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N6-methyladenosine (m6A) modification is the most abundant modification in long
noncoding RNAs (lncRNAs). Current studies have shown that the abnormal expression
of m6A-related genes is closely associated with the tumorigenesis and progression of
glioma. However, the role of m6A-related lncRNAs in glioma development is still unclear.
Herein, we screened 566 m6A-related lncRNAs in glioma from The Cancer Genome Atlas
(TCGA) database. The expression pattern of these lncRNAs could cluster samples into
two groups, in which various classical tumor-related functions and the tumor immune
microenvironment were significantly different. Subsequently, a nine-factor m6A-related
lncRNA prognostic signature (MLPS) was constructed by using a LASSO regression
analysis in the training set and was validated in the test set and independent datasets.
The AUC values of the MLPS were 0.881, 0.918 and 0.887 for 1-, 3- and 5-year survival in
the training set, respectively, and 0.856, 0.916 and 0.909 for 1-, 3-, and 5-year survival in
the test set, respectively. Stratification analyses of the MLPS illustrated its prognostic
performance in gliomas with different characteristics. Correlation analyses showed that
the infiltrations of monocytes and tumor-associated macrophages (TAMs) were
significantly relevant to the risk score in the MLPS. Moreover, we detected the
expression of four MLPS factors with defined sequences in glioma and normal cells by
using RT–PCR. Afterwards, we investigated the functions of LNCTAM34A (one of the
MLPS factors) in glioma cells, which have rarely been reported. Via in vitro experiments,
LNCTAM34A was demonstrated to promote the proliferation, migration and
epithelial-mesenchymal transition (EMT) of glioma cells. Overall, our study revealed the
critical role of m6A-related lncRNAs in glioma and elucidated that LNCTAM34A could
promote glioma proliferation, migration and EMT.
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INTRODUCTION

Glioma is the most common malignant primary intracranial
tumor, and it possesses a high recurrence rate and mortality (1).
Due to its high heterogeneity, the currently recommended
maximum surgical resection (combined with radiotherapy and
chemotherapy) cannot completely cure this tumor. In addition,
the malignancy of gliomas is progressive, and more than half of
lower grade gliomas (LGG) can evolve to higher grade gliomas
and develop resistance to chemotherapy. Therefore, it is urgent
to identify new therapeutic targets and prognostic indicators for
glioma. In recent years, an increasing number of biomarkers,
such as the isocitrate dehydrogenase (IDH) mutation and the
codeletion of chromosome arms 1p and 19q (1p/19q codeletion),
have been integrated into the 2016 WHO classification to
illustrate histological features (2).

Long noncoding RNA (lncRNA) is a type of noncoding RNA
with a length greater than 200 nt that can regulate gene
expression at the transcriptional and posttranscriptional levels
via multiple mechanisms (3). Previous studies have shown that
the dysregulation of specific lncRNAs is closely related to the
occurrence and development of various tumors. For example,
lncRNA PVT1 was reported to facilitate the tumorigenesis and
progression of glioma (4). Moreover, lncRNA ATB has been
shown to promote TGF-b-induced glioma cell invasion through
the NF-kB and P38/MAPK pathways (5). Additionally, lncRNA
BCYRN1 has been found to inhibit glioma tumorigenesis by
competitively binding with miR-619-5p to regulate CUEDC2
expression and the PTEN/AKT/p21 pathway (6).

N6-methyladenosine (m6A) is a chemical modification
present in multiple RNA species, including lncRNAs (7). It
was discovered in the 1970s, and studies have increased in
recent years (8–11). The modification of m6A is regulated by a
series of factors, including methyltransferases, binding proteins
and demethylases, which are also known as writers, readers and
erasers (12, 13). Many reports have identified their essential roles
in physiological processes, and some studies have shown that
dysregulation of m6A regulatory factors may be related to the
malignant development of glioma (14–17).

Currently, we have a further understanding of m6A and
lncRNAs in tumors, but the role of m6A-related lncRNAs in
glioma is still unclear. Few studies have analysed the potential
role and mechanisms of m6A-related lncRNAs in specific glioma
subtypes, thus limiting the generalizability of these results in
gliomas (18, 19). Thus, a comprehensive understanding of the
role of m6A-related lncRNAs in glioma remains to be developed.

In this study, we elucidated the critical role of m6A-related
lncRNAs by analyzing their expression profile in glioma and
patient prognoses, and we developed a m6A-related lncRNA
prognostic signature (MLPS). Moreover, from this signature, we
detected the expression of four lncRNAs with defined sequences
in three glioma and one normal astrocyte cell lines. We also
demonstrated the role of LNCTAM34A in promoting glioma
proliferation, migration and epithelial-mesenchymal
transition (EMT).

To date, this is the first m6A-related lncRNA prognostic
signature to be used for all glioma patients, regardless of the
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differences in sex, age, World Health Organization (WHO)
grade, IDH status or 1p19q deletion status. Moreover, this is
the first study to clarify the glioma-promoting role of
LCTAM34A. Our study expands the understanding of m6A-
related lncRNAs in glioma and provides insight for
further research.
RESULTS

Screening and Clustering of m6A-Related
lncRNAs in Gliomas
To obtain lncRNAs related to m6A regulation, we collected 23
m6A regulators from previous studies, including eight m6A
writers, 13 readers and two erasers (Table S1) (18, 20).
Afterwards, by using a correlation analysis, 566 m6A-related
lncRNAs (|cor value|>0.4, p<0.001) were screened from 14,086
lncRNAs. As shown in Figure 1A, hundreds of lncRNAs were
suggested to be involved in m6A regulation, thus implying a
potential role for m6A-related lncRNAs in glioma. Furthermore,
consensus clustering was performed to clarify the expression
characteristics of m6A-related lncRNAs in gliomas. The
cumulative distribution function (CDF) of the consensus
cluster from k=2 to 9 and the increment in the AUC were
analysed. When the consensus matrix k was 2, there existed the
least crossover between the glioma samples and the maximum
increment of the area under the CDF curve; thus, k=2 was
determined (Figures 1B, C). To visualize the expression
pattern of m6A-related lncRNAs between the two clusters, we
plotted a heatmap of 50 randomly selected m6A-related
lncRNAs (Figure 1D), which exhibited a significant difference
in the m6A-related lncRNAs between the two clusters. Moreover,
as shown in Figure 1E, the prognosis in Cluster 2 was
significantly better than that in Cluster 1. These results
suggested the heterogeneous and prognostic values of m6A-
related lncRNAs in gliomas.

Immune Landscape of Gliomas in
Different Clusters
Due to the fact that the importance of immune regulation in
tumors has been proven (21–25), we profiled the immune
landscape of m6A-related lncRNAs in gliomas by using the
CIBERSORT and ESTIMATE algorithms. Fifteen of the 22
tumor-infiltrating immune cells differed in these two clusters
(Figure S1). Among them, immune cells with a proportion
higher than 5% showed significant differences in the groups.
As shown in Figure 2A, levels of monocytes, resting memory
CD4 T cells and activated mast cells were higher in Cluster 1
(with a better OS) than in Cluster 2 (with a worse OS). In
contrast, TAMs were significantly higher in Cluster 2 than in
Cluster 1. In addition, the immune scores and stromal scores
were significantly different between Cluster 1 and Cluster 2, as
calculated by the ESTIMATE algorithm (Figure 2A). Cluster 2
had higher immune scores and higher stromal scores than
Cluster 1. These results demonstrated glioma immune
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heterogeneity and suggested a correlation between m6A-related
lncRNAs and the tumor immune microenvironment.

GSEA of m6A-Related lncRNAs in Gliomas
To investigate the potential biological processes involved in
m6A-related lncRNAs, a gene set enrichment analysis (GSEA)
was performed between Cluster 1 and Cluster 2. It revealed that
21 gene sets were significantly enriched in Cluster 2 compared
with Cluster 1 (p<0.01) (Supplementary 2). Among them, four
hallmarks were significantly enriched in Cluster 2 (FDR<0.05),
including the focal adhesion pathway, cytokine and cytokine
receptor interaction pathway, apoptosis pathway and glycolysis
pathway (Figure 2B). This result indicated that m6A-related
lncRNAs may affect glioma progression by regulating specific
pathways and further illustrated the significance of m6A-related
lncRNAs in gliomas.

Construction of the m6A-Related lncRNA
Prognostic Signature (MLPS) From the
Training Set
The above results demonstrated the vital role of m6A-related
lncRNAs in glioma. Herein, we tried to develop a m6A-related
Frontiers in Oncology | www.frontiersin.org 3
lncRNA prognostic signature (MLPS) to identify key factors from
the large number of m6A-related lncRNAs and to assess glioma
patient prognosis accordingly. As shown in Table 1, the TCGA
dataset was randomly divided into the following two subsets: the
training set (n=297) and the test set (n=283), with no significant
difference in age, sex, WHO grade, IDH status or 1p/19q status.
Next, 347 DE m6A-related lncRNAs (|log2FC|>1 and p
value<0.01) were obtained by comparing gliomas in the training
set to normal brain tissues from the GTEx dataset (Figures 3 and
4A, B). Furthermore, we performed a correlation analysis between
the prognosis of patients and the expression of m6A-related
lncRNAs in the training set and found 349 m6A-related
prognostic lncRNAs. Subsequently, 73 m6A-related lncRNAs
with ln(HR)>0 and log2FC>1 were determined to be promoters,
whereas 71 m6A-related lncRNAs with ln(HR)<0 and log2FC<-1
were considered to be suppressors (Figure 4C). Afterwards, via
the LASSO regression analysis, nine m6A-related lncRNAs were
identified to construct the prognostic signature from 144 key
m6A-related lncRNAs, including AL390755.1, AL445524.1,
AL359643.3, LINC00641, AL117332.1, LNCTAM34A, CRNDE,
AP001486.2 and CARD8. AS1 (Figures 4D, E). The coefficients of
these lncRNAs were used to calculate the risk score.
A

D E

B C

FIGURE 1 | (A) The coexpression network of m6A regulators and m6A-related lncRNAs. (B) Consensus matrix of the consensus clustering based on the m6A-
related lncRNAs for optimal k = 2. (C) Area under the CDF curve increment for k = 2 to 9. (D) The heatmap of 50 randomly m6A-related lncRNAs in 2 clusters.
(E) Overall survival of patients (TCGA) in different clusters.
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Risk score = AL390755:1� (0:0986) + AL445524:1� (0:2462) + AL359643:3�
(0:0173) + LINC00641� ( − 0:0855) + AL117332:1� (0:0125)+

LNCTAM34A� (0:0217)+ CRNDE� (0:1025)+

AP001486:2� ( − 0:1237) + CARD8:AS1� (0:0699)

A positive coefficient indicated that it was a risk factor,
whereas a negative coefficient indicated a protective factor
in glioma.
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According to this risk score, we divided the samples of the
training set into low-, mid- and high-risk groups, and the
expression profiles of the lncRNAs constituting the signature
were found to differ markedly (Figure 5A). Figures 5A, B shows
that among these three groups, a higher risk score indicated a
worsened prognosis of the patients (p<0.0001), including the
survival rate and survival time. The univariate and multivariate
Cox regression analyses demonstrated the independent prognostic
A

B

FIGURE 2 | (A) The percentages of monocytes, resting memory CD4 T cells, activated mast cells, TAMs, immune scores and stromal scores of gliomas in the two
clusters (****p < 0.0001, **p < 0.01). (B) Different functional pathway enrichments in the two clusters.
TABLE 1 | The clinicopathological features of glioma patients in the training set and test set.

Datasets Train set Test set p value
(n = 297) (n = 283)

Age (mean ± SD, years) 46.61 ± 14.85 47.91 ± 16.03 0.311
Survival time (mean ± SD, years) 1.80 ± 2.25 1.74 ± 2.28 0.754
Censor (n) Alive 91 81 0.595

Dead 206 202

Gender (n) Male 127 115 0.604
Female 170 168

WHO Grade (n) Lower grade (WHO I-II) 108 100 0.796
Higher grade (WHO III-IV) 189 183

IDH State (n) Mutant 187 177 0.917
Wildtype 110 106

1p/19q State (n) Codeletion 76 72 0.968
Noncodeletion 221 211
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value of the MLPS in the training set (Figures 5C, D).
The ROC curves showed that the MLPS had a robust predictive
ability, with AUCs of 0.881, 0.918 and 0.887 for 1-, 3- and 5-year
survival, respectively (Figure 5E). Its predictive performance was
better (AUC=0.928) than other classic indicators, including age, sex,
WHO grade, IDH mutation status and 1p/19q codeletion status
(Figure 5F). These results indicated that the prognostic signature
generated by m6A-related lncRNAs may serve as an efficient and
accurate indicator for evaluating prognoses and suggested the
potential role of these lncRNAs in gliomas.

Validation of MLPS in the Test Set and
CGGA Datasets
To confirm the reliability of the MLPS, we used the test set for
validation. As shown in Figures 6A, B, the high-risk group had
the worst survival rate and time, and the low-risk group had the
best survival rate and time in the test set (p<0.0001), which was
consistent with the results in the training set. The univariate and
multivariate Cox regression analyses demonstrated the
independent prognostic value of the MLPS in the test set
(Figures 6C, D). The ROC curves showed that the AUCs were
0.856, 0.916 and 0.909 for 1-, 3- and 5-year survival, respectively,
and the AUC of the risk score was higher than that of the other
indicators (Figures 6E, F). These results showed that this MLPS
did have an excellent predictive effect on the prognosis of
glioma patients.

To further verify the reliability of MLPS, we collected other
independent datasets (CGGA-seq-1 and CGGA-seq-2) for
further validation. Two lncRNAs of the signature (CRNDE and
LINC00641) were found in these independent datasets. The
survival curve showed that the survival of patients with high
CRNDE expression was significantly worse than that of patients
with low CRNDE expression, which was observed both in
primary glioma patients and recurrent glioma patients (Figure
S3A, B). In contrast, LINC00641 exhibited the opposite results of
CRNDE in glioma. The survival curve showed that patients with
high LINC00641 expression had significantly better survival than
patients with low CRNDE expression (Figure S3C, D). In
addition, the expression of CRNDE was significantly higher in
glioma patients with high grade, IDH wildtype, 1p/19q
noncodeletion or older age. In comparison, the expression of
LINC00641 was higher in glioma patients with lower grades,
IDH mutation, 1p/19q codeletion and younger age (Figure S2).
These results suggested the clinical value and potential role of
lncRNAs composing the signature in gliomas.

MLPS as an Independent Prognostic
Factor for Glioma Patients
To explore the relationship between the m6A-related lncRNA
signature and clinicopathological features of glioma, we analysed
the risk score in different glioma subgroups (Figure 7A). The
results showed that there was no significant difference in the
score among White, Asian or Black and African patients (Figure
S3E). In addition, the results showed that high-risk glioma
patients had a significantly worse OS in both the younger
subgroup (age ≤ 60) and the older subgroup (age>60).
Frontiers in Oncology | www.frontiersin.org 5
Likewise, high-risk patients had a significantly worse OS than
low-risk patients in the male or female subgroups, IDH mutant
or wild-type subgroups, lower-grade (WHO I-II) or higher-grade
(WHO III-IV) subgroups and 1p/19q codeletion or
noncodeletion subgroups (Figure S3F). These results indicated
that this MLPS was effective in predicting the prognosis of
glioma patients with different clinicopathological features.

In addition, we found that the high-risk group had
significantly higher stromal scores and immune scores than the
low-risk group (Figure 7B), which implied a potential correlation
between theMLPS and the tumormicroenvironment of glioma.We
screened the immune cell types with more than a 5 percent
proportion in all immune cells and analysed their correlations
with the risk scores. Two types of immune cells had significant
correlations with the risk scores (|R|>0.4) (Figure 7C). The
correlation analyses showed that monocytes were negatively
correlated with the risk score, whereas TAMs were positively
correlated with the risk score. These results suggested a potential
correlation between the m6A-related lncRNA signature and the
distribution of specific immune cells. In recognition of the
favourable predictive effect of this signature, there may be a
regulation underlying m6A-related lncRNAs and immune cells,
which could jointly affect the malignancy of glioma.

Validation of MLPS Factors In Vitro
Among the nine factors of the MLPS, four lncRNAs (CRNDE,
LINC00641, LNCTAM34a and CARD8-AS1) with defined
sequences were selected for further in vitro experiments. We
detected their expression levels in glioma cell lines (U87, LN229
and U343) and a normal human astrocyte line (SVGp12) by
using RT–PCR. We found that the expression of LINC00641 in
glioma cells was significantly lower than that in normal
astrocytes, and the expression of CRNDE and LNCTAM34a
was significantly higher in glioma cells (Figure 8A). These results
supported the above analysis and verified the validity of the
prognostic signature. However, the expression of CARD8-AS1
was inconsistent with the results from the analysis. Specifically, it
was expressed at higher levels in normal cells than in glioma cells,
which may be attributed to the small number of cell lines
included in this study (results not shown).

Among the four markers mentioned above, previous studies
have identified that CRNDE and CARD8-AS1 are risk factors,
and LINC00641 is a protective factor for glioma, which is
consistent with our study results. However, the role of
LNCTAM34A in glioma is still unclear. Therefore, we applied
a series of experiments to identify the function of LNCTAM34A
in glioma. We knocked down LNCTAM34A by using specific
siRNAs in U87-MG and LN229 cells and detected LNCTAM34A
expression by using RT–PCR (Figure 8B). Subsequently, we
tested cell proliferation, migration and epithelial-mesenchymal
transition (EMT) in normal control glioma cells and
LNCTAM34A knockdown glioma cells. The CCK8 assay
showed that the proliferation of U87 and LN229 glioma cells
was significantly reduced after LNCTAM34A knockdown
(Figures 8C, E), and the Transwell assay showed that the
migration of glioma cells was also significantly reduced after
March 2022 | Volume 12 | Article 789283

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. Glioma m6A-Related lncRNA Prognostic Signature
LNCTAM34A knockdown (Figures 8D, F), thus demonstrating
that LNCTAM34A could promote glioma tumor proliferation
and migration. A Western blot analysis showed that E-cadherin
was upregulated, but Vimentin was downregulated, in
LNCTAM34A knockdown cel l s , thus proving that
LNCTAM34A could regulate the EMT process in glioma cells
(Figures 8G, H). All of the results showed that LNCTAM34A
was a risk factor for glioma, which was consistent with MLPS.
DISCUSSION

Glioma is the most common primary malignant tumor of the
central nervous system. The prognosis of patients is usually poor,
and there is a lack of effective prognostic signatures. M6A is one
of the most common modifications in lncRNAs. Some studies
have shown that abnormal expression of m6A regulators is
related to tumor occurrence and progression, but the manner
in which it acts in a lncRNA-dependent manner during glioma
progression is still unclear.

Herein, a total of 698 glioma patients from the TCGA
database were included in this study to explore the prognostic
Frontiers in Oncology | www.frontiersin.org 6
signature of m6A-related lncRNAs. A nine-factor MLPS was
constructed by selecting m6A-related prognostic lncRNAs and
performing least absolute shrinkage and selection operator
(LASSO) Cox regression analyses. The signature showed
excellent predictive ability in multiple datasets and different
stratifications of glioma patients. To validate the signature, we
examined the expression levels of four lncRNAs in glioma and
normal astrocytes. Moreover, in vitro experiments demonstrated
the functions of LNCTAM34A in glioma, which could promote
glioma proliferation, migration and EMT. At present, this is the
first study to demonstrate the role of LNCTAM34A in glioma.

We identified 144 key m6A-related lncRNAs, nine of which
were included in the MLPS. LINC00641 was reported to be an
oncogene in acute myeloid leukaemia (26), colorectal carcinoma
(27) and gastric carcinoma (28). Conversely, LINC00641 has
been studied and reported as a tumor inhibitor in many cancers,
including prostate cancer (29), bladder cancer (30), renal cancer
(31), cervical cancer (32), non-small-cell lung cancer (33) and
breast cancer (34). Additionally, LINC00641 has been shown to
inhibit breast cancer cell proliferation, migration and invasion by
sponging miR-194-5p (34). It prevented cell proliferation and
enhanced cell apoptosis by targeting the miR-4262/NRGN axis
FIGURE 3 | Flow chart of this study. DE, differentially expressed; Pro, promotor; Sup, suppressor. RT–PCR Quantitative Real-Time Polymerase Chain Reaction.
March 2022 | Volume 12 | Article 789283
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in glioma (35). In our study, the expression of LINC00641 had a
positive correlation with the OS of glioma patients, and the
expression of LINC00641 was significantly higher in normal
astrocytes than in glioma cells, which supported the idea that
LINC00641 was a protective factor for glioma. CARD8-AS1 was
identified as a risk lncRNA in glioma and ovarian cancer via a
bioinformatic analysis (36, 37). CARD8-AS1 has been shown to
promote the metastasis of glioma cells in vitro (36). However, in
our study, CARD8-AS1 had a higher expression level in normal
astrocytes than in glioma cells, thus suggesting that it was a
protective factor in glioma. The conflicting results on the role of
CARD8-AS1 in tumors suggested that there may be a complex
interactive functional network and need to be further studied.
CRNDE has been reported to be an oncogenic lncRNA in
cancers (38). Additionally, it has been observed to promote
glioma growth and invasion via mTOR signalling and to
promote malignant progression by attenuating the miR-384/
PIWIL4/STAT3 axis (39, 40), in accordance with our results.
LNCTAM34A was first named and described as an antisense
RNA that could modulate the expression of the tumor
suppressor microRNA-34a (miR34a) in multiple human
tumors (41). In our study, we proved that LNCTAM34A is a
tumor promotor in glioma. The glioma cells exhibited
suppressed proliferation rates, reduced migration and lower
EMT levels when LNCTAM34A was knocked down.

Moreover, our study found that 15 types of immune cell
compositions between the two clusters were significantly
Frontiers in Oncology | www.frontiersin.org 7
different. TAMs had a larger population in Cluster 2 (with
better survival) than in Cluster 1 (with worse survival).
Monocytes, resting memory CD4 T cells and activated mast
cells were more abundant in Cluster 1 than in Cluster 2.
Moreover, we found that TAMs and monocytes had a
significantly opposing correlation with risk scores. Specifically,
TAMs were positively correlated with risk scores, and monocytes
were negatively correlated with risk scores. Many studies have
shown that macrophages can promote tumor progression and
metastasis (42). As tumors progressed to malignancy,
macrophages stimulated angiogenesis, enhanced tumor cell
migration and invasion and suppressed antitumor immunity.
In addition, M2, which is a subpopulation of macrophages, has
been shown to play a vital role in the subversion of adaptive
immunity and inflammatory circuits that promote tumor growth
and progression (43). In glioma, macrophages were proven to
facilitate tumor proliferation, survival and migration (44), and
the high expression of M0 or M2 was related to a worsened
overall survival time (45, 46). These previous findings supported
our result that a high proportion of TAMs was associated with
high-risk scores and poor prognoses in glioma patients.
Monocytes are a type of nonadaptive immune cell that act as
an essential regulator of cancer development and progression
(47). Its different subtypes have opposing roles in promoting
tumor growth and preventing cancer metastasis (48, 49).
Furthermore, it can be recruited throughout the entire stage of
tumor progression (50) and directly kill tumor cells via the
A B

C D E

FIGURE 4 | (A) The volcano plot of m6A-related lncRNAs in glioma. (B) Heatmap of the 100 top differentially expressed m6A-related lncRNAs. (C) The 144 key
m6A-related lncRNAs. (D-E) LASSO Cox regression analysis of m6A-related lncRNAs.
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cytokine‐mediated induction of cell death and phagocytosis (51).
In addition, monocytes can also interact with adaptive immunity
by directing the recruitment and function of lymphocytes within
the tumor microenvironment (52). These previous studies
explained the correlation between OS and monocytes (to
a degree).

Although few studies have previously explored the
relationship between m6A-related lncRNAs and the prognosis
of some subtypes of glioma (18, 19), the choice of a specific part
from glioma (instead of considering it as an entity to study) has
apparent limitations. Due to the fact that glioma is a
continuously progressing disease, the tumor grade of some
gliomas gradually evolves from lower to higher grades (53–56).
In addition, there were still limitations for the existing WHO
glioma classification to accurately reflect all of the glioma
patients’ malignant degrees. Our study focused on the
relationship between m6A-related lncRNAs and the prognoses
of glioma patients in all grades.

However, there were still some limitations in our study. For
example, our glioma data were taken from the TCGA and CGGA
Frontiers in Oncology | www.frontiersin.org 8
databases. The model needs to be further validated in more
glioma cohorts. In addition, only two of the nine m6A-related
lncRNAs that were used to construct the prognostic signature
had been tested for their expression levels in glioma cell lines via
RT–PCR. The functions and interactions of other lncRNAs in
glioma need to be further investigated.
METHODS

Dataset Acquisition and m6A-Related
lncRNA Screening
For the TCGA data, the RNA-Seq data of 698 gliomas, including
glioblastoma (GBM) and lower grade glioma (LGG), as well as
the corresponding clinicopathological data, were obtained from
the TCGA website (https://portal.gdc.cancer.gov/). The TCGA
dataset was randomly divided into the following two subsets: a
training set (N=297) and a test set (N=283). This was done to
construct and validate the prognostic signature in glioma, and
A B

E

DC F

FIGURE 5 | (A) The distributions of risk scores, alive/dead status and the expression of nine m6A-related lncRNAs in the training set. (B) Overall survival analysis for
patients in the high- and mid-/low-risk groups. (C) Univariate and (D) multivariate Cox regression analyses for OS in glioma patients in the training set. (E) ROC curve
of the risk score at different follow-up times. (F) The ROC curve of the risk score and other clinical characteristics.
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A B
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FIGURE 6 | (A) The distributions of risk scores, alive/dead status and the expression of nine m6A-related lncRNAs in the test set. (B) Overall survival analysis for
patients in the high- and mid-/low-risk groups. (C) Univariate Cox regression analyses and (D) multivariate Cox regression analyses for OS in glioma patients in the
test set. (E) ROC curve of the risk score at different follow-up times. (F) The ROC curve of the risk score and other clinical characteristics.
A B

C

FIGURE 7 | (A) Heatmap of MLPS and clinicopathological features. (B) Differences in stromal scores and immune scores in the high- and low-risk groups. (C) The
correlation of immune cells and risk score. MLPS, m6A-related lncRNA prognostic signature; ****p < 0.0001.
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the cases without clinical data matching were deleted. For the
CGGA data , two subsets with RNA-Seq data and
clinicopathological data, known as CGGA-seq-1 (N=280) and
CGGA-seq-2 (N=657), were downloaded from the CGGA
website (http://www.cgga.org.cn/). The RNA-Seq data of the
normal tissue (N=423) were downloaded from the Genotype-
Frontiers in Oncology | www.frontiersin.org 10
Tissue Expression (GTEx) Project (http://gtexportal.org/home/)
(Table 2).

Based on previous studies, we extracted the expression profile
of 23 m6A regulators from the TCGA database, including m6A
writers (METTL3, METTL14, METTL16, WTAP, VIRMA,
ZC3H13, RBM15 and RBM15B), readers (YTHDC1, YTHDC2,
A

C D

E F

G H

B

FIGURE 8 | Knockdown of LNCTAM34A reduced proliferation, migration and EMT in glioma cells. (A) The expression levels of CRNDE, LINC00641 and
LNCTAM34a in glioma cell lines (U87-MG, LN229 and U343) and normal human astrocytes (SVGP12) as detected by RT–PCR. (B) LNCTAM34A expression levels in
U87-MG cells or LN229 cells transfected with siNC or two different specific siRNAs. The CCK-8 assay was used to detect (C) U87-MG cell or (E) LN229 cell
proliferation at 0, 12, 36 and 48 h after incubation.The Transwell assay was used to detect (D) U87-MG cells or (F) LN229 cell migration at 24 h after incubation.
(G) The expression of E-cadherin and Vimentin in U87-MG cells and (H) LN229 cells was measured by using Western blotting. ****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05.
TABLE 2 | Information on multiple datasets.

Datasets Samples Type Survival Information

Glioma Normal

TCGA 698 0 Train set (n=297) Partly*
Test set (n = 283)

CGGA-seq-1 280 0 Test set Yes
CGGA-seq-2 657 0 Test set Yes
GTEx 0 423 No
March 2022 | Volum
*Survival data for 580 samples.
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YTHDF1, YTHDF2, YTHDF3, HNRNPC, FMR1, LRPPRC,
HNRNPA2B1, IGFBP1, IGFBP2, IGFBP3 and RBMX) and
erasers (FTO and ALKBH5) (18, 20). Subsequently, a total of
14,086 lncRNAs were extracted from the TCGA dataset
annotated by GENCODE (GRCh37). Moreover, we screened
lncRNAs related to the 23 m6A regulators by using a Pearson
correlation analysis and defined them as m6A-related lncRNAs.
The correlation criteria were |cor value|>0.4 and p value<0.001.
All of the analyses were performed and visualized by using
R software.

Clustering of Samples Based on the
Expression Profile of m6A-Related
lncRNAs
All of the gliomas from the TCGA database were clustered by
using the Consensus Cluster Plus package according to the
expression of m6A-related lncRNAs. The cumulative
distribution function (CDF) of the consensus cluster was from
k=2 to 9. The Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed by using GSEA
software. The immune cell infiltration characteristics were
analysed by using the CIBERSORT package, and we defined
the total of M0, M1 and M2 as tumor-associated macrophages
(TAMs). The immune scores, stromal scores and estimate scores
of the samples were calculated by using the estimate package in
R software.

Construction of the m6A-Related lncRNA
Prognostic Signature
We screened the m6A-related prognostic lncRNAs by merging
the survival data with the m6A-related lncRNA expression data
and by performing correlation analyses in the training set. Next,
we screened the differentially expressed (DE) m6A-related
lncRNAs by comparing gliomas in the training set with normal
tissues from the GTEx dataset. Significantly differential
expression was defined as |log2FC|>1 and p<0.05. The m6A-
related lncRNA with a high hazard ratio and positive fold change
was defined as the tumor promotor. Conversely, the m6A-related
lncRNA with a low hazard ratio and negative fold change was
defined as a tumor suppressor. Seventy-three tumor promotors
and 71 tumor suppressors were identified in glioma patients, and
nine of them were used to construct the prognostic signature.
These nine lncRNAs were selected via a LASSO regression
analysis with a cut-off value of p<0.05. The following formula
(based on a combination of the Cox coefficient and gene
expression) was used to calculate the risk score.

Model :Risk score =o
k

i=1
biSi

bi represents the coefficients, and Si is the lncRNA
expression level.

Stratification and Validation of the
Prognostic Signature
To evaluate the predictive ability of the MLPS for survival status,
samples were classified into high-, mid- and low-risk groups by
Frontiers in Oncology | www.frontiersin.org 11
using the trisection points of all of the patients in the training set,
and the corresponding risk scores were used to cut off the
patients in the test set.

To test the correlation between the nine prognostic factor
lncRNAs and the m6A regulators, we extracted the expression of
these 9 lncRNAs and 23 m6A regulators in the TCGA and
CGGA databases and detected their correlations by using the
Pearson correlation analysis.

To stratify and validate the prognostic signature, samples
were classified into high- or low-risk groups by using the
medians of all of the risk scores. We further stratified patients
into different subgroups according to age (age ≤ 60 or age>60),
sex (male or female), WHO grade (lower-grade, including WHO
I-II or higher-grade, including WHO III-IV), IDH status
(mutant or wild type) and 1p/19q status (codeletion or
noncodeletion). We classified patients aged ≤ 60 years as being
younger and patients aged >60 years as being older in this study.
The risk plot, survival curve and ROC curve were generated by
using several packages in R software.

Cell Culture and Transfection
The human glioma cell lines U87-MG, LN229 and U343 were
purchased from ATCC (Manassas, VA). Human normal SVGP12
astrocytes were purchased from Shanghai Institutes for Biological
Sciences (Shanghai, China). Cells were maintained in DMEM
(Invitrogen, Carlsbad, CA) supplemented with 10% foetal calf
serum (Gibco BRL) and 1% penicillin plus streptomycin
(HyClone, Logan, UT) and incubated in a humidified incubator
(37°C, 5% CO2). LNCTAM34A siRNAs were purchased from JTS
Scientific and transfected by using Lipofectamine 2000 (Invitrogen,
USA) according to the manufacturer’s instructions.

Real-Time Polymerase Chain Reaction
Total RNA was extracted from cells by using TRIzol reagent
(Invitrogen, Waltham, Massachusetts). Real-time polymerase chain
reaction (RT–PCR) was performed by using the SYBR Green
(Applied Biosystems, Foster City, CA) method with a CFX96 Real-
Time PCR System (Bio–Rad, Hercules, California); GAPDH was
used as the internal control. The settings for amplification were 95°C/
120 s, followed by 39 cycles of 95°C/5 s and 60°C/30 s. GAPDHwas
used as an endogenous control, and the relative RNA expression
was calculated by using the 2−DDCt method. Primers were generated
by Sangon Biotechnology (Shanghai, China) (Table 3).
TABLE 3 | Sequences of primers.

Gene Primer Sequence

CRDNE Forwards GCGGAGGTTAAGTGT
Reverse AACAGGTTTACCTCCTTATCTTCAGAA

LINC00641 Forwards CAGCCTATACAGACAGCCC
Reverse CCAGTTGGTGCTGCCATTTG

LNCTAM34A Forwards AGCGGCATCTCCTCCACCTGAAA
Reverse TTGCCTCGTGAGTCCAAGGAGAAT

CARD-AS1 Forwards TTCCTGACCTCAGCTGGAAT
Reverse GGGGAAAAACTCCACCCACAA

GAPDH Forwards GAGAAGGCTGGGGCTCATTT
Reverse AGTGATGGCATGGACTGTGG
Ma
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Cell-Counting Kit-8 (CCK8) Assay
For this assay, 5,000 U87 and LN229 cells were seeded in a 96-
well plate. After the cells had been cultured for 0, 12, 36 or 48
hours, cell proliferation was measured via the Cell Counting Kit-
8 (CCK-8; Dojindo, Tokyo, Japan) assay, according to the
manufacturer’s instructions.

Transwell Assay
The cell invasion ability was measured by using Transwell
chambers (8-mm pore; BD Biosciences). U87 and LN229 cells
(3× 104 cells) suspended in 200 ml of serum-free culture medium
were added to the upper chamber. The lower chamber was
supplemented with DMEM supplemented with 10% FBS. After
24 h, the noninvading cells on the upper surface were separated,
and the cells that had invaded to the bottom of the membrane
were fixed with methanol and stained with 0.1% crystal violet.
Digital image acquisition was performed after air drying. The
number of invasive cells was counted by using a microscope.

Western Blotting
U87-MG and LN229 cells were lysed by using RIPA lysis buffer
(Thermo Scientific, Waltham, MA, USA). Total proteins were
loaded into 10% SDS–PAGE gels and probed with E-cadherin
(1:500, sc-7870, Santa), Vimentin (1:500, sc-32322, Santa) and b-
Actin (1:5000, 3700s, CST), after which they were incubated with
horseradish peroxidase-conjugated secondary anti-mouse IgG
antibodies (1:2000; W4021, Beijing). The binding antibody was
detected by using a hypersensitive ECL chemiluminescence kit
(NCMBiotech), and images were collected by using a
chemiluminescence imager (Image 800). Relative quantitative
analysis was conducted based on the image band density ratio
with ImageJ software (NIH, Bethesda, MD, USA).

Statistical Analysis
A student’s t test, Pearson’s chi-square test and one-way
ANOVA were used to compare different groups of data.
Kaplan–Meier curves were used to evaluate the statistical
significance of survival rates between different risk groups. The
prediction accuracy of the risk characteristics was determined by
using the ROC curve. Univariate and multivariate Cox regression
analyses were performed to evaluate the significant prognostic
factors. All of the statistical analyses were conducted by using R
(ver. 5.0) and SPSS statistics (ver. 21) programs. P values<0.05
were considered to be statistically significant.
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of the CGGAdataset, (C)Kaplan–Meier survival curves of the LINC00641 of primary glioma
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