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Objectives: To develop and validate the imbalanced data correction based PET/CT
radiomics model for predicting lymph node metastasis (LNM) in clinical stage T1 lung
adenocarcinoma (LUAD).

Methods: A total of 183 patients (148/35 non-metastasis/LNM) with pathologically
confirmed LUAD were retrospectively included. The cohorts were divided into training
vs. validation cohort in a ratio of 7:3. A total of 487 radiomics features were extracted from
PET and CT components separately for radiomics model construction. Four clinical
features and seven PET/CT radiological features were extracted for traditional model
construction. To balance the distribution of majority (non-metastasis) class and minority
(LNM) class, the imbalance-adjustment strategies using ten data re-sampling methods
were adopted. Three multivariate models (denoted as Traditional, Radiomics, and
Combined) were constructed using multivariable logistic regression analysis, where the
combined model incorporated all of the significant clinical, radiological, and radiomics
features. One hundred times repeated Monte Carlo cross-validation was used to assess
the application order of feature selection and imbalance-adjustment strategies in the
machine learning pipeline. Prediction performance of each model was evaluated using the
area under the receiver operating characteristic curve (AUC) and Geometric mean
score (G-mean).

Results: A total of 2 clinical parameters, 2 radiological features, 3 PET, and 5 CT
radiomics features were significantly associated with LNM. The combined model with
Edited Nearest Neighbors (ENN) re-sampling methods showed strong prediction
performance than traditional model or radiomics model with the AUC of 0.94 (95%CI =
0.86–0.97) vs. 0.89 (95%CI = 0.79–0.93), 0.92 (95%CI = 0.85–0.97), and G-mean of 0.88
vs. 0.82, 0.80 in the training cohort, and the AUC of 0.75 (95%CI = 0.57–0.91) vs. 0.68
(95%CI = 0.36–0.83), 0.71 (95%CI = 0.48–0.83) and G-mean of 0.76 vs. 0.64, 0.51 in the
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validation cohort. The combination of performing feature selection before data re-
sampling obtains a better result than the reverse combination (AUC 0.76 ± 0.06 vs.
0.70 ± 0.07, p<0.001).

Conclusions: The combined model (consisting of age, histological type, C/T ratio, MATV,
and radiomics signature) integrated with ENN re-sampling methods had strong lymph
node metastasis prediction performance for imbalance cohorts in clinical stage T1 LUAD.
Radiomics signatures extracted from PET/CT images could provide complementary
prediction information compared with traditional model.
Keywords: PET/CT, radiomics, lung adenocarcinoma, re-sampling techniques, imbalanced data, lymph
node metastasis
INTRODUCTION

Lung cancer is the leading cause of cancer-relateddeaths in theworld,
with non-small cell lung cancer (NSCLC) making up 85% of lung
cancer cases (1, 2). Lung adenocarcinoma (LUAD) is the most
common subtype of NSCLC; the 5-year relative survival rate for
LUAD patients diagnosed with regional metastasis and distant
metastasis were 44.5 and 8.4% separately, indicating that metastasis
is one of the most common fatal causes for LUAD patients (3, 4).

The most common metastatic pathway of clinical T1 stage
LUAD is lymphatic metastasis, which determines the treatment
strategy and prognosis. Surgical lobectomy combined with
systematic lymph node dissection remains the standard
therapy for patients with stage T1 LUAD (5, 6). However,
there still has a controversy surrounding the idea of whether
the systematic lymph node dissection is required for T1 stage
LUAD (7, 8). Using the systematic lymph node dissection in
early-stage NSCLC without LNM was considered overtreatment
(9). A clinical trial demonstrated that compared with mediastinal
lymph node sampling, extensive systematic lymph node
dissection failed to improve the survival for patients with
negative node (10). Further, with the popularity of the
“minimally invasive” and “precision medicine” concept,
surgeons need to determine the optimal extent of pulmonary
resection and lymphadenectomy for individuals (11). Thus,
identifying patients with a higher risk of LNM from the stage
T1 LUAD will assist surgeons to determine whether the
systematic lymph node dissection should be performed or not.

Medical imaging is a non-invasive way to capture tumor
phenotypic characteristics. 18F-FDG PET/CT combining
anatomic data with metabolic information has been applied to
guide the staging of NSCLC (12). However, qualitative diagnosis
in medical imaging cannot fulfill the clinical demand due to
subjective and limited accuracy. Radiomics is an emerging
technique that extracts high-throughput data from medical
imaging to quantitative tumor phenotypes, using machine
learning approaches to construct radiomics signature that can
realize the disease prediction and diagnosis (13–15). Our
previous studies have demonstrated the great potential of PET/
CT radiomics in the diagnosis and prognosis of nasopharyngeal
carcinoma, the evaluation of prognosis for head and neck cancer,
and differentiation between pulmonary tuberculosis and lung
2

cancer (16–19). Yang et al. (20) developed and validated CT
radiomics nomogram to predict LNM in solid lung
adenocarcinoma with stage T1–4. Zhong et al. (21) applied CT
radiomics signature to predict occult mediastinal lymph node
metastasis in clinical T1–3 stage LUAD. Wang et al. (22) utilized
peritumoral CT radiomics to predict LNM in patients with stage
T1 LUAD. These works focus on single modality CT radiomics
to predict LNM in lung adenocarcinoma.

To our knowledge, there has not been any reported prediction of
lymph node metastasis in clinical stage T1 lung adenocarcinoma via
PET/CT radiomics. We hypothesize that using radiomics analysis
based PET/CT can identify LUAD patients with a high risk of
lymph node metastasis. In present study, the imbalance-adjustment
strategies using ten data re-sampling methods were adopted to
balance the distribution of majority (non-metastasis) class and
minority (lymph node metastasis) class. Then, three multivariate
models (denoted as Traditional, Radiomics, and Combined) were
constructed using multivariable logistic regression analysis, where
the combined model incorporated all of the significant clinical,
radiological, and radiomics features. Prediction performance of each
model was evaluated using the area under the receiver operating
characteristic curve (AUC) and Geometric mean score (G-mean).
MATERIALS AND METHODS

Patients
This retrospective study was approved by the Institutional
Review Boards, and the need for informed consent for patients
was waived. According to the inclusion and exclusion criteria
(Figure 1), a total of 183 patients who had been surgically treated
for ≤3 cm clinical stage T1 LUAD were enrolled and randomly
allocated to the training and validation cohort at a ratio of 7:3.
Additional information on LNM evaluation and histopathologic
classification criterion is available in Supplementary Method S1.

PET/CT Image Acquisition, Segmentation,
Radiological and Radiomics Feature
Extraction
Two CT radiological features, namely, maximum tumor diameter
(MTD) and the consolidation-to-tumor (C/T) ratio were extracted.
January 2022 | Volume 12 | Article 788968
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MTD was defined as the largest tumor diameter among three
planes (transverse, sagittal, and coronal) (Figure 2A) (23). C/T
ratio was defined as the maximum consolidation (C) diameter
divided by the maximum tumor (T) diameter in the transverse
plane (Figure 2B). The details of PET/CT image acquisition, tumor
segmentation, MTD and C/T ratio measurement, radiomics feature
extraction, and inter-observer reproducibility analysis can be found
in the Supplementary Information. The inter-class correlation
coefficient (ICC) was used to evaluate the inter-observer
reproducibility of MTD, C/T ratio, and radiomics features.

Re-Sampling Methods for Unbalance
Correction
Due to the highly unbalanced ratio between non-metastasis and
lymph node metastasis cases (148:35 in this study), models
maybe inclined to make a prediction of majority class during
training process. To alleviate this negative effect, we use several
re-sampling techniques to balance the distribution in training
cohort for model construction. The re-sampling techniques
should be applied only to training data to avoid data leakage,
while the validation cohort was untouched as it represents the
real situation in clinical practice (24).Ten re-sampling techniques
worked in our study: random over-sampling (ROS), Adaptive
Synthetic (ADASYN), Synthetic Minority Oversampling
Technique (SMOTE), Borderline SMOTE (bSMOTE), Random
under-sampling (RUS), NearMiss (NM), Tomek links (TL),
Edited Nearest Neighbours (ENN), Over-sampling using
Frontiers in Oncology | www.frontiersin.org 3
SMOTE and cleaning using Tomek links (SMOTE-TL) and
Over-sampling using SMOTE and cleaning using ENN
(SMOTE-ENN) (25–27). The re-sampling methods are
described in the Supplementary Method S7.

Radiomics Feature Selection and Model
Construction
The process of feature selection consisted of the following three
parts. Part 1, through the inter-observer reproducibility,
information evaluation, and univariate analysis, the robust and
useful features were selected as the remaining PET or CT features
from the PET and CT radiomics features. Part 2, PET radiomics
feature selection. After the redundancy reduction, the least
absolute shrinkage and selection operator (LASSO) penalty
logistic regression is used to determine the PET radiomics
signature from the remaining PET features. Part 3, CT
radiomics feature selection. The LASSO-CT features were
selected from the remaining CT features via the methods same
with part 2. MTD and C/T ratio were prognostic factors for lung
adenocarcinoma (28, 29), however, due to their high inter-
observer variability, we want to select two optimal correlated
radiomics features with high robustness to alternative these
radiological characteristics. The optimal correlated radiomics
features were selected from the CT morphological features and
the CT intensity-based statistical features separately via Pearson
correlation analysis and 50 times 5-fold cross-validation. Next, we
removed the redundancy LASSO-CT features that interactive with
FIGURE 1 | Flow chart of the study of the enrolled patients.
January 2022 | Volume 12 | Article 788968
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the two optimal correlated radiomics features, the remainder
features were considered as the CT radiomics signature. The
processes of radiomics feature selection are shown in Figure 3
and more details are described in Supplementary Method S8. The
feature selection process was performed on the training cohort and
validated in the validation cohort.

PET/CT radiomics signature was generated by combing two
signatures of CT and PET images. The PET/CT radiomics model
was developed by the multivariable logistic regression. The Rad-
score of each patient was calculated using a linear combination of
selected radiomics feature weighted by their respective coefficients.
Frontiers in Oncology | www.frontiersin.org 4
Development of the Traditional Model and
Combined Model
The clinicopathological/radiological features included gender,
age, histologic subtype, EGFR mutation, MTD, C/T ratio,
MATV, TLG, SUVpeak, SUVmean, and SUVmax. Univariate
logistic regression analysis was used to assess the association
between clinicopathological/radiological features and LUAD
lymph node metastasis in the training cohort, only the
significant features with a p <0.05 were put into multivariable
logistic regression (employing backward step-wise elimination
with the Akaike information criterion as the stopping rule) for
A

B

FIGURE 2 | The measurement of CT radiological features. (A) Tumor diameter measured in (a) transverse, (b) sagittal, and (c) coronal planes, and the largest
diameter in the three planes was defined as MTD; (B) C/T ratio measurement of (d) tumor via (e) maximum consolidation diameter divided by (f) maximum tumor
diameter in the transverse plane.
FIGURE 3 | The workflow of radiomics features selection.
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traditional model construction. A combined model
incorporating the selected clinicopathological/radiological
features, and Rad-score was established. The machine learning
pipelines are shown in Figure 4.

Model Comparison and Evaluation
AUC was used to evaluate the prediction performance, and
comparison between AUCs was conducted by Delong’s test (30).
The accuracy (ACC) will bias the result towards the majority class,
especially in the class imbalanced data. The Geometric mean score
(G-mean), which is defined as the geometry mean of accuracy
(also the arithmetic mean of sensitivity and specificity) (31) can
balance the accuracy of the majority and minority class, thus, we
used G-mean instead of ACC.

Precision of majority class (maP) was a fraction of correctly
predicted non-metastasis samples among the ones labeled as
non-metastasis samples. Recall of majority class (maR) was the
fraction of non-metastasis instances that have been retrieved
over the total number of non-metastasis instances. The relevant
cases were LNM samples for the precision of minority class
Frontiers in Oncology | www.frontiersin.org 5
(miP) and recall of minority class (miR). F-measure of majority/
minority class (maF/miF) was a harmonic mean between recall
and precision, which considered them as similarly crucial. For all
these metrics, larger values indicated better performance.
Evaluation metric formulas are listed in Supplementary
Method S9.

Statistical Analysis
The subsequent result demonstrated that it is difficult to predict
lymph node metastasis for the solid tumors in the LUAD. Thus,
we subdivided 92 patients into the solid-tumor subgroup by the
C/T ratio was one for further analysis (32).

Approximately 100 times of Monte Carlo cross-validation
were implemented to randomly divide all data into training and
testing cohorts at a ratio of 7:3 to obtain the average results for
further statistical analysis. The statistical difference was analyzed
by Mann–Whitney U test. In the machine learning pipeline, we
performed feature selection before data re-sampling. To prove
this application order was appropriate for the present study, two
different sequences were designed for the statistical analysis: (1)
FIGURE 4 | The machine learning pipeline.
January 2022 | Volume 12 | Article 788968
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feature selection was performed before re-sampling data; (2)
feature selection was performed after re-sampling data (feature
was selected from the robust features). The schematic overview
of the 100 times repeated Monte Carlo cross-validation for the
two different sequences is shown in Figure 5. On the other, the
statistical analysis was applied in comparing the predictive
performance between MTD or C/T ratio and their related
optimal radiomics features individually.

All of the statistical analyses were performed using MATLAB
R2018b, Statistical Program for Social Science (SPSS; version
22.0), and R software (version 4.0.3; http://www.Rproject.org). A
two-tailed test p-value <0.05 was considered statistically
significant. Re-sampling techniques were completed by Python
(version 3.7.0) machine learning library named imbalanced-
learn (version 0.5.0) with default settings (33).
RESULTS

Patient Characteristics
A total of 183 patients (148/35 non-metastasis/LNM) were enrolled
in our study, the imbalance ratio was 1:4. Patient characteristics are
described in Table 1. No significant differences were found in the
overall stage, patient number of LNM, clinicopathological features,
and radiological features between the training and validation cohort.
The imbalance rate after re-sampling in the training cohort is listed
in Supplementary Table S1.

Construction and Performance of
Radiomics Model
A total of 487 PET radiomics features and 487 CT radiomics
features were extracted. After the feature selection process of Part
1, 368 and 272 radiomics features were included for PET and CT
remaining features separately. Next, 3 PET radiomics features
were eventually determined in Part 2. In Part 3, 5 CT radiomics
features were ultimately selected, namely, morph_av (the optimal
feature correlated with MTD), stat_median (the optimal feature
correlated with C/T ratio), and 3 LASSO-CT features. The details
of feature selection and computation of Rad-score are presented
in Supplementary Results S1, S2.

Radiomics model derived the AUC of 0.86 (95%CI: 0.77–
0.91) and G-mean of 0.80 in the training cohort, and AUC of
0.67 (95%CI: 0.51–0.85) and G-mean of 0.54 in the
validation cohort.

Development and Validation of the
Traditional Model and Combined Model
Age, histologic subtype, and all radiological features were
significantly associated with LNM in univariate logistic regression
analysis (Supplementary Table S2). Age, histologic subtype, C/T
ratio, and MATV were finally identified after backward step-wise
elimination, and those predictors were used to establish the
traditional model. A combined model incorporating the above
predictors and Rad-score was constructed.

Performances of the proposed models are presented in
Table 2. The traditional model achieved the AUC of 0.84 (95%
Frontiers in Oncology | www.frontiersin.org 6
CI, 0.78–0.89) and G-mean of 0.80 in the training cohort, and an
AUC of 0.67 (95%CI, 0.38–0.83) and G-mean of 0.65 in the
validation cohort. The prediction performance of the traditional
model was almost equal to the radiomics model. The combined
model outperformed traditional model in both the training
[AUC, 0.88 (95%CI: 0.82–0.93); p = 0.19] and validation
cohorts [AUC, 0.70 (95%CI: 0.52–0.84); p = 0.51], without
statistically significant.

Effectiveness of Re-Sampling Methods on
Performance of Models
The AUC and G-mean of proposed models with and without re-
sampling techniques are presented in Figures 6A, B separately.
The performance of each model combing with re-sampling
techniques and the effective re-resampling techniques are
described in Supplementary Result S3. Overall, the ENN re-
sampling technique supported the proposed models to generate
satisfactory prediction performance (Table 3). Radiomics model
combined with ENN achieved improvement performance
compare to no re-sampling in the validation cohort [AUC,
0.71 (95%CI, 0.48–0.83) vs. 0.67 (95%CI: 0.51–0.85), p =
0.71)]. Traditional model combined with ENN obtained better
performance than no re-sampling in validation cohort [AUC,
0.68 (95%CI: 0.36–0.83) vs. 0.67 (95%CI: 0.38–0.83), p = 0.59)].
Combined model trained with ENN did not make a statistically
significant improvement performance compare to no re-
sampling in the validation cohort [AUC, 0.75 (95%CI: 0.57–
0.91) vs. 0.70 (95%CI: 0.52–0.84), p = 0.06)].

Radiomics Model Demonstrated Brilliant
Predictive Power for Solid Tumor
Metastasis
The patient characteristics in the solid tumor subgroup were
illustrated in Supplementary Table S3. The predictive
performance of the proposed models in the solid tumor
subgroup is shown in Table 4. The radiomics model displayed
excellent performance with the AUC of 0.75 (95%CI: 0.61–0.85)
and 0.59 (95%CI: 0.34–0.90) in the training and validation
cohorts separately. The traditional model showed a relatively
low AUC of 0.69 (95%CI: 0.54–0.83) and 0.54 (95%CI: 0.32–
0.78) in the training and validation cohort, respectively. The
combined model outperformed traditional model in the training
cohort [AUC, 0.79 (95%CI: 0.61–0.88); p = 0.05], while slightly
worse performance in the validation cohorts probably due to the
limited number of validation samples [AUC, 0.53 (95%CI: 0.25–
0.78); p = 0.91]. (ROC curves of the proposed models in the solid
tumor subgroup are shown in Supplementary Figure S1).
DISCUSSION

In this study, a systematic analysis was firstly conducted in PET/
CT radiomics, clinical, and PET/CT radiological features.
Secondly, a combined model integrating the Rad-score,
significant clinical and radiological features demonstrated
outperformance. Thirdly, the ENN re-sampling technique
January 2022 | Volume 12 | Article 788968

http://www.Rproject.org
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Lv et al. PET/CT Radiomics for Predicting Metastasis
FIGURE 5 | The schematic overview of the 100 times repeated Monte Carlo cross-validation for the two different sequences. The cross-validation randomly divides
all data 100 times into training and testing cohorts at a ratio of 7:3. The two different sequences are shown in red and blue separately. The data normalization, the
implemented sequences, and the model training were performed within each training cohort (100 training cohorts in total). Each corresponding test cohort yields a
performance score. This process can prevent leakage of test data into the trained model. We applied 10 re-sampling methods, each re-sampling method has 100
performance scores from the cross-validation. The mean score of the specified sequences was calculated from the average of 1,000 performance scores (10 re-
sampling methods × 100 times cross-validation of per re-sampling method).
Frontiers in Oncology | www.frontiersin.org January 2022 | Volume 12 | Article 7889687
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improved the prediction performance of the proposed models.
Our result showed that the combined model + ENN re-sampling
method obtained the best performance with the AUC of 0.94
(95%CI: 0.86–0.97) and 0.75 (95%CI: 0.57–0.91) in the training
and validation cohort separately.

The histologic subtype is a significant predictor in the
traditional model. We grouped LUAD patients with different
histologic subtype into three subgroups: the low-grade tumor,
Frontiers in Oncology | www.frontiersin.org 8
the intermediate-grade tumor, and the high-grade tumor (34).
There was a significant association with increased risk of LNM in
high-grade tumor (34.6% vs. 65.4%, p = 0.03). The low-grade
tumor was significantly associated with no metastasis (0% vs.
100%, p = 0.004). Only the intermediate-grade tumor showed no
statistically significant difference between LNM and non-
metastasis (20% vs. 80%, p = 0.81). The histological subtyping
can help to predict LNM of LUAD. But it is difficult to identify the
TABLE 2 | Predictive performance for the proposed models.

Models Training cohort (n = 130) Validation cohort (n = 53)

AUC G-mean maP maR maF miP miR miF AUC G-mean maP maR maF miP miR miF
(95%CI) (95%CI)

Radiomics 0.86 0.80 0.95 0.76 0.84 0.47 0.85 0.60 0.67 0.54 0.85 0.66 0.74 0.21 0.44 0.29
(0.77–0.91) (0.51–0.85)

Traditional 0.84 0.80 0.94 0.79 0.86 0.49 0.81 0.61 0.67 0.65 0.89 0.75 0.81 0.31 0.56 0.40
(0.78–0.89) (0.38–0.83)

Combined 0.88 0.83 0.95 0.86 0.90 0.58 0.81 0.68 0.70 0.43 0.84 0.84 0.84 0.22 0.22 0.22
(0.82–0.93) (0.52–0.84)
Janua
ry 2022
 | Volum
e 12 | A
rticle 78
AUC, Area under the receiver operating characteristic; G-mean, Geometric mean score; maP, Precision of majority class; maR, Recall of majority class; maF, F-measure of majority class;
miP, Precision of minority class; miR, Recall of minority class; miF, F-measure of minority class.
The model with the best predictive performance was in bold.
TABLE 1 | Patient characteristics.

Characteristic Overall Training Validation p-value
N = 183 N = 130 (70.0%) N = 53 (30.0%)

Age (years) 58.05 ± 9.53 59.95 ± 8.63 56.83 ± 11.24 0.08
Gender 0.56
Male 85 (46.5%) 58 (44.6%) 27 (50.9%)
Female 98 (53.5%) 72 (55.4%) 26 (49.1%)

Overall stage 0.51
IA1 1 (0.5%) 0 (0%) 1 (1.9%)
IA2 83 (45.4%) 63 (48.5%) 20 (37.7%)
IA3 64 (35.0%) 41 (31.5%) 23 (43.4%)
IIB 11 (6.0%) 8 (6.1%) 3 (5.7%)
IIIA 23 (12.6%) 17 (13.1%) 6 (11.3%)
IIIB 1 (0.5%) 1 (0.8%) 0 (0%)

Histologic subtype 0.76
AIS 10 (5.5%) 8 (6.2%) 2 (3.8%)
MIA 14 (7.7%) 7 (5.4%) 7 (13.2%)
LPA 61 (33.3%) 44 (33.8%) 17 (32.1%)
APA 59 (32.2%) 42 (32.3%) 17 (32.1%)
PPA 13 (7.1%) 11 (8.5%) 2 (3.8%)
SPA 18 (9.8%) 12 (9.2%) 6 (11.2%)
IMA 8 (4.4%) 6 (4.6%) 2 (3.8%)

EGFR mutation 0.83
Yes 113 (61.8%) 80 (61.5%) 33 (62.3%)
No 70 (38.2%) 50 (38.5%) 20 (37.7%)

MTD (cm) 2.05 ± 0.54 2.06 ± 0.52 2.04 ± 0.59 0.81
C/T ratio 0.72 ± 0.33 0.73 ± 0.33 0.69 ± 0.34 0.53
MATV (cm3) 8.18 ± 6.03 8.06 ± 5.65 8.47 ± 6.92 0.93
TLG 21.75 ± 25.36 20.91 ± 22.64 23.76 ± 31.21 0.86
SUVpeak 4.42 ± 3.32 4.37 ± 3.23 4.56 ± 3.57 0.89
SUVmean 2.10 ± 1.15 2.08 ± 1.12 2.14 ± 1.24 0.95
SUVmax 7.21 ± 5.42 7.09 ± 5.25 7.441 ± 5.84 0.90
LNM 0.64
Yes 35 (19.1%) 26 (20%) 9 (17%)
No 148 (80.9%) 104 (80%) 44 (83%)
Categorical variables are in N (%) and analyzed using chi-squared, while continuous variables are in mean ± SD and analyzed using Student’s t-test or the Mann–Whitney U test, as
appropriate. LNM, Lymph node metastasis; AIS, Adenocarcinoma in situ; MIA, Minimally invasive adenocarcinomas; LPA, Lepidic predominant invasive adenocarcinomas; APA, Acinar
predominant adenocarcinomas; PPA, Papillary predominant adenocarcinomas; SPA, Solid predominant invasive adenocarcinomas; IMA, Invasive mucinous adenocarcinomas; MTD,
Maximum tumor diameters; C/T ratio, consolidation-to-tumor; MATV, metabolically active tumor volume; TLG, total lesion glycolysis. *p < 0.05 indicates the significant difference.
8968
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high-risk LNM patients in the intermediate-grade tumor. We
found that Rad-score is a potential metastatic predictor for the
intermediate-grade LUAD, which had the significant difference in
the LNM intermediate-grade tumor and non-metastatic
intermediate-grade tumor (2.60 ± 1.43 vs. −0.72 ± 5.66, p
<0.001) (The detail description about the relationship between
LUAD histologic subtype and lymph node metastasis is shown in
Supplementary Result S4). This revealed that Rad-score provides
potential information about the tumor microenvironment which
helps forecast the LNM of intermediate-grade LUAD.

The measurement of MTD and C/T ratio is affected by
different nuclear medicine physicians and the reproducibility of
the two characteristics is limited. This was validated in the
present study that ICC of MTD and C/T ratio between
different nuclear medicine physicians were 0.69 and 0.83,
respectively. The morph_av and the stat_median were the
optimal correlated radiomics features which replace these two
radiological characteristics, presenting high robustness with the
ICC values of 0.92 and 0.93 separately. The morph_av obtained
Frontiers in Oncology | www.frontiersin.org 9
significantly higher performance than MTD (AUC, 0.75 ± 0.06
vs. 0.65 ± 0.08, p <0.001), and stat_median showed significantly
superior performance than C/T ratio (AUC, 0.75 ± 0.06 vs. 0.73 ±
0.05, p <0.001) (Supplementary Tables S4, S5). The morph_av
feature is the surface to volume ratio of tumor which calculates
over 3D tumor volume. The stat_median feature represents the
median of voxels intensities within the tumor. MTD and C/T
ratio only supplies one-dimensional information for tumor,
whereas the radiomics features take into account the physical
characteristics of tumor in three-dimensional that can reflect the
spatial complexity for tumor. CT radiomics signature
outperformed Lasso-CT features both in the train [AUC, 0.85
(95%CI: 0.74–0.91) vs. 0.84 (95%CI: 0.72–0.91); p = 0.64] and
validation cohort [AUC, 0.62 (95%CI: 0.41–0.76) vs. 0.59 (95%
CI: 0.39–0.74); p = 0.07]. Thus, we suggested that using well-
established and benchmarked radiological factors to find the
correlated features, and performing the cross-validation to
determine the optimal correlated feature, is an effective
approach to identify high predictive value features.
TABLE 3 | Predictive performance for combination of ENN re-sampling method in the proposed models.

ENN+ Models Training cohort (n = 130) Validation cohort (n = 53)

AUC G-mean maP maR maF miP miR miF AUC G-mean maP maR maF miP miR miF
(95%CI) (95%CI)

ENN+ Radiomics 0.92 0.80 0.95 0.75 0.84 0.48 0.85 0.61 0.71 0.51 0.85 0.80 0.82 0.25 0.33 0.29
(0.85–0.97) (0.48–0.83)

ENN+ Traditional 0.89 0.82 0.97 0.70 0.82 0.61 0.96 0.75 0.68 0.64 0.90 0.61 0.73 0.26 0.67 0.38
(0.79–0.93) (0.36–0.83)

ENN+ Combined 0.94 0.88 0.94 0.87 0.90 0.77 0.88 0.82 0.75 0.76 0.94 0.75 0.84 0.39 0.78 0.52
(0.86–0.97) (0.57–0.91)
January
 2022 |
 Volume
 12 | A
rticle 78
ENN, Edited Nearest Neighbors; AUC, Area under the receiver operating characteristic; G-mean, Geometric mean score; maP, Precision of majority class; maR, Recall of majority class;
maF, F-measure of majority class; miP, Precision of minority class; miR, Recall of minority class; miF, F-measure of minority class.
The model with the best predictive performance was in bold.
A

B

FIGURE 6 | (A) The AUC with the confidence intervals of the proposed models with and without re-sampling techniques in (a) training and (b) validation cohorts; (B)
the G-mean with the confidence intervals of proposed models with and without re-sampling techniques in (c) training and (d) validation cohorts.
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The Rad-score consisted of the eight best-performing radiomics
features, which correspond to the morphology, intensity-based
statistical and texture feature. The present result indicated that
CT_morph_av was a lymph node metastasis predictor of lung
adenocarcinoma, as confirmed by Yang et al. (21), showing that less
favorable tumors have bigger volume and clear margin. The
CT_stat_median and CT_stat_max describe the median or
maximum intensities within the lesion, respectively. Higher
median and maximum values reflect a more solid component in
the tumor. This finding was consistent with the previous study that
the lung adenocarcinoma with high values of the median and
maximum intensities was considered to be more aggressive (35).
The CT_szm_lzlge_3D and CT_ngl_hdhge_2_5D belong to the
GLSZM feature (quantify the number of linked voxels that have an
identical gray level intensity) and NGLDM feature (investigate the
coarseness of the overall texture) separately, the higher value of
them is generally related to more heterogeneity. The CT texture
features of lung cancer have been reported to associate with the
markers of hypoxia and angiogenesis (36). However, the correlation
between the PET texture feature and biological characteristics is still
unclear. The previous study has reported that the PET texture
feature plays an important role in disease diagnosis, prognosis, and
treatment response prediction (37). Texture features can describe
the tumor heterogeneity in PET image, which refers to the
variability in the distribution of radiopharmaceutical uptake (38).
Three PET texture features were selected in the present study.
Figure 7 shows a moderate negative relationship for all
conventional PET parameters with PET_cm_energy_3D_avg and
PET_szm_szlge_3D, and a strong positive relationship with
PET_dzm_zdnu_2_5D. Thus, it can be inferred that the lower
value of PET_cm_energy_3D_avg and PET_szm_szlge_3D, and
the higher value of PET_dzm_zdnu_2_5D will reflect to higher
glucose uptake. Table 5 indicates that patients with LNM will have
higher values of all selected CT features and PET_dzm_zdnu_2_5D
and lower va lue o f PET_cm_energy_3D_avg and
PET_szm_szlge_3D. From the analysis of this work, we deduce
that the tumor with bigger, more solid components, less
homogeneity and more radiopharmaceutical uptake will tend to
occur in lymph node metastasis. Figure 8 shows the CT and PET
image of a tumor without metastasis and another tumor with LNM.

Re-sampling methods include three classes: over-sampling,
under-sampling, and hybrid methods. Over-sampling strategy
Frontiers in Oncology | www.frontiersin.org 10
creates examples of the minority class to balance the dataset. It
helps to improve the performance of models, but presents the
drawback of overfitting and introduces additional noise (39).
Under-sampling strategy addresses the imbalance problem by
eliminating the members of the majority class, showing an
advantage in saving computation time, while will discard
potentially useful information (39). Hybrid method combines
the over-sampling of the minority class with under-sampling of
the majority class (39). Previous studies have reported the
successful application of various re-sampling methods in
radiomics analysis (31, 40). Xie et al. (31) examined the effect of
ten re-sampling techniques based radiomics model on the
prognostication performance of head and neck cancer; the result
demonstrated that the ADASYN re-sampling method performed
best for overall survival prediction, while bSMOTE is the optimal
re-sampling technique for disease-free survival. Park et al. (40)
applied the ROS and SMOTE re-sampling techniques based on
radiomics analysis to predict the grade and histological subtype of
meningiomas, where the best performance was yielded by using
the SMOTE re-sampling. The selection of the best re-sampling
technique is complicated. Since the effectiveness of re-sampling
techniques depends on intrinsic properties of the dataset, such as
dataset size and dimensionality, imbalance ratio, overlapping
between classes or borderline samples (41). In the present study,
the majority class and minority class have close properties, such as
both of them are clinical T1 stage lung adenocarcinoma. That may
explain why the over-sampling strategy did not obtain better
results than the ENN re-sampling techniques. The result of the
Monte Carlo cross-validation demonstrated that performing
feature selection before data re-sampling could achieve advanced
predictive performance than the reversed sequence (AUC 0.76 ±
0.06 vs. 0.70 ± 0.07, p <0.001) (Supplementary Table S6). It may
be because feature selection applying raw data can purely reflect
the relationship between features and clinical problems. The maF
and miF represent the prediction ability of the models for the
majority and minority class separately. Except for the maF
(Supplementary Figure S2), the miF (Supplementary Figure
S3) showed a consistent trend with G-mean (Figure 6B). The
improvement of G-mean was more dependent on the accurate
prediction of the minority class. The re-sampling techniques
veritably promoted the predictive performance of the models for
the minority class.
TABLE 4 | Predictive performance for the proposed models in the solid-tumor subgroup.

Models Training cohort (n = 65) Validation cohort (n = 27)

AUC G-mean maP maR maF miP miR miF AUC G-mean maP maR maF miP miR miF
(95%CI) (95%CI)

Radiomics 0.75 0.74 0.90 0.63 0.74 0.54 0.86 0.67 0.59 0.55 0.78 0.39 0.52 0.78 0.83 0.52
(0.61–0.85) (0.34–0.90)

Traditional 0.69 0.68 0.86 0.56 0.68 0.49 0.82 0.61 0.54 0.43 0.60 0.33 0.43 0.29 0.56 0.38
(0.54–0.83) (0.32–0.78)

Combined 0.79 0.78 0.87 0.79 0.83 0.65 0.77 0.71 0.53 0.53 0.69 0.50 0.58 0.36 0.56 0.43
(0.61–0.88) (0.25–0.78)
Janua
ry 2022
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rticle 78
AUC, Area under the receiver operating characteristic; G-mean, Geometric mean score; maP, Precision of majority class; maR, Recall of majority class; maF, F-measure of majority class;
miP, Precision of minority class; miR, Recall of minority class; miF, F-measure of minority class.
The model with the best predictive performance was in bold.
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The solid component of LUAD is more invasive, where
patients with a pure solid tumor often have poor outcome
(42). Our study also confirmed that the efficient performance
of the radiomics model and traditional model was primarily
relying on the accurate LNM prediction in the non-solid tumor
(Supplementary Result S5). The LNM of solid tumors was more
difficult to predict. Encouragingly, the radiomics model
displayed an optimum predictive performance in the solid
tumor subgroup, which was a potential tool to distinguish
more aggressive tumors form solid LUAD.

Although it is widely accepted that systematic lymph node
dissection for patients with early-stage lung cancer is important,
Frontiers in Oncology | www.frontiersin.org 11
controversy still exists (7, 8). Extensive lymph node dissection
can provide accurate lymph node staging while causing an
increased risk of complications and prolonging operation
time, which is particularly detrimental to elderly patients
with cardiopulmonary dysfunction (43). This controversy
is even greater among the patients with clinical-stage T1
lung adenocarcinoma who are diagnosed with clinical lymph
node-negative and presented as less aggressive tumors, such
as pure ground-glass opacity or mixed ground-glass opacity,
which have a very low probability of lymph node metastasis
(44). If there is a non-invasive examination that can accurately
predict lymph node metastasis before operation with a
TABLE 5 | The radiomics predictor of patients with or without LNM in the training and validation cohort.

Radiomics predictor Training cohort Validation cohort

Non-metastasis LNM Non-metastasis LNM

CT_morph_av 0.18 ± 1.00 −0.74 ± 0.54 0.14 ± 1.23 −0.52 ± 0.59
CT_stat_median −0.18 ± 1.02 0.70 ± 0.50 −0.18 ± 1.00 0.15 ± 1.03
CT_stat_max −0.18 ± 0.98 0.71 ± 0.66 −0.31 ± 1.28 0.27 ± 0.51
CT_szm_lzlge_3D −0.16 ± 0.53 0.63 ± 1.87 −0.12 ± 0.46 −0.12 ± 0.26
CT_ngl_hdhge_2_5D −0.22 ± 0.88 0.88 ± 0.97 0.17 ± 1.40 0.18 ± 0.80
PET_cm_energy_3D_avg 0.13 ± 1.07 −0.53 ± 0.10 0.78 ± 2.94 −0.47 ± 0.20
PET_szm_szlge_3D 0.14 ± 1.06 −0.57 ± 0.30 0.43 ± 2.81 −0.27 ± 0.51
PET_dzm_zdnu_2_5D −0.22 ± 0.92 0.89 ± 0.80 0.07 ± 1.35 0.20 ± 0.87
Rad-score −0.79 ± 4.65 3.18 ± 1.20 −2.99 ± 10.93 1.77 ± 1.46
January 2022 | Volume 12 | A
The average value and the standard deviation of radiomics predictors were reported. LNM, Lymph node metastasis.
FIGURE 7 | Linear regression for PET parameters and PET texture features. Linear regression and Pearson correlation were analyzed in the training cohort. A moderate
negative correlation between all conventional PET parameters (MATV, TLG, SUVpeak, SUVmean, SUVmax) with PET_cm_energy_3D_avg (r= −0.55, −0.47, −0.58, −0.58,
and −0.57, respectively) and PET_szm_szlge_3D (r= −0.49, −0.51, −0.56, −0.62, and −0.53, respectively). A strong positive correlation between all conventional PET
parameters (MATV, TLG, SUVpeak, SUVmean, and SUVmax) with PET_dzm_zdnu_2_5D (r= 0.96, 0.89, 0.81, 0.79, and 0.74, respectively).
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highly accurate, it will be very important for treatment
guidance. Our model (ENN + Combined) exhibited a favorable
ability to discriminate the patients with LNM with AUCs of
0.94 and 0.75, true positive rate of 0.88 and 0.78, in the training
and validation cohorts, respectively. Thus, the model could
provide LNM risk stratification, which would assist the
clinicians to make the treatment decision. For example,
patients with a high risk of LNM will be recommended for
accepting more radical and complete nodal dissection and
careful surveillance and patients with low risk of LNM were
suitable for lymph node sampling. As a promising adjuvant
tool, it could guide therapeutic strategies and personalize
decision-making.

This work had several limitations. First, in the 35 LNM cases,
32 patients with LNM were confirmed by pathological
examination, while 3 patients with LNM were identified by
PET/CT and confirmed by multiple time points of enhanced
contrast CT during following-up. It would increase the
probability of false positive. Second, the number of patients
with lymph node metastasis and non-metastasis was very
imbalanced. Although we performed re-sampling technique to
adjust the data distribution in training group, a large sample size
of LNM cases is still needed for future studies. Third, our work is
a retrospective study on single-institution, and an external
validation is necessary to confirm our findings and assess the
generalizability. Finally, manual segmentation was applied in our
study and automatic segmentation method should be developed
in further analysis.

In conclusion, the combined model connected with ENN re-
sampling method had a powerful ability to predictive the lymph
node metastasis of LUAD with stage T1. The approach that we
Frontiers in Oncology | www.frontiersin.org 12
reported above might assist the clinician to make the
individualized therapy strategies.
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