and 3/26,
respectively) with a decrease in tumor size of ~ 30–40%, and ~
40% of patients had SD. The median progression-free survival was
2.9 months and the mean duration of response was 5.2 months
FIGURE 1 | Schematic of FGFR1–4 genes and protein structures with variants detected in Sq-NSCLC tissue (Table 1). Red, pathogenic or likely pathogenic clinical
significance; yellow, variants not in the ClinVar database.
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(9). A similar outcome was reported by basket- or umbrella-type
clinical trials in FGFR1-amplified advanced cancers; Sq-NSCLC
had diverse sensitivity to FGFRis; SD was the best response to
LY2874455 (a pan-FGFR1–4 inhibitor that occupies the ATP-
binding pocket in the kinase domain, NCT01212107) (8), Debio-
1347 (CH5183284, an ATP competitive, highly selective inhibitor
of FGFR1–3, NCT01948297) (50), and derazantinib (ARQ 087, an
ATP-competitive pan-FGFRi with multikinase activity,
Frontiers in Oncology | www.frontiersin.org 4
NCT01752920) (51). Therefore, there is discordance between
FGFR1 amplification status and the clinical response to FGFRis
in Sq-NSCLC.

FGFR1 Focal Amplification or Arm Amplification
Failure of FGFR1 amplification as a predictive biomarker in lung
cancer may be linked to expression of neighboring genes in the
8p11 amplicon. FGFR1 amplification could reflect arm-level
FIGURE 2 | The FGFR signaling pathway and aberrations with potential as predictive biomarkers for FGFRi treatment of Sq-NSCLC.
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8p11 gain (19, 23, 40) but not focal amplification, as previously
claimed (17). Initially, significant correlation between high
expression of FGFR1 and its neighboring genes [BAG4, LSM1,
NSD3 [WHSC1L1] (19, 40), ASH2L, DDHD2, TACC1, and
Frontiers in Oncology | www.frontiersin.org 5
EIF4EBP1 (19)] and FGFR1 amplification in Sq-NSCLC tissue
was shown. However, Paik et al. (23) confirmed that expression
of FGFR1 and neighboring genes was variable and lower in
tumor samples than in FGFR1-amplified cell lines. FGFR1
TABLE 1 | Frequencies of FGFR1–4 amplifications, mutations, and fusions in lung cancer.

Gene name Type of Cancer Amplificationfrequency (%) Frequency of mutations (%) Frequency of fusions (%) Source

FGFR1 NSCLC 7.4% (2/27) na na (8)
Sq-NSCLC 22% (34/153) 0% (0/94) na (17)

22% (22/101) na na (18)
14.4% (13/90) na na (19)
10.7% (8/75)
13.3% (10/75)

2.7% (2/75) 0% (0/75) (20)

11% (11/100) na na (21)
9% (ns/93) 0% (0/93) 0% (0/93) (22)
90% (9/10) 18% (2/11) na (23)
25.2% (49/194) na na (9)
23% (37/156) na ns (24)
4.6% (6/130) 0% (0/130) ns (25)
19.1% (30/157) na na (26)
19% (14/73) na na (27)
na na 0.2% (1/492) BAG4-FGFR1 (28, 29)
na na 0.64% (2/312) BAG4-FGFR1 (30)

Lung
adenocarcinoma

5,7% (17/298) na na (26)
0% (0/77) 1% (1/94) na (17)
na na 0% (0/299) (28)
na na 0% (0/492) (29)
na na 0% (0/1016) (30)
ns ns 0.005% (1/17827) BAG4-FGFR1 (31)

Small-cell lung
carcinoma

7.8% (6/77) na na (32)
5.6% (14/251) na na (33)
8% (3/37) na na (24)

FGFR2 Sq-NSCLC 0% (0/75) 2.7% (2/75) 0% (0/75) (20)
0% (0/93) 3% (ns/93) 0% (0/93) (22)
na 0% (0/101) na (18)
na 2.8% (5/179) na (34)
na 4.7% (2/42) na (35)
ns ns 0.45% (1/222) FGFR2-KIAA1967 (28)
na na 0.2% (1/492) FGFR2-CCAR2 (29)

Lung
adenocarcinoma

na na 0% (0/492) (29)
ns ns 0.04% (8/17827) (31)
na na 0% (0/299) (28)

FGFR3 Sq-NSCLC 0% (0/75) 0% (0/75) 1.33% (1/75) FGFR3-TACC3 (20)
5.5% (2/36) 0% (0/76) 5.3% (4/76) FGFR3-TACC3 (36)
na 3.3% (6/179) na (34)
na 9% (1/11) na (23)
0% (0/93) 3% (ns/93) 0% (0/93) (22)
na 1% (1/101) na (18)
ns ns 1.92% (2/104) FGFR3-TACC3 (37)
na ns 4,16% (2/48) FGFR3-TACC3 (38)
na na 1.8% (4/222) FGFR3-TACC3 (28)
na na 0.6% (3/492) FGFR3-TACC3 (29)
na na 2.88% (9/312) FGFR3-TACC3 (30)
ns ns 0.58% (21/3582) FGFR3-TACC3 (31)

Lung
adenocarcinoma

ns ns 0.06% (11/17827) FGFR3-TACC3 (31)
na na 0% (0/299) (28)
na na 0% (0/492) (29)
na na 0.59% (6/1016) FGFR3-TACC3 (30)
0% (0/6) 0% (0/111) 1.8% (2/111) FGFR3-TACC3 (36)
na 5.5% (20/363) na (39)

FGFR4 Sq-NSCLC 0% (0/75) 5.3% (4/75) na (20)
0% (0/93) 1% (ns/93) 0% (0/93) (22)

Lung
adenocarcinoma

ns ns 0.005% (1/17827) FGFR4-ns (31)
na 0.27% (1/363) na (39)
March 2022 | Volume 12 | Article
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expression was low in most tumor samples, but the expression
patterns of other genes in the 8p11-12 amplicon were
heterogeneous. In some tumors, genes in the 8p11-12
amplicon located closer to the centromere presented high
expression, but in others expression levels were uniformly low,
or the pattern was inconsistent. There was also no correlation
between AZD4547 efficacy and 8p11 amplicon gene expression
(23). This implies the importance of other genes in this locus and
that FGFR1 amplification alone does not provide adequate
sensitivity to reliably predict response to FGFRis.

FGFR1 Copy Number and mRNA Expression
Important insight into the mechanism of failure of FGFR1
amplification as a biomarker is provided by the poor correlation
between FGFR1 mRNA expression and its amplification. Only
50% of Sq-NSCLCs with an increased FGFR1 gene copy number
(CGN) overexpress FGFR1 mRNA (4). This observation was
confirmed by others; 31–46% of FGFR1-amplified Sq-NSCLCs
presented high FGFR1 mRNA expression, and no FGFR1 mRNA
expression was found in 25% of FGFR1-amplified tumors (9).
Similarly, Wynes et al. (21) showed that a high FGFR1 CGN
overlapped with an increased FGFR1 mRNA level in 46% of
tumors (squamous/mixed NSCLC and NOS). These data imply
the existence of mechanisms other than increased GCN regulating
FGFR1 transcription.

FGFR1 Amplification Functional Impact - Driver of
Cancer or “Passenger” Event
Additionally, it remains unclear whether FGFR1 amplification
represents the underlying molecular cause as a driver of cancer,
or simply exists as “passenger” event within the overall
mutational profile of cancer. Initially, the FGFR1 amplification
in Sq-NSCLC was hypothesized as oncogenic driver event.
Functional studies revealed that silencing of FGFR1 strongly
reduced the viability of the FGFR1-amplified lung cancer cells,
inhibited cancer cell growth and clonogenicity, while application
of the FGFR inhibitor revealed growth inhibition (p=0.0002) and
induced apoptosis (p=0.008) (17, 46). FGFR1 amplification also
have indicated poor prognosis, since its association with shorter
overall survival and shorter disease-free survival was reported
(52). Despite initial evidence, data from in vitro, in vivo and
clinical studies (as discussed in dedicated sections) revealed
conflicting data. Mainly, poor correlation of FGFR1
amplification with FGFR1 gene and protein expression in Sq-
NSCLC cells, and ambiguous response to FGFR1 inhibition
affected either due to the FGFR1 expression or presence of
other alternations and subsequent activation of alternative
signaling pathways, might indicate that FGFR1 amplification is
a passenger alteration event rather than a driver alteration.
Furthermore, a concurrent amplification of FGFR1 and other
genes located in distant loci (on other chromosomes) has been
acknowledged in Sq-NSCLC recently (27), specifically the co-
amplification of FGFR1 with Defective In Cullin Neddylation 1
Domain Containing 1 gene (DCUN1D1, activation of the focal
adhesion kinase and hedgehog signaling pathways) and/or BCL9
Transcription Coactivator gene (BCL9, an alternate activation of
Wnt/b-catenin pathway) in the 93% FGFR1-amplified Sq-
Frontiers in Oncology | www.frontiersin.org 6
NSCLC. Still, association of this co-amplification with FGFRi
treatment effect has not been examined yet.

FGFR2–4 Amplification
In contrast, the reliability of FGFR2–4 amplification (which is
rare in Sq-NSCLC [0–4.7%], Table 1) (11, 20, 22, 36, 53) as a
predictive biomarker for Sq-NSCLC has not been investigated.
The only phase II clinical study (NCT02965378) of AZD4547
revealed similar inconsistencies in FGFR1 amplification. Two
patients with FGFR3-amplified Sq-NSCLC have been reported:
one with tumor shrinkage by 25% and the other (with
concomitant FGFR1 amplification) with a 10% increase in
tumor size (11).

These data imply reasons for the low predictive value of
FGFR1 amplification for response to FGFRis. Unfortunately, few
Sq-NSCLC patients have been treated with FGFRis in clinical
trials, precluding firm conclusions. However, a number of
clinical trials of FGFRi are ongoing and are actively enrolling
FGFR-amplified patients with advanced Sq-NSCLC (Figure 2).

FGFR mRNA/Protein Overexpression
FGFRs are overexpressed not only in lung cancer but also in
other solid tumors, including cancers of the prostate, breast,
brain, gastric and head and neck, and sarcoma (54, 55). Increased
FGFR1 mRNA levels are frequently observed in Sq-NSCLC.
Medium and high tumor FGFR1 mRNA expression was
reported in 27–60% of patients with Sq-NSCLC (4, 19, 26),
and 55 of 118 (47%) Sq-NSCLC tumors had FGFR1–3 mRNA
overexpression (55, 56).

FGFR mRNA Expression
As FGFR1 amplification is a poor predictive biomarker for
response to FGFRis in Sq-NSCLC, FGFR expression levels have
been evaluated in preclinical and clinical studies. In vitro, a high
FGFR1 mRNA level, independently of its amplification, was a
significant predictor of sensitivity to AZD4547 in two FGFR1
non-amplified squamous lung cancer cell lines (H226 and LK2)
compared to the H1703 and H520 lines, characterized by both
high FGFR1 amplification and overexpression (19). Moreover,
BGJ398 treatment of FGFR1-silenced H-520 cells showed results
similar to BGJ398 or siRNA-FGFR1 treatments alone, indicating
that the drug inhibitory effects actually relied on FGFR1
inhibition, while complete silencing of the FGFR1 expression
in H-520 cell line lead to significant reduction of cell
proliferation, increased the percentage of cells in the G0/1

phase of the cell cycle and resulted in down-regulation of both
MAPK and AKT/mTOR pathways (44, 46). Also, the majority of
Sq-NSCLC cell lines established from primary or metastatic
tumors with FGFR1 expression subsequently transfected by a
dominant-negative FGFR1 (dnFGFR1) IIIc-green fluorescent
protein chimera or treated with FGFR small-molecule
inhibitors (SU5402 and PD166866) showed significantly
reduced growth, survival, clonogenicity, and migratory
potential. The FGFRi treatment had no effect on nonmalignant
bronchoepithelial cell lines (BEAS-2B) expressing very low levels
of FGFR1 (57).
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In addition, FGFR3, but not FGFR2 or FGFR4, mRNA levels
were weakly associated with sensitivity to ponatinib (no
correlation to AZD4547) (19, 21). These promising results
were confirmed in vivo: significant inhibition of tumor growth
by rogaratinib (a potent and selective FGFR1–4 inhibitor) was
observed in two patient-derived xenografts (PDX) (LU299–Sq-
NSCLC and LXFL1121-NSCLC) overexpressing FGFR1 mRNA
but not harboring high FGFR amplification (58). Also, two
differentially expressed gene profiles of Sq-NSCL tumors
(PDX), sensitive or resistant to dovitinib were observed (40).
Notably, FGFR3, FGF3 and FGF19 were the most diversely
expressed genes, and significant differences in GRB2, KLB,
MAPK1, NRAS, and SOS1 expression were reported. The
different expression patterns encompassed genes related to the
FGFR pathway, including FGFR1–4 receptors but also other
oncogenic genes, which might be linked to tumor sensitivity to
FGFRis. The results of phase II clinical studies are inconsistent.
Promising results were obtained in 40 advanced Sq-NSCLC
patients with FGFR1-3 overexpression (NCT03762122) treated
with rogaratinib; two patients (5.6%) achieved PR (in one, for >
16 months) and SD was achieved in 64% (51, 59). However, only
1 of 10 patients (1%) had 6 months PFS in continuation of that
study (60). Also, in three Sq-NSCLC patients with enhanced
FGFR1 mRNA levels, two responded to ponatinib with SD and
one showed P (61). In contrary, in one of three dovitinib
responders in the NCT01861197 trial, low FGFR1–3 mRNA
levels and a high FGFR1 amplification level in the tumor were
reported (9).

FGFRs Protein Expression
FGFR1-3 protein levels are frequently high in NSCLC. Notably,
FGFRs expression level differs between histological subtypes. A
high FGFR1 protein level was reported in: Sq-NSCLCs - 16 of
171 (9%) (24), 13 of 212 (6%) (26), and in 22 of 267 (8.2%) (36);
adenocarcinoma histological subtype- 40 of 114 (35%) (24), 13 of
383 (3.5%) (26), and 40 of 309 (12.9%) (36). High FGFR2 and
FGFR3 protein levels in were also reported in both NSCLC
histotypes: Sq-NSCLC: 9 (3.4%) and 18 (6.6%), respectively;
-adenocarcinoma: 66 (21.8) and 2 (0.6%), respectively (36).
Nonetheless, there was no significant correlation between
FGFR1 protein expression and gene amplification assessed by
FISH or NGS (23, 24), although there was a weak correlation
between FGFR1 mRNA and protein levels in Sq-NSCLC (19, 26).
The FGFR protein levels have also been investigated as potential
biomarkers for response to FGFRi treatment. Some preclinical
studies have indicated that FGFRi response associates closely
with high FGFR1 protein expression. For example, Wynes et al.
(21) showed that FGFR1 mRNA and protein expression, but not
GCN, predict FGFR TKI sensitivity in lung cancer cell lines.
Similarly, use of rogaratinib against cancer cell lines with high
FGFR expression but no FGFR amplification revealed the
selective antiproliferative activity of FGFRis (58). On the other
hand, two FGFR1-amplified NSCLC PDX (from large cell and
adenocarcinoma subtypes) with co-overexpression of FGFR1
protein responded to M6123 (selective FGFR1 antagonist) (26).
To our knowledge, besides one Sq-NSCLC patient with FGFR1
amplified tumor, who achieved PR in NCT00979134 study and
Frontiers in Oncology | www.frontiersin.org 7
had no FGFR1 protein overexpression (23) there is luck of clear
results for clinical significance of FGFR1 protein expression.
Because of the dearth of clinical data, the relationship between
FGFR mRNA/protein levels and response to FGFRis remains
unclear. On-going trials of FGFRis are enrolling FGFR
mRNA- and protein- overexpressing patients with advanced
Sq-NSCLC (Figure 2).

FGFR Mutations and Fusions
FGFRs Mutations
FGFRmutations are frequent in human cancers (16, 22), with the
highest prevalence in NSCLC (FGFR1 range 0–18%) (17, 20, 23,
62), endometrial carcinoma (FGFR2, range 0–9%) (35, 63),
bladder carcinoma (FGFR3, range 8.5–26%) (53, 64), and
rhabdomyosarcoma (FGFR4 7.5%) (65) (Table 1 and
Supplemental Table S2). Mutations are found in the regions
of the gene encoding the extracellular, trans-membrane, and
kinase domains of the FGFR receptor (Figure 1 and Tables 2 and
3) but are most frequent outside the kinase domain in exons
corresponding to the extracellular domains (Ig-domains) and
alternative exons.

This is important because point mutations in extracellular
domains lead to receptor stimulation in a ligand-independent
manner by obligate receptor dimerization (68). For example,
S249C mutation in the extracellular domain (IgIII) of FGFR3
induces constitutive dimerization and receptor activation via
modest dimer stabilization in the absence of ligand (69).
Similarly, rare FGFR mutations in the transmembrane domain
may reduce dimerization efficiency and overall stability, leading
to a constitutively active protein (70). Kinase-domain point
mutations are typically localized in regulatory elements such as
the molecular brake, the A-loop, the kinase hinge, and the DFG-
latch. This results in receptor autophosphorylation and
constitutive receptor activation in a ligand-independent
manner, as exemplified by oncogenic-like FGFR2 mutations
(A266_S267ins, 290_291WI>C) (66) and point mutations in
FGFR3 (N540, K650) (68).

FGFRs Fusions
FGFR gene fusions originat ing from chromosomal
rearrangement of two genes (through translocation, insertion,
inversion or deletion) are found in all common tumor types. The
Cancer Genome Atlas study reported FGFR fusions in 8 of 20
tumor types (29). Chromosomal rearrangements involving FGFR
genes often lead to protein fusion with the FGFR kinase domain
and its subsequent activation (71). FGFR2 gene fusions are most
frequent in cholangiocarcinoma, and are also detected, albeit less
commonly, in colorectal cancer, hepatocarcinoma and NSCLC
(22). FGFR3 fusions are more common in glioblastoma,
urothelial carcinoma, and lung cancer, with several dozen
fusion partners. FGFR1 and FGFR4 fusions are rare in solid
tumors. FGFR1 fusions are typically found in gastrointestinal
stromal tumor (GIST), breast cancer, and bladder urothelial
carcinoma. Lung cancer develops via a multistep process of
tumor biogenesis involving accumulation of inherited or
acquired genetic abnormalities. Analysis of the FGFR
alterations in Sq-NSCLC showed that 20% of identified
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variants were in FGFR1-4 (20, 34, 62) (Table 2 and 3); FGFR1 ~
18% (17, 20, 23, 62), FGFR2 2.5–4.7% (20, 34, 35), FGFR3 0–9%
(20, 23, 34), and FGFR4 5.3% (20). In addition, 0.6–3.5% of
FGFR aberrations are chromosomal translocations such as
FGFR3-TACC3 (3.5%), BAG4-FGFR1 (< 1%), and FGFR2-
KIAA1967 (0.3%) (31, 72). Fusions of all four FGFR genes
have been found in Sq-NSCLC (30, 31, 67, 71, 73).

Importance of FGFRs Mutations and Fusions as
FGFRi Predictive Biomarkers
FGFR mutations and fusions are candidate predictive
biomarkers for FGFRis. For instance, it was recently shown
that estimated drug sensitivity of FGFR3 S249C was
Frontiers in Oncology | www.frontiersin.org 8
intermediate for all FGFR inhibitors examined in mouse
fibroblast cell line (3T3 cells), while different variants at FGFR2
N549 showed different drug sensitivity but similar oncogenicity
(74). However, there is little evidence for the predictive power of
FGFR variants in Sq-NSCLC. Contradictory results from
AZD4547 trials in patients with Sq-NSCLC with the FGFR3
S249C pathogenic variant have been reported. The phase II lung-
MAP substudy (SWOG S1400D, NCT02965378) and a phase Ib
clinical study (NCT00979134) with AZD4547 FGFRi revealed
single Sq-NSCLC patients with FGFR3 S249C who achieved PR
(for 1.5 months with ~ 32% tumor shrinkage) (11) or SD (2.6-
month progression-free survival [PFS] and 12% tumor
shrinkage) (23). No significant benefit of AZD4547 (11) or
TABLE 2 | FGFR1-2 variants detected in squamous non-small cell lung cancer (Sq-NSCLC). Variant localisation is shown in Figure 2.

Gene
name

Localization Variants Variant origin/Functional effect
of alteration

Clinical significanceClinVar/VarSome
Clinical**

Source

FGFR1 extracellular
domain

alternative
exon

c.80C>T* T27I* somatic/unknown Not reported/Uncertain Significance (20)

Ig I c.208G>A G70R somatic/unknown Likely pathogenic/Pathogenic (20)
alternative
exon

c.277G>T* D93Y* somatic/unknown Not reported/Uncertain Significance (23)

c.391G>A D131N somatic/unknown Uncertain Significance/Uncertain Significance (23)
c.410A>G
(c.509A>G)*

E137G somatic/unknown Not reported/Likely Pathogenic (62)

c.749G>C
(c.842G>C)*

R250P somatic/unknown Likely pathogenic/Likely Pathogenic (62)

1107G>A
(c.1200G>T)*

M369I germline/unknown Not reported/Uncertain Significance (62)

cytoplasmic
domain

c.1366A>G
(c.1459A>G)*

M456V somatic/activating Not reported/Likely Pathogenic (62)

kinase
domain

c.1600A>G
(c.1693A>G)*

M534V germline/unknown Not reported/Benign (62)

c.2383G>A
(c.2476G>A)*

V795I germline/unknown Not reported/Uncertain Significance (62)

FGFR2 extracellular
domain

c.41C>T T14I Somatic
/unknown

Not reported/Uncertain Significance (20)

Ig II c.632A>T N211I Somatic/not stated Not reported/Likely Pathogenic (35)
c.755C>G S252W somatic/activating Pathogenic/Pathogenic

(22, 34),
c.758C>G P253R somatic/activating Pathogenic/Pathogenic (22)

Ig III duplication of 21
bp

A266_S267ins
STVVGGD

somatic/oncogenic Not reported/Not Reported (66)

Ig III c.870G>T
c.870G>C

W290C somatic/activating Pathogenic/
Pathogenic

(34, 35,
62)

Ig III
alternative
exon

c.959C>G S320C Not stated/activating Likely pathogenic/Likely Pathogenic (34)

cytoplasmic
domain

c.1199G>A R400Q Not stated/unknown Not reported/Likely Pathogenic (23)
c.1216A>G K405E germline/unknown Conflicting interpretations of pathogenicity/

Uncertain Significance
(62)

kinase
domain

c.1744C>T P582S somatic/unknown Not reported/Likely Pathogenic (20)

kinase
domain

c.1978A>G K660E not stated/activating Likely pathogenic/Likely Pathogenic (34, 67)

kinase
domain

c.1980G>C K660N not stated/activating Pathogenic/Likely Pathogenic (34, 67)

kinase
domain

c.1885G>A
(c.1534G>A)*

A629T
(A511T)*

germline/unknown Pathogenic/Likely Pathogenic (62)

c.2390C>A S797Y somatic/unknown Not reported/Uncertain Significance (62)
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BGJ398 (infigratinib, NCT01004224) (10) was shown in two
other patients carrying the FGFR3 S249C variant (2–4% tumor
size decrease). Diverse treatment outcomes were observed in Sq-
NSCLCs with other FGFR variants: SD (4.1 months PFS and 20%
tumor shrinkage) was reported in one patient (6.6%) with
simultaneous FGFR1 missense variants: D93Y and H841Y (23),
whereas no response was reported in a patient (1/27, 1.4%) with
FGFR3 fusion (11). Additionally, the objective response rate was
observed in 1 (5%) patient carrying the FGFRmutation or fusion
among 24 patients with NSCLC (13%) treated with erdafitinib
(NCT01703481) (75). Molecular profiling revealed 10 (42%)
FGFR mutations, 8 (33%) fusions, and 5 (21%) amplifications
in that group. FGFR variants and fusions may have predictive
utility in other tumor types such as bladder/urothelial cancer,
cholangiocarcinoma, and adrenocort ical carcinoma
(NCT01004224, NCT01752920, NCT02465060) (10, 47, 76,
77). Abnormal protein conformation resulting from FGFR
aberrations, and consequently ineffective FGFRi binding, may
be responsible for the weak predictive power of FGFR variants
and fusions for response to FGFRis (78). Functional analysis can
Frontiers in Oncology | www.frontiersin.org 9
identify potential associations of rare and newly identified
variants with FGFR activation, with later confirmation by
transforming activity in vitro. Additionally, other factors such
as pre-existing mutations of neighboring genes might also
influence FGFRi binding. The scarcity of available data, mostly
from individual Sq-NSCLC cases as well as a few clinical studies,
indicates the need for further research. A number of ongoing
clinical trials involve patients with advanced Sq-NSCLC and
FGFR mutations and/or translocations (Figure 2).
POTENTIAL MARKERS OF FGFRi
RESISTANCE

Anti-FGFR therapeutic strategies based on small-molecule
chemical tyrosine kinase inhibitors (TKIs) are by far the most
extensively explored. However, in clinical and preclinical trials,
cancer cells developed diverse resistance mechanisms to
FGFRis (5).
TABLE 3 | FGFR3-4 variants detected in squamous non-small cell lung cancer (Sq-NSCLC). Variant localisation is shown in Figure 2.

Gene
name

Localization Variants Variant origin/Functional
effect of alteration

Clinical significanceClinVar/
VarSome Clinical**

Source

FGFR3 extracellular
domain

Ig I c.87G>C Q29H germline/unknown Not reported/Uncertain Significance (62)
c.403_405delGAA E135del germline/unknown Not reported/not reported (62)

Ig II c.490C>G L164V germline/unknown Likely benign
/Likely benign

(62)

c.742C>T R248C somatic/activating Pathogenic/Pathogenic (22, 34, 67)
c.746C>G S249C somatic/activating and

transforming
Pathogenic/Likely Pathogenic (10, 18, 22, 23, 34,

39, 62, 67)
c.1108G>T G370C somatic/activating Pathogenic/Pathogenic (22)
c.1118A>G Y373C germline/activating Pathogenic/Pathogenic (67)

transmembrane
domain

c.1138G>A G380R not stated/unknown Pathogenic/Not reported (67)

cytoplasmic
domain

kinase
domain

c.1498G>A
(c.1504G>A)*

A500T somatic/unknown Not reported/Uncertain Significance (62)

kinase
domain

c.1587G>T
(c.1593G>A)*

M529I germline/unknown Not reported/Likely Pathogenic (62)

kinase
domain

c.1748A>T
(c.1754A>T)*

K583M germline/unknown Not reported/Likely Pathogenic (62)

kinase
domain

c.1948A>G K650E somatic/activating Pathogenic/Pathogenic (22)

kinase
domain

c.2144A>T
(c.2150A>T)*

K717M Not stated/Not activating Not reported/Likely Pathogenic (34)

c.2380C>G
(c.2386C>G)*

L794V germline/unknown Not reported/Uncertain Significance (62)

FGFR4 extracellular
domain

Ig I c.146T>A L49H germline/unknown Not reported/Likely Benign (62)
Ig II c.686C>T A229V germline/unknown Not reported/Likely Benign (62)

transmembrane
domain

alternative
exons

c.1141G>A* E381K somatic/
unknown

Not reported/Uncertain Significance (20)

alternative
exons

c.1145C>T* S382L somatic/
unknown

Not reported/Uncertain Significance (20)

cytoplasmic
domain

alternative
exons

c.1145C>T* G408S somatic/
unknown

Not reported/Uncertain Significance (20)

kinase
domain

c.1727G>A G576D germline/unknown Not reported/Likely Benign (62)

c.2266G>T D756Y somatic/unknown Not reported/Uncertain Significance (62)
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**Clinical significance based on ClinVar and VarSome databases.
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FGFRs Mutations
FGFR secondary mutations at the gatekeeper residue and gene
fusions are the main mechanisms of resistance to FGF/FGFRis.
For instance, the V561M FGFR1 gatekeeper mutation caused
resistance to AZD4547 via STAT3 activation and the epithelial-
mesenchymal transition in H1581 cells (79) and prolonged
exposure of KMS-11 multiple myeloma cells (FGFR3 Y373C)
to AZD4547 resulted in a second FGFR3 kinase domain point
mutation (V555M), triggering a conformational change and
preventing adequate drug binding (80). Additionally, the3T3
cells with FGFR1 N546K and FGFR2 N549D/K were resistant to
AZD4547, BGJ398 (infigratinib), erdafitinib, and pemigatinib,
and simultaneously they were relatively sensitive to E7090 (a
potent selective FGFR1‐3 inhibitor) and futibatinib (selective,
irreversible FGFR1–4 inhibitor) (74). The authors also showed
that the3T3 cells with concurrent mutations in FGFR3 (S249C
and K650M) were greatly resistant to E7090 in comparison to
cells with individual mutations. However, such a strong
association was not demonstrated for Erdafinib. The FGFR2
mutation V564F in the kinase domain conferred BGJ398
(infigratinib) resistance in cholangiocarcinoma FGFR2 fusion-
positive patients (81) and the FGFR2-ASCL5 fusion (Ig2, I-set, a
tyrosine kinase domain from FGFR2, and a truncated AMP-
binding domain from ACSL5) was reported in post-progression
biopsy of a patient with FGFR2-amplified gastric cancer with
prior response to the FGFRi LY2874455 (82). FGFR structure
analysis has shown that some FGFR gatekeeper mutations lead to
steric clashes with FGFRis (78). Consequently, shifting the drug-
binding site from the mutation site can overcome resistance to
LY2874455, despite FGFR gatekeeper mutations (FGFR1
(V561M), FGFR2 (V564F), FGFR3 (V555M), and FGFR4
(V550M and V550L) (78).

Activation of Multiples Signaling Pathways
PI3K–AKT signaling mediates resistance to FGFRis by directly
affecting cell proliferation or activating the mTOR pathway,
altering cell metabolism and anti-apoptotic signaling (83).
Recently, the dysregulation of RAS/RAF/MAPK pathway
through MAPK14 gene (Mitogen-Activated Protein Kinase 14,
p38 MAPK) was shown as a driver of resistance to a novel FGFR
inhibitor CPL304110 (NCT04149691) (84). Authors revealed
that activation of p38 kinase resulted in resistance to
CPL304110 in parental cells, while inhibition of p38 MAPK
resensitised resistant cells to that FGFRi treatment. Other
receptor tyrosine kinases such as hepatocyte growth factor
receptor (MET/HGFR) may be upregulated in response to
FGFRis, thereby serving as a bypass mechanism for activation
of signaling (85, 86). Data from preclinical studies, including
cellular models of lung, colorectal, and gastric cancers, indicate
that the MET pathway is vital for the growth, survival, and
invasive potential of cancers (87). However, little is known of
primary resistance to FGFRis. Primary resistance mechanisms
may be related to alterations unique to FGFRs and METs.
Hepatocyte growth factor (HGF) binding to MET induces
activation of various downstream signaling pathways, including
the RAS/MAPK and PI3K/AKT pathways, leading to cell
Frontiers in Oncology | www.frontiersin.org 10
proliferation, survival, and migration (87). MET amplification
is an important mechanism by which cancers develop resistance
to epidermal growth factor receptor (EGFR) inhibitors
and FGFRis, and a high MET GCN has been detected in 1–
11% of NSCLCs. MET amplification may lead to secondary
resistance to EGFR-TKIs in patients with EGFR-mutated lung
adenocarcinoma (88). However, MET activation is not observed
solely in the presence of amplification, implying other
mechanisms of signaling activation (89). These may depend on
the molecular aberrations of the MET gene altering MET
transcription, MET translation or degradation, or may directly
transactivate MET receptor. In 3–4% of NSCLCs, MET splice
mutations explained exon 14 skipping, leading to impaired MET
degradation (82). Additionally, in vitro models of FGFRi-
resistance confirmed a role for AKT and MET activation and
clonal expansion of the S266L AKT1 mutation (86). An
improved understanding of the complex mechanisms of FGFRi
resistance in lung cancer is needed.
PERSPECTIVES

Most in vitro studies have demonstrated the potential of FGFR
aberrations to predict sensitivity to FGFRis. Unfortunately,
clinical data are scarce and discordant.

Important obstacle to patient selection is the availability of
archival tumor samples for molecular analysis. Liquid biopsy has
emerged as a potential diagnostic approach. Cell-free DNA
(cfDNA) analysis is a non-invasive method routinely used in
the clinical setting to evaluate secondary resistance mutations to
TKIs [reviewed in (90)]. The FGFR alterations detected in
cfDNA however, show discordance with tumor molecular
profiles. A retrospective analysis of 17 cholangiocarcinoma
cases revealed FGFR2-3 alterations in 82.3% of archival tumour
samples and 50% of DNA samples (4/5 SNVs, 1/2 amplifications,
and 5/13 fusions) (91). Likewise, FGFR2 fusions were detected in
the primary tumor and cfDNA in 8 of 12 (67%) patients prior to
BGJ398 treatment (NCT02150967) (92). cfDNA has potential for
analysis of FGFR2 amplification in gastric and breast cancers. In
Sq-NSCLC, cfDNA enabled monitoring of copy number
variation and identified a 71% overlap of PIK3CA gain in
cfDNA and tumour tissue (phase II clinical trial, GO27912,
NCT01493843 (93). cfDNA also has potential for continuous
monitoring of the molecular response and resistance
mechanisms, as for EGFR TKIs (94). Accordingly, in three
patients with cholangiocarcinoma treated with BGJ398 (phase
II study, NCT02160041) the FGFR2-BICC1 fusion decreased in
cfDNA upon initiation of treatment and increased at the time of
radiological progression (81). FGFR2 mutations that potentially
confer resistance (V564L, V564F) and activation (N549K)
together with alterations in other candidate resistance genes
(PTEN and MAP2K1) and a low variant allele frequency of
NRAS G12D and BRAF A694T were detected in cfDNA samples
from patients on FGFRis who experienced disease progression
(91). Notably, because high FGFR mRNA levels were predictive
of responsiveness to FGFRis, cell-free RNA (cfRNA) may be an
March 2022 | Volume 12 | Article 780650
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alternative to tissue-based gene-expression analysis. This
approach is, however, technically challenging because of the
potential for sample contamination with white-blood-cell
mRNA. Also, stable normalization transcripts in plasma are
unknown, although some results are promising (95).
DISCUSSION

FGFR genomic aberrations facilitate a response to FGFRis,
prompting a search for reliable predictive biomarkers.
Unfortunately, despite the promising data from preclinical and
clinical studies of FGFRis, we are far from identifying specific
aberration(s) in FGFRs. FGFR mRNA overexpression,
mutations, and fusions show promise, but their discriminatory
power is insufficient. Despite the FGFR aberrations in Sq-NSCLC
tumors (alterations: mutations and fusions; amplification;
mRNA/protein overexpression), the association between the
molecular profile and the response to FGFRi treatment is
unclear. Small clinical trials of FGFRis in Sq-NSCLC have
yielded little data. Moreover, most clinical trials have been of
the basket-type design and enrolled small numbers of patients
with Sq-NSCLC. Additionally, genomic aberrations other than
FGFR could affect the response to FGFRis.

In conclusion, identification of clinically relevant predictive
biomarkers of the response and/or secondary resistance to
Frontiers in Oncology | www.frontiersin.org 11
FGFRis in Sq-NSCLC patients is challenging. There is an
urgent need for basic and clinical research based on squamous
lung cancer histology and deep DNA/RNA profiling to provide
insight into cancer biology and to promote discovery of
candidate biomarker(s).
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