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Background: Lung cancer (LC) is a leading cause of cancer-deaths globally. Its lethality is
due in large part to the paucity of accurate screening markers. Precision Medicine includes
the use of omics technology and novel analytic approaches for biomarker development.
We combined Artificial Intelligence (AI) and DNAmethylation analysis of circulating cell-free
tumor DNA (ctDNA), to identify putative biomarkers for and to elucidate the pathogenesis
of LC.

Methods: Illumina Infinium MethylationEPIC BeadChip array analysis was used to
measure cytosine (CpG) methylation changes across the genome in LC. Six different AI
platforms including support vector machine (SVM) and Deep Learning (DL) were used to
identify CpG biomarkers and for LC detection. Training set and validation sets were
generated, and 10-fold cross validation performed. Gene enrichment analysis using g:
profiler and GREAT enrichment was used to elucidate the LC pathogenesis.

Results: Using a stringent GWAS significance threshold, p-value <5x10-8, we identified
4389 CpGs (cytosine methylation loci) in coding genes and 1812 CpGs in non-protein
coding DNA regions that were differentially methylated in LC. SVM and three other AI
platforms achieved an AUC=1.00; 95% CI (0.90-1.00) for LC detection. DL achieved an
AUC=1.00; 95% CI (0.95-1.00) and 100% sensitivity and specificity. High diagnostic
accuracies were achieved with only intragenic or only intergenic CpG loci. Gene
enrichment analysis found dysregulation of molecular pathways involved in the
development of small cell and non-small cell LC.

Conclusion: Using AI and DNA methylation analysis of ctDNA, high LC detection rates
were achieved. Further, many of the genes that were epigenetically altered are known to
be involved in the biology of neoplasms in general and lung cancer in particular.
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INTRODUCTION

Lung cancer (LC) is the leading cause of cancer deaths in the US
and worldwide (1). There has been a dramatic rise in the
incidence of this disorder over earlier decades largely due to
smoking and more recently to environmental pollution among
non-smokers. The 5-year survival rate is dismal at 4-17% (2)
making LC the deadliest cancer in the USA. As per the
International Agency for Research on Cancer (IARC)
GLOBOCAN cancer statistics, 2.21 million cases of lung cancer
cases were diagnosed in the year 2020 and 1.79 million deaths
were registered worldwide (3). This high mortality is due
principally to the late stage at which most cases are diagnosed
highlighting the urgent need for the development of
accurate biomarkers.

The US Preventative Services Task Force (USPTF) has
recommended routine low-dose computed tomography
(LDTC) LC screening of a defined population of high risk
individuals (4). The USPTF however found that LDTC
screening was associated with harms which included high false
positive rates resulting in unnecessary tests and invasive
procedures, incidental non-cancerous findings, overdiagnosis
and radiation exposure. They therefore called for more
research to develop biomarkers to improve the detection rate
and lower the false positive rate of LDTC screening (4).

Significant focus has historically been placed on the role of
gene mutations in the development of cancer. The extreme
variability in the types of gene mutations in cancer however,
has made it difficult to develop high sensitivity biomarkers for
cancer diagnosis (5) using this approach. The stability and
widespread nature of epigenomic changes in cancer has fueled
its increasing study for understanding both the pathogenesis of
cancer and for novel biomarker development. The best
understood and most extensively studied epigenetic change is
DNA methylation (6) which can alter gene expression.

Epigenetics and Cancer
Epigenetics is believed to play a key role in the neoplastic
transformation of stem cells to form microscopic benign
tumors (7), with extensive increase or decrease of methylation
throughout the genome in most and possibly all tumors (8).
Many studies have shown that tobacco smoke and other
environmental exposures are important in LC pathogenesis,
and induce significant epigenetic changes (9–12). Given the
extensive degree of methylation changes throughout the
genome and the likely role in neoplastic transformation, DNA
methylation has great promise as an accurate and early potential
biomarker for the detection of cancers.

Circulating Tumor DNA and LC
‘Liquid biopsy’ involves the harnessing of circulating tumor
nucleic acids, such as tumor DNA (ctDNA), micro-RNA,
exosomes, and tumor-educated platelets for LC (13) for cancer
and other investigations. CtDNA describes cellular DNA
released into the bloodstream and is present in higher amounts
in cancer compared to normal cases. Several mechanisms such as
necrosis and apoptosis induce this DNA release. Furthermore, it
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is known that newly synthesized DNA is periodically released
even from viable intact cells. As a consequence, circulating tumor
DNA (ctDNA) has gained increasing attention as a possible
source of LC biomarkers (14) both for disease detection and real-
time minimally invasive monitoring.

At its core, Precision Medicine deploys a combination of
powerful biological approaches (e.g. genomics) and
computational and bioinformatic tools for the detection and
investigation of complex disorders. Precision Oncology is an
established NIH priority (15). We have previously focused on the
use of Machine Learning based Artificial Intelligence (AI) and
‘omics’ including epigenomics, metabolomics and proteomics for
interrogation of disease mechanisms and the accurate detection
of complex disorders (16, 17). Clinically validated DNA
methylation markers currently do not exist for LC. In this
study we used DNA methylation analysis of ctDNA to
interrogate the molecular mechanisms of LC. Further, using
multiple AI platforms combined with epigenomic markers, we
accurately and minimally-invasively detected LC.
MATERIALS AND METHODS

Study Subjects and Sample Collection
This study was approved by Beaumont Institutional Review
board (IRB#2018-306). Written patient consent was obtained.
Blood samples were prospectively obtained from 10 LC cases and
20 controls in the present study. Only cases without any prior
treatment for prior or current treatment for lung or other cancers
were included in the study. Streck Cell-Free DNA BCT® tubes
were used for collecting the blood samples from each study
subjects. These tubes are designed to avoid the leukocyte
genomic DNA contamination and thus minimizing the
dilution and contamination of the cell-free (cf) DNA (18).
Medical record numbers were removed, and unique study IDs
were allocated to each sample for the purpose of de-identification
of samples for laboratory analysis. All samples were processed
within 24 hours of sample collection by centrifuging for 15
minutes at 3000 x g and aliquoting plasma into cryogenic vials.
Samples were then stored at −80°C until further laboratory
analysis (19). The Figure 1 represents the overview of research
methodology including downstream steps considered in the
present study.

Sample Processing and
Methylation Profiling
The cf-DNA was extracted using the QIAamp circulating nucleic
acid kit (Qiagen Cat # 55114) manual vacuum manifold method.
The samples were bisulfite converted using EZ DNAMethylation
Kit (Zymo, USA) according to the standardized manufacturer’s
protocol. DNA methylation, analysis was performed using the
Illumina Infinium MethylationEPIC BeadChip arrays (Illumina,
Inc.). The array analyzes approximately 850,000 cytosine (‘CpG’
or ‘cg’) loci covering intragenic and extragenic regions of
genome. The assay was performed based on the manufacturer’s
protocol, as described in detail previously (20).
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Statistical Analysis
The raw iDat files were analyzed using Illumina GenomeStudio
software as described in our earlier studies (20). The b-values
(methylation level at each cytosine locus) were measured and
compared for statistical differences between the LC and control
groups at each cytosine locus using the genome build hg37. To
avoid gender bias, the CpG sites on the X and Y chromosomes
were not considered in further analyses. Also, CpG loci within
10bp of any Single Nucleotide Polymorphism (SNPs) as observed
on Single Nucleotide Polymorphism Database (dbSNP) were
excluded as well to avoid genetic (e.g. mutations, single
nucleotide polymorphisms) effects on methylation (21). For
each CpG marker, the Area Under the Receiver Operating
Characteristic (AUC) curve was computed using the R packages
dplyr, reshape2 and ROCR. The genome-wide association studies
(GWASs) significance p-value threshold < 5x10-8 (22) was to
designate significant CpG methylation change at each site.

Artificial Intelligence and Predictive
Models for LC Detection
An important aim of our study was to test the performance of AI
generated predictive algorithms, consistent with the objectives o
Precision Oncology, for the detection of LC. AI ranked the top CpG
markers in decreasing order of predictive ability. The top markers
were then combined to generate the predictive algorithms for each
AI platform. A total of six different AI algorithms were used to as
previously reported (17, 23, 24). These platforms were: Random
Forest (RF), Support Vector Machine (SVM), Linear Discriminant
Frontiers in Oncology | www.frontiersin.org 3
Analysis (LDA), Prediction Analysis for Microarrays (PAM),
Generalized Linear Model (GLM) and Deep Learning (DL). Each
has relative strengths and limitations. The data was split into a
training set (80% of subjects) and validation set (the remaining
20%) and 10-fold cross validation was performed. The splitting
process was repeated ten times and the average area under the
receiver operator characteristics curve (AUROC or AUC) and 95%
confidence intervals was calculated for LC detection, along with
sensitivity and specificity values (25). Bootstrapping using random
sampling with replacement was also performed to optimize the
accuracy of the estimates. The R package “Caret” was used to
optimize predictions for five AI algorithms (RF, SVM, LDA, PAM
and GLM) (https://cran.r-project.org/web/packages/caret/caret.
pdf), and the package h2o was used to tune the parameters of
DL algorithm (https://cran.r-project.org/web/packages/h2o/h2o.
pdf) (26–28). The variable importance functions varimp in h2o
and varImp in caret R packages were utilized to rank the models
features in each of the predictive algorithms. We used pROC R
package to compute the AUC, specificity and sensitivity values of
the models (29). The detailed descriptions of AI algorithms, cross
validation, bootstrapping, and feature ranking are provided in a
Supplementary Methods Section.

Disease and Functional
Enrichment Analysis
All analyses were performed using R programming language
(v. 4.1.0). The EPIC array CpG loci were annotated using
I l luminaHumanMethylat ionEPICanno. i lm10b4.hg19
FIGURE 1 | Overview of research methodology – The figure outlines the sample collection, bisulfite conversion, methylation profiling followed by statistical and
artificial intelligence analysis.
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Bioconductor package. For each CpG locus we determined the
associated gene if any using the UCSC reference gene names
(UCSC_RefGene_Name). When multiple genes were associated
with a single CpG locus, the most frequently associated gene with
that locus was used. Genomic Regions Enrichment of
Annotations Tool (GREAT) was used to determine the number
of CpGs associated with each gene and the distance of CpGs from
the transcription start site (30). CpG methylation changes in
transcription start site are more likely to be associated with altered
gene expression and therefore to have an identifiable biological
effect. g:profiler enrichment was performed using genes associated
with statistically significant CpG loci as foreground and all
annotated genes as background. R package gprofiler2 (v. 0.2.0)
was used to make the enrichment API call with default
parameters (31). miRNA enrichment analysis was performed by
subjecting significant miRNAs to “miRNA Enrichment Analysis
and Annotation Tool” (miEAA) v2.0 (32). We also searched for
long non-coding RNA (lncRNA) using “LncExpDB” (33).

Principal Component Analysis
Given the large number of potential CpG epigenetic predictors
generated, dimensionality reduction was performed using
Principal Component Analysis (PCA). This approach reduces
the number of predictors (dimensionality reduction) and thus
simplifies and enhances the interpretability of the data. A visual
display is generated showing whether with a limited number of
CpG predictors the two groups (LC and controls) can be
discriminated. We performed principal component analysis
(PCA) MetaboAnalyst (v4.0) (34).
RESULTS

The demographic details of the study subjects are provided in
Table 1. All study participants were of Caucasian race. The mean
age between two groups was different (Mean age of cases is 64
years and controls were of 75 years, p-value < 0.01), BMI was also
lower in LC cases. We therefore performed analysis adjusting for
these confounders as well as gender. There were no differences
between groups in the frequency of a positive family history for
cancer. The histologic types and disease staging of the LC is also
presented in Supplementary Table S1. Principal component
Frontiers in Oncology | www.frontiersin.org 4
analysis (PCA) showed very good visual the separation of LC and
control groups (Supplementary Figure 1) using methylation
markers. Using the GWAS significance threshold of p-value <
5x10-8 (22) we found a total of 4389 CpG loci (intragenic region)
(3921 genes) that displayed significant methylation change in
LC. Of the total of 4389 CpGs, 2906 were hyper-methylated
(increased methylation) and 1483 CpGs were hypo methylated
(decreased) in LC compared to control group (Supplementary
Table S2).

We identified 1812 significantly differentially methylated
CpGs in non-protein coding region of genome (intergenic
region). Among them, 1067 CpGs were hyper methylated and
745 were hypo methylated CpGs (Supplementary Table S3). We
found that 99% of these CpGs on both intra and intergenic CpGs
showed methylation difference of greater than 5%. It should be
noted that the higher the methylation difference the more likely
is the epigenetic change to correlate with altered gene expression.
Artificial Intelligence and Lung
Cancer Detection
A total of 19 individual CpGs among the intragenic CpGs and four
among the intergenic CpGs had an excellent individual predictive
value for LC detection based on AUC (AUC =1.00). We performed
AI analysis using six different algorithms. Each AI platform was
used to rank the CpG markers in decreasing order of predictive
ability. We developed separate intragenic (within the gene) and
intergenic (based on CpG markers) algorithms for LC detection.
Using a 10-marker based algorithm, Five of the 6 AI algorithms
using intragenic CpG markers achieved an excellent to outstanding
diagnostic performance based on AUC (95% CI). These included
SVM, GLM, RF and LDA with AUC=1.00 and 95% CI (0.90-1.00).
DL had an AUC (95% CI) =1.00; (0.95-1.00) with 100% sensitivity
and specificity, Table 2. Bootstrapping yielded excellent predictive
accuracies, Table 2A. Equal or slightly lower detection rates were
achieved when only 5markers were used. For example, for SVM the
AUC (95% CI) =1.00; (0.90-1.00) with 90% sensitivity and 100%
specificity and for DL AUC (95% CI) =1.00; (0.95-1.00) with 100%
sensitivity and 100% specificity. Likewise, when using 20 markers in
the algorithm, the predictive accuracy was slightly higher but
generally comparable to the 10-marker model. For example, for
SVM the AUC (95% CI) =1.00; (0.90-1.00) with 94% sensitivity and
100% specificity and for DL AUC (95% CI) =1.00; (0.95-1.00) with
100% sensitivity and 100% specificity.

Likewise, using intergenic (non-coding region of the DNA)
CpG markers, SVM, GLM, RF and LDA had excellent to
outstanding diagnostic performance with AUC (95% CI) =1.00
(0.90-1.00) and DL performed with AUC (95% CI) =1.00 (0.95-
1.00) and 100% sensitivity and specificity Table 3. Bootstrapping
achieved similar detection performances Table 3A.

We identified 52 genes with at least 3 of their constituent
CpGs significantly differentially methylated, 10294 genes had 2
CpGs and 5586 genes were found to have one CpG that had
significant alteration in the methylation level in the ctDNA from
LC versus normal group. The orientation of the CpGs from
Transcription Start Site (TSS) and absolute distance from TSS are
depicted on Figure 2. The closer the CpG locus is to the TSS the
TABLE 1 | The demographic characteristics of lung cancer cases and controls.

Parameter Cases Controls p-value

Number of patients 10 20 –

Race - Caucasian 10 20 –

Age - Mean (Standard deviation) 63.9 (11.14) 74.85 (7.37) 0.01 (T)
Gender – n (%)
Females 7 (70) 14 (70) 0.24 (W)
Males 3 (30) 6 (30)
BMI - Mean (Standard deviation) 28.9 (3.4) 26.75 (5.3) 0.01 (T)
Family history of any cancer type – n (%)
Yes 6 (60) 0 (0) 0.09 (W)
No 4 (40) 20 (100)
T, T test; W, Wilcoxon Mann Whitney test.
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greater is the likelihood that the methylation change will be
biological significant i.e., result in altered gene expression.

Due to the difference in age group of cases and controls, we
performed further analysis in which potential confounders such
as age and gender were considered with CpG markers. A 50-
marker algorithm did not find any of these potential confounders
to contribute significantly to LC prediction. All 50 markers for
each AI platform were CpG loci for both the intra- and extra-
genic analyses (Supplementary Table S4).
Frontiers in Oncology | www.frontiersin.org 5
Gene Enrichment Analysis
There were 4 significantly enriched terms associated with LC. (1)
WikiPathways - Non-small cell lung cancer (NSCLC) (WP :
WP4255, p=1.76e-7), (2) KEGG Non-small cell lung cancer
(KEGG:05223, p=5.33e-7), (3) WikiPathways - Small cell lung
cancer (WP :WP4658, p=0.0020) and (4) KEGG - Small cell lung
cancer (KEGG:05222, p=0.0034). The constituent genes in these
significantly enriched pathways that were found to be
epigenetically altered are listed in Supplementary Table S5
TABLE 2A | Bootstrapping based on methylation of cf-DNA Lung Cancer for the coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9822 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9500 0.9700 0.9600 0.9800 0.9300 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
May 2022 | Volume 1
TABLE 3 | Artificial Intelligence based prediction on methylation of cf-DNA Lung Cancer for the non-coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9900 (0.8900-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9300 0.9600 0.9700 0.9800 0.9400 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CpG predictors in order of contribution:
SVM: cg16349277, cg10302285, cg21127580, cg07591229, cg15455979, cg13645106, cg05458412, cg00316520, cg14185604, cg02475408.
GLM: cg08090691, cg19319928, cg17373554, cg02821627, cg07099084, cg14852082, cg20802868, cg09853648, cg07877987, cg03388189.
PAM: cg05062489, cg09295542, cg06105068, cg24524245, cg19216204, cg03388189, cg06723904, cg13645106, cg12629103, cg02984449.
RF: cg07828654, cg02475408, cg14661028, cg03449513, cg22887498, cg10302285, cg26201011, cg08505243, cg20216928, cg04424605.
LDA: cg24196351, cg14071171, cg14559409, cg07892140, cg12629103, cg10430189, cg06723904, cg05909891, cg09295542, cg17001531.
DL: cg05458412, cg07652774, cg26399254, cg15398272, cg15125549, cg14852082, cg12629103, cg01076051, cg10086080, cg08852943.
TABLE 2 | Artificial Intelligence based prediction on methylation of cf-DNA Lung Cancer for the coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9800 (0.8900-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9400 0.9700 0.9600 0.9800 0.9200 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
CpG predictors in decreasing order of contribution:
SVM: cg06829681 (TEAD1), cg24283889 (LOC102723701; ERLIN2), cg19403339 (DNAJC10), cg01430372 (TMEM99; KRT10), cg23280290 (HERPUD2), cg23178322 (FXR2; SHBG),
cg15650170 (AGAP3), cg26864130 (MCAM), cg10299917 (LRP5L), cg25552416 (ZFP3).
GLM: cg10181281 (VWC2L), cg00941912 (KIAA1530), cg21722128 (MEIS3), cg15470857 (ZNF510), cg16267059 (MFAP1), cg16026813 (BTRC), cg25167447 (NAV1), cg16971745
(IFIH1), cg07401887 (DUXAP10), cg13390998 (NFKBIL2).
PAM: cg01430372 (TMEM99; KRT10), cg00071702 (CDH4), cg11149658 (MCPH1), cg07660991 (ZNF414), cg10299917 (LRP5L), cg08855953 (PRKACG), cg18227776 (NCOA2),
cg14224170 (SAFB2), cg06270462 (EFHD1), cg00019091 (PTPN11).
RF: cg03871275 (DLK2), cg24847481 (SLC35A3), cg17094927 (ATP8B2), cg07199894 (ULK1), cg06831761 (SRPK2), cg18887033 (CMPK2), cg05398019 (COL27A1), cg24696183
(KCNQ1DN), cg06415550 (PTDSS2), cg16971745 (IFIH1).
LDA: cg26372202 (AK7), cg06819704 (CCNJL), cg10299917 (LRP5L), cg02401627 (LEKR1), cg26864130 (MCAM), cg11107657 (ODZ2), cg26024401 (DCDC2), cg11149658
(MCPH1), cg12282830 (AP1B1), cg25552416 (ZFP3).
DL: cg23496516 (USP36), cg07618979 (NFATC2), cg15684274 (NOC2L), cg06829681 (TEAD1), cg13302670 (CAMK2B), cg21466229 (SNTG1), cg23205538 (PARK2), cg14505733
(WNK2), cg25365034 (KLHL29), cg14364474 (GNAL).
TABLE 3A | Bootstrapping based on methylation of cf-DNA Lung Cancer for the non-coding region CpGs (top 10 Variables).

SVM GLM PAM RF LDA DL

AUC 95% CI 1.0000 (0.9000-1) 1.0000 (0.9000-1) 0.9910 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9000-1) 1.0000 (0.9500-1)
Sensitivity 0.9400 0.9650 0.9733 0.9800 0.9475 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bahado-Singh et al. Methylation Profiling of Lung Cancer
along with their known or putative roles in LC and in neoplasms
in general. Overall, these individual genes based on the quoted
references, appear to have a significant role in LC and neoplastic
transformation. The epigenetic dysregulation of known LC and
cancer molecular pathways lends biological credibility to our
findings and supports the argument for a significant role of DNA
methylation changes in LC development.

Overall, miRNA genes (epigenetically altered in LC) were
found to be enriched and was the top significant term with p-
value of <8.24e-239 based on g:profiler enrichment analysis. We
observed 45 miRNA genes to be significantly differentially
methylated in our study. The CpGs (49 CpGs) encompassing
regions of these 45 miRNA genes are provided on
Supplementary Table S6 (This is a subset data of
Supplemental Table S2) and their enrichment status relative
to lung cancer is detailed (Supplementary Table S7). We also
identified 70 CpGs from 66 lncRNA genes that were differentially
methylated and associated with LC. The CpGs corresponding to
lncRNAs are provided in the Supplementary Table S8 (This is a
subset data of Supplementary Table S2). A few of these
differentially methylated lncRNAs were previously found to be
associated with lung cancer as detailed in the Supplementary
Table S9.
DISCUSSION

In 2017 the U.S. Food and Drug administration (FDA) established
the Oncology Center of Excellence to promote Precision Medicine
in oncology and for the development of new cancer therapies. Its
writ included the development of biomarker-based treatments and
is grounded in the advances made in our understanding of the
genomics of cancer pathogenesis and propagation (35). As noted
previously, key to the improvement of LC outcomes will be the
development of accurate biomarkers. The potential therapeutic
value of liquid biopsies including ctDNA in oncology, have been
addressed in other reviews (36). These include cancer screening
and diagnosis in asymptomatic populations, identifying individual
patients for specific treatments, identifying evidence of residual
disease after treatment, predicting the risk of relapse, detection of
recurrence, distinguishing true from pseudo progression and
Frontiers in Oncology | www.frontiersin.org 6
reducing prolonged or unnecessary treatments in patients. We
combined AI with the DNA methylation analysis of circulating
tumor DNA to investigate both the mechanism and for the
minimally-invasive detection of LC. We achieved highly
accurate detection of LC using six different AI platforms with
AUC = 0.90-1.0 and high sensitivity and specificity values. For
example, Deep Learning achieved high performance with AUC
(95% CI) =1.0, with 100% sensitivity and specificity in this
preliminary study. High diagnostic accuracies were similarly
achieved with algorithms based on combinations of smaller or
larger numbers of individual CpG epigenetic markers. The
excellent performance was also achieved when only intragenic
or alternatively intergenic CpG loci were considered. In the
present study, the classes are moderately imbalanced (i.e., no
worse than 10:1). Hence, we did not perform analysis to limit
the class imbalance which would otherwise have no huge benefit of
considering either weighting or sampling techniques to limit the
class imbalance. If there was a class imbalance, we would consider
different methods to help improve classification performance.
Some of the popular techniques to deal with class imbalances
are: (i) Class weights: impose a heavier cost when errors are made
in the minority class, (ii) Down-sampling: randomly remove
instances in the majority class, (iii) Up-sampling: randomly
replicate instances in the minority class and (iv) Synthetic
minority sampling technique (SMOTE): down samples the
majority class and synthesizes new minority instances by
interpolating between existing ones.

We further found evidence of a significant role of epigenetic
dysregulation in know molecular pathways involved in LC
pathogenesis (discussed in more detail below). Confounders
such as age and gender did not appear as independent
predictors of cancer beyond the epigenetic markers when we
adjusted for these confounders in AI analysis. This is likely due to
the fact that these variables have an epigenetic impact which is
already subsumed in the DNA data.

Freitas et al. (13) recently reviewed the literature on gene
mutation analysis of ctDNA for LC detection. Overall, studies
screening for multiple rather than a single cancer gene mutation
in ctDNA appeared to have higher diagnostic performance. Gene
mutation biomarker studies evaluating a combination from 3
to139 cancer related genes achieved a performance that varied
FIGURE 2 | Distance of significantly methylated CpGs’ from Transcription Start Site (TSS) in Lung cancer.
May 2022 | Volume 12 | Article 790645

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bahado-Singh et al. Methylation Profiling of Lung Cancer
from 33% sensitivity and 100% specificity to a high of 85%
sensitivity and 96% specificity.

We focused on DNA methylation given the burgeoning
evidence of the centrality of epigenomics in tumorigenesis (37).
Other studies have confirmed the feasibility of this approach.
Using a combination of methylation markers in 6 cancer genes
based on plasma ctDNA analysis, Hsu et al. (38) achieved an 73%
sensitivity and 82% specificity for LC detection. Begum et al. (39)
performed methylation analysis using serum cell-free DNA.
Using a combination of five genes they reported an 75%
sensitivity and 73% specificity for LC detection. Zheng et al.
(40) achieved a sensitivity of 83.64% and a specificity of 74.0%
using a combination methylation profiling of five genes from
plasma ctDNA.

Methylation analysis may have a future advantage in
facilitating new therapeutic approaches. Targeted alteration of
epigenomic changes is emerging as a potentially highly impactful
therapeutic approach in cancer. This involves the precise
targeting of DNA sequences to reverse or introduce epigenetic
marks. The CRISPR/Cas 9 system appears to be the most exciting
though not the only such approach (41). The CRISPR/Cas-9
approach has been used for targeted reversal i.e. removal of DNA
methylation (demethylation) leading to gene activation in
cancer (42).

An important objective of “Precision Oncology” is deploying
omics and AI to investigate disease pathogenesis. Recent
advances in machine learning (a branch of AI) point to a
significant potential for future impact on medical research and
practice. It has been noted that AI methods could potentially
make significant contributions in the medical field in the
fol lowing areas: understanding “disease underlying
architecture, perform early diagnosis of diseases, and disease
progression prediction” (43).

We found alterations in molecular pathways that are involved
in non-small cell lung cancer (NSCLC), small cell lung cancer
development. Our findings provide further evidence in support
of the importance of epigenetic dysregulation in LC. Further, the
association with known or suspected LC cancer molecular
pathways gives biological plausibility to our findings. The
cancer related functions of the genes found to be epigenetically
dysregulated in this study is further summarized. In
Supplementary Table S10, we list the function of genes that
were identified to be epigenetically altered and determined by AI
to be LC markers, along with their known or suspected roles in
LC and neoplastic transformation based on the published
literature. Given what is known about their apparent roles of
these genes in the neoplastic process, it is therefore not surprising
that they emerged as significant markers for LC detection.
Examples of epigenetically modified genes that were found in
our study and are catalogued in Supplementary Table S5
include FHIT, FN1, FOXO3 and GRB2. They are thought to
regulate epithelial-mesenchymal transition and/or metastasis
and associated with LC. Also, ITGA2, ITGA3 and ITGA6 are
integrin coding genes that participate in cell adhesion,
proliferation, and differentiation and are known to have anti-
cancer properties in LC. It should be pointed out however that
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the LC roles of a significant number of genes that were
epigenetically altered in our study are currently unknown.
Should our findings be subsequently validated, the function of
the latter genes in cancer should be investigated. Also, the
function of the constituent genes involved in the enrichment
pathways reveal an important role in neoplasms in general.
Overall, our results were generally enriched with many genes
currently known or suspected to be involved in carcinogenesis,
giving biological plausibility to our findings.

MicroRNA (miRNA) are small single stranded non-coding
RNAs. They play an important role in gene expression through
the post- translational regulation of multiple other genes. This is
accomplished by binding of miRNA to and degradation of the
mRNA of other genes and thus inhibiting their expression.
MicroRNA is another well-known epigenetic mechanism.
DNA methylation in turn is critical in regulating the
expression of miRNA genes (44). miRNA is increasingly being
recognized as playing an important role in lung cancer including
in tumorigenesis, tumor suppression, with value as biomarkers
and potential therapeutic roles among others (45). In the current
study, miRNAs overall were found to be significantly enriched,
p-value of 8.24e-249, in our gene enrichment analysis. We found a
total of 45 miRNAs that were significantly differentially
methylated and most of them were enriched in various LC
phenotypes (Supplementary Table S6) signifying the complex
regulation of miRNA via methylation and regulation of gene
expression in LC. Further, we performed a literature review to
determine whether our overrepresented miRNAs and their
targets were previously identified as having a role in LC
pathogenesis. These include miR-96-5p previously identified as
an oncogene in lung adenocarcinoma (46), miR-126, miR-212,
miR-330, miR-432, miR-563, miR-663a, miR-1238 are
considered to be tumor suppressor miRNAs (47–53), miR-136
is significantly upregulated in human NSCLC primary tumors
(54). Further, miR-141-3p appears to have prognostic value and
is a tumor suppressor involved in the NSCLC progression (55),
miR-346 promotes cell growth and metastasis and suppresses
apoptosis in non-small cell lung cancer (56), miR-601 is
associated with cell apoptosis in lung cancer (57), miR-2861
expression was found to be higher in lung cancer stem cells (58),
miR-1307 promotes the proliferation of lung adenocarcinoma
(59), the miR-1469 is an apoptosis enhancer that regulates lung
cancer apoptosis (60) and miR-200c plays a significant role in
suppressing Epithelial-mesenchymal transition in lung
cancer (61).

Based on circulating miRNAs studies, the circulating
miRNAs, miR-10b and miR141 were found to be elevated in
lung cancer cases (62), while circulating miR-487a, miR-30b,
miR-601 were found to be associated with NSCLC (63). The
serum exosome miR-96 has been identified as a biomarker for
lung cancer (64). We also identified lncRNA genes that were
differentially methylated in lung cancer and a few of these
lncRNAs were already identified in various lung cancer studies
(Supplementary Table S9).

Although very encouraging, our study is not without
limitations. As a proof-of-concept study, the sample sizes were
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small. it is possible for example that more DNA methylation
markers could be detected with the analysis of a larger sample
cohort. Despite these limitations, high statistical significance was
obtained. Due to the non-suitability of the circulating cell-free
DNA for gene expression analyses, we were unable to assess gene
expression associated with the methylation changes. We however
searched databases based on two studies i.e. 65 (65) and 51 (66)
that document gene expression changes in lung cancer tissue. We
cross-matched their differentially expressed genes with our
differentially methylated genes. We found the following genes
to be both differentially expressed in LC tissue and differentially
methylated in our study: DSC3, MUC1, VSNL1, RORC, ACSL5,
KRT6B and TP63. Further, many of the CpGs that were
epigenetically altered are located close to the gene transcription
start site (TSS), which would indicate that methylation changes
are likely to impact gene expression. Finally, there were many LC
genes with methylation change ≥ 10%. This degree of
methylation difference is generally associated with an increased
likelihood of gene expression changes (67).

Conclusion
Using principles espoused in Precision Medicine, we report that
a combination of DNAmethylation analysis of circulating tumor
DNA and AI achieved high LC detection rates based on this
minimally invasive approach. High performances were observed
with the analysis of either intragenic or intergenic areas of the
DNA. In addition, many of the genes that were found to be
differentially methylated in LC in our study are known or
suspected, based on a search of the existing literature, to be
involved in the mechanism of development, suppression, or
growth of cancer in general including lung cancer. Larger
confirmation studies will need to be performed in the future.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
Frontiers in Oncology | www.frontiersin.org 8
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Beaumont Institutional Review Board (IRB#2018-
306). The patients/participants provided their written informed
consent to participate in this study.
AUTHOR CONTRIBUTIONS

RB-S: conceptualization, overview of project, data analysis, and
writing manuscript. KV: data analysis and manuscript writing.
BA: artificial intelligence methodology. JG: data analysis and
enrichment analysis. UR: sample processing, data analysis, and
manuscript writing. SV: conceptualization, samples and array
processing, data analysis, and writing manuscript. All authors
have read and edited the manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2022.
790645/full#supplementary-material

Supplementary Figure 1 | Principal component analysis (PCA) showing
separation of cases and control subjects based on methylation markers in Lung
cancer.

Supplementary Table 2 | Significantly differentially methylated CpG markers
(FDR-p values) for coding regions

Supplementary Table 3 | Significantly differentially methylated CpG markers
(FDR-p values) for the non-coding DNA regions

Supplementary Table 6 | Significantly differentially methylated CpG markers
(FDR-p values) for the miRNA coding genes (a subset of Supplementary Table
S2).

Supplementary Table 7 | Over-representation of differentially methylated miRNA
in lung cancer phenotypes based on multiple databases.

Supplementary Table 8 | Significantly differentially methylated CpGmarkers (FDR-
p values) for the lncRNA coding genes (a subset of Supplementary Table S2).
REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer Statistic. CA: A Cancer J Clin (2018)

68:7–30. doi: 10.3322/caac.21442
2. Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al.

Lung Cancer: Current Therapies and New Targeted Treatments. Lancet
(2017) 389:299–311. doi: 10.1016/S0140-6736(16)30958-8

3. Ferlay J, Colombet M, Soerjomataram I, Parkin DM. Cancer Statistics for the
Year 2020: An Overview. (2021). Wiley Online Library.

4. Squires BS, Levitin R, Grills IS. The US Preventive Services Task Force
Recommendation on Lung Cancer Screening. JAMA (2021) 326:440–1. doi:
10.1001/jama.2021.8240

5. Berdasco M, Esteller M. Clinical Epigenetics: Seizing Opportunities for
Translation. Nat Rev Genet (2019) 20:109–27. doi: 10.1038/s41576-018-
0074-2

6. Moore LD, Le T, Fan G. DNA Methylation and its Basic Function.
Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol (2013)
38:23–38. doi: 10.1038/npp.2012.112
7. Scott RE, Wille JJ Jr, Wier ML. Mechanisms for the Initiation and Promotion
of Carcinogenesis: A Review and a New Concept. Mayo Clin Proc (1984)
59:107–17. doi: 10.1016/S0025-6196(12)60244-4

8. Feinberg AP, Vogelstein B. Alterations in DNAMethylation in Human Colon
Neoplasia. Semin Surg Oncol (1987) 3:149–51. doi: 10.1002/ssu.2980030304

9. Hong Y, Choi HM, Cheong HS, Shin HD, Choi CM, Kim WJ. Epigenome-
Wide Association Analysis of Differentially Methylated Signals in Blood
Samples of Patients With Non-Small-Cell Lung Cancer. J Clin Med (2019)
8:1307. doi: 10.3390/jcm8091307

10. Xu W, Lu J, Zhao Q, Wu J, Sun J, Han B, et al. Genome-Wide Plasma Cell-
Free DNA Methylation Profiling Identifies Potential Biomarkers for Lung
Cancer. Dis Markers (2019) 2019:4108474. doi: 10.1155/2019/4108474

11. Guo D, Yang L, Yang J, Shi K. Plasma Cell-Free DNA Methylation Combined
With Tumor Mutation Detection in Prognostic Prediction of Patients With
Non-Small Cell Lung Cancer (NSCLC). Med (Baltimore) (2020) 99:e20431.
doi: 10.1097/MD.0000000000020431

12. Mathios D, Johansen JS, Cristiano S, Medina JE, Phallen J, Larsen KR, et al.
Detection and Characterization of Lung Cancer Using Cell-Free DNA
May 2022 | Volume 12 | Article 790645

https://www.frontiersin.org/articles/10.3389/fonc.2022.790645/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.790645/full#supplementary-material
https://doi.org/10.3322/caac.21442
https://doi.org/10.1016/S0140-6736(16)30958-8
https://doi.org/10.1001/jama.2021.8240
https://doi.org/10.1038/s41576-018-0074-2
https://doi.org/10.1038/s41576-018-0074-2
https://doi.org/10.1038/npp.2012.112
https://doi.org/10.1016/S0025-6196(12)60244-4
https://doi.org/10.1002/ssu.2980030304
https://doi.org/10.3390/jcm8091307
https://doi.org/10.1155/2019/4108474
https://doi.org/10.1097/MD.0000000000020431
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bahado-Singh et al. Methylation Profiling of Lung Cancer
Fragmentomes. Nat Commun (20215060) 12:1–14. doi: 10.1038/s41467-021-
24994-w

13. Freitas C, Sousa C, Machado F, Serino M, Santos V, Cruz-Martins N, et al. The
Role of Liquid Biopsy in Early Diagnosis of Lung Cancer. Front Oncol (2021)
11. doi: 10.3389/fonc.2021.634316

14. Lianidou E. Detection and Relevance of Epigenetic Markers on ctDNA: Recent
Advances and Future Outlook. Mol Oncol (2021) 15:1683–700. doi: 10.1002/
1878-0261.12978

15. Collins FS, Varmus H. A New Initiative on Precision Medicine. New Engl J
Med (2015) 372:793–5. doi: 10.1056/NEJMp1500523

16. Turkoglu O, Citil A, Katar C, Mert I, Kumar P, Yilmaz A, et al. Metabolomic
Identification of Novel Diagnostic Biomarkers in Ectopic Pregnancy.
Metabolomics (2019) 15:143. doi: 10.1007/s11306-019-1607-1

17. Bahado-Singh RO, Vishweswaraiah S, Er A, Aydas B, Turkoglu O, Taskin BD,
et al. Artificial Intelligence and the Detection of Pediatric Concussion Using
Epigenomic Analysis. Brain Res (2020) 1726:146510. doi: 10.1016/
j.brainres.2019.146510

18. Bartak BK, Kalmar A, Galamb O, Wichmann B, Nagy ZB, Tulassay Z, et al.
Blood Collection and Cell-Free DNA Isolation Methods Influence the
Sensitivity of Liquid Biopsy Analysis for Colorectal Cancer Detection.
Pathol Oncol Res (2019) 25:915–23. doi: 10.1007/s12253-018-0382-z

19. Sheinerman KS, Toledo JB, Tsivinsky VG, Irwin D, Grossman M, Weintraub
D, et al. Circulating Brain-Enriched microRNAs as Novel Biomarkers for
Detection and Differentiation of Neurodegenerative Diseases. Alzheimers Res
Ther (2017) 9:89. doi: 10.1186/s13195-017-0316-0

20. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Yilmaz A, Metpally RP, Carey
DJ, et al. Artificial Intelligence and Leukocyte Epigenomics: Evaluation and
Prediction of Late-Onset Alzheimer’s Disease. PloS One (2021) 16:e0248375.
doi: 10.1371/journal.pone.0248375

21. Wilhelm-Benartzi CS, Koestler DC, Karagas MR, Flanagan JM, Christensen
BC, Kelsey KT, et al. Review of Processing and Analysis Methods for DNA
Methylation Array Data. Br J Cancer (2013) 109:1394–402. doi: 10.1038/
bjc.2013.496

22. Jannot AS, Ehret G, Perneger T. P < 5 × 10(-8) has Emerged as a Standard of
Statistical Significance for Genome-Wide Association Studies. J Clin
Epidemiol (2015) 68:460–5. doi: 10.1016/j.jclinepi.2015.01.001

23. Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of
Deep Learning for Genomic, Proteomic, and Metabolomic Data Integration
in Precision Medicine. Omics (2018) 22:630–6. doi: 10.1089/omi.2018.0097

24. Dias R, Torkamani A. Artificial Intell igence in Clinical and
Genomic Diagnostics. Genome Med (2019) 11:70. doi: 10.1186/s13073-019-
0689-8

25. Gedeon TD. Data Mining of Inputs: Analysing Magnitude and
Functional Measures. Int J Neural Syst (1997) 8:209–18. doi: 10.1142/
S0129065797000227

26. Kuhn M. Building Predictive Models in R Using the Caret Package. J Stat
Softw Articles (2008) 28:1–26. doi: 10.18637/jss.v028.i05

27. Alakwaa FM, Chaudhary K, Garmire LX. Deep Learning Accurately Predicts
Estrogen Receptor Status in Breast Cancer Metabolomics Data. J Proteome Res
(2018) 17:337–47. doi: 10.1021/acs.jproteome.7b00595

28. Candel A, Parmar V, Ledell E, Arora A. Deep Learning With H2O. (2018).
29. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, et al. pROC:

An Open-Source Package for R and S+ to Analyze and Compare ROC Curves.
BMC Bioinf (2011) 12:77. doi: 10.1186/1471-2105-12-77

30. Mclean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, et al. GREAT
Improves Functional Interpretation of Cis-Regulatory Regions.Nat Biotechnol
(2010) 28:495–501. doi: 10.1038/nbt.1630

31. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. G:
Profiler: A Web Server for Functional Enrichment Analysis and Conversions
of Gene ListUpdate). Nucleic Acids Res (2019) 47:W191–8. doi: 10.1093/nar/
gkz369

32. Kern F, Fehlmann T, Solomon J, Schwed L, Grammes N, Backes C, et al.
miEAA 2.0: Integrating Multi-Species microRNA Enrichment Analysis and
Workflow Management Systems. Nucleic Acids Res (2020) 48:W521–8. doi:
10.1093/nar/gkaa309

33. Li Z, Liu L, Jiang S, Li Q, Feng C, Du Q, et al. LncExpDB: An Expression
Database of Human Long Non-Coding RNAs. Nucleic Acids Res (2020) 49:
D962–8. doi: 10.1093/nar/gkaa850
Frontiers in Oncology | www.frontiersin.org 9
34. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0:
Towards More Transparent and Integrative Metabolomics Analysis. Nucleic
Acids Res (2018) 46:W486–94. doi: 10.1093/nar/gky310

35. Goldberg KB, Blumenthal GM, Mckee AE, Pazdur R. The FDA Oncology
Center of Excellence and Precision Medicine. Exp Biol Med (Maywood) (2018)
243:308–12. doi: 10.1177/1535370217740861

36. De Mattos-Arruda L, Siravegna G. How to Use Liquid Biopsies to Treat
Patients With Cancer. ESMO Open (2021) 6:100060. doi: 10.1016/
j.esmoop.2021.100060

37. Aran D, Hellman A. DNA Methylation of Transcriptional Enhancers and
Cancer Predisposition. Cell (2013) 154:11–3. doi: 10.1016/j.cell.2013.06.018

38. Hsu HS, Chen TP, Hung CH, Wen CK, Lin RK, Lee HC, et al.
Characterization of a Multiple Epigenetic Marker Panel for Lung Cancer
Detection and Risk Assessment in Plasma. Cancer (2007) 110:2019–26. doi:
10.1002/cncr.23001

39. Begum S, Brait M, Dasgupta S, Ostrow KL, Zahurak M, Carvalho AL, et al. An
Epigenetic Marker Panel for Detection of Lung Cancer Using Cell-Free Serum
DNA. Clin Cancer Res (2011) 17:4494–503. doi: 10.1158/1078-0432.CCR-10-
3436

40. Zhang Y, Wang R, Song H, Huang G, Yi J, Zheng Y, et al. Methylation of
Multiple Genes as a Candidate Biomarker in Non-Small Cell Lung Cancer.
Cancer Lett (2011) 303:21–8. doi: 10.1016/j.canlet.2010.12.011

41. Gaj T, Gersbach CA, Barbas CF3rd. ZFN, TALEN, and CRISPR/Cas-Based
Methods for Genome Engineering. Trends Biotechnol (2013) 31:397–405. doi:
10.1016/j.tibtech.2013.04.004

42. Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J. CRISPR-Dcas9
Mediated TET1 Targeting for Selective DNA Demethylation at BRCA1
Promoter. Oncotarget (2016) 7:46545–56. doi: 10.18632/oncotarget.10234

43. Mi X, Zou B, Zou F, Hu J. Permutation-Based Identification of Important
Biomarkers for Complex Diseases via Machine Learning Models. Nat
Commun (20213008) 12:1–12. doi: 10.1038/s41467-021-22756-2

44. Fuso A, Raia T, Orticello M, Lucarelli M. The Complex Interplay Between
DNA Methylation and miRNAs in Gene Expression Regulation. Biochimie
(2020) 173:12–6. doi: 10.1016/j.biochi.2020.02.006

45. Iqbal MA, Arora S, Prakasam G, Calin GA, Syed MA. MicroRNA in Lung
Cancer: Role, Mechanisms, Pathways and Therapeutic Relevance.Mol Aspects
Med (2019) 70:3–20. doi: 10.1016/j.mam.2018.07.003

46. Liu Z, Cui Y, Wang S, Wu C, Mei F, Han E, et al. MiR-96-5p is an Oncogene in
Lung Adenocarcinoma and Facilitates Tumor Progression Through
ARHGAP6 Downregulation. J Applied Genetic (2021) 62:631–8. doi:
10.1007/s13353-021-00652-1

47. Incoronato M, Urso L, Portela A, Laukkanen MO, Soini Y, Quintavalle C,
et al. Epigenetic Regulation of miR-212 Expression in Lung Cancer. PloS One
(2011) 6:e27722. doi: 10.1371/journal.pone.0027722

48. Shi X, Zhan L, Xiao C, Lei Z, Yang H, Wang L, et al. miR-1238 Inhibits Cell
Proliferation by Targeting LHX2 in Non-Small Cell Lung Cancer. Oncotarget
(2015) 6:19043–54. doi: 10.18632/oncotarget.4232

49. Chen L, Kong G, Zhang C, Dong H, Yang C, Song G, et al. MicroRNA-432
Functions as a Tumor Suppressor Gene Through Targeting E2F3 and AXL in
Lung Adenocarcinoma. Oncotarget (2016) 7:20041–53. doi: 10.18632/
oncotarget.7884

50. Zhang Y, Xu X, Zhang M, Wang X, Bai X, Li H, et al. MicroRNA-663a is
Downregulated in Non-Small Cell Lung Cancer and Inhibits Proliferation and
Invasion by Targeting JunD. BMC Cancer (2016) 16:315. doi: 10.1186/s12885-
016-2350-x

51. Zhang X, Li M, Sun G, Bai Y, Lv D, Liu C. MiR-563 Restrains Cell
Proliferation via Targeting LIN28B in Human Lung Cancer. Thorac Cancer
(2020) 11:55–61. doi: 10.1111/1759-7714.13257

52. Chen Q, Chen S, Zhao J, Zhou Y, Xu L. MicroRNA-126: A New and
Promising Player in Lung Cancer. Oncol Lett (2021) 21:35–5. doi: 10.3892/
ol.2020.12296

53. Mohammadi A, Mansoori B. Restoration of miR-330 Expression Suppresses
Lung Cancer Cell Viability, Proliferation, and Migration. J Cell Physiol (2021)
236:273–83. doi: 10.1002/jcp.29840

54. Shen S, Yue H, Li Y, Qin J, Li K, Liu Y, et al. Upregulation of miR-136 in
Human non-Small Cell Lung Cancer Cells Promotes Erk1/2 Activation by
Targeting PPP2R2A. Tumour Biol (2014) 35:631–40. doi: 10.1007/s13277-
013-1087-2
May 2022 | Volume 12 | Article 790645

https://doi.org/10.1038/s41467-021-24994-w
https://doi.org/10.1038/s41467-021-24994-w
https://doi.org/10.3389/fonc.2021.634316
https://doi.org/10.1002/1878-0261.12978
https://doi.org/10.1002/1878-0261.12978
https://doi.org/10.1056/NEJMp1500523
https://doi.org/10.1007/s11306-019-1607-1
https://doi.org/10.1016/j.brainres.2019.146510
https://doi.org/10.1016/j.brainres.2019.146510
https://doi.org/10.1007/s12253-018-0382-z
https://doi.org/10.1186/s13195-017-0316-0
https://doi.org/10.1371/journal.pone.0248375
https://doi.org/10.1038/bjc.2013.496
https://doi.org/10.1038/bjc.2013.496
https://doi.org/10.1016/j.jclinepi.2015.01.001
https://doi.org/10.1089/omi.2018.0097
https://doi.org/10.1186/s13073-019-0689-8
https://doi.org/10.1186/s13073-019-0689-8
https://doi.org/10.1142/S0129065797000227
https://doi.org/10.1142/S0129065797000227
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1021/acs.jproteome.7b00595
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkaa309
https://doi.org/10.1093/nar/gkaa850
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1177/1535370217740861
https://doi.org/10.1016/j.esmoop.2021.100060
https://doi.org/10.1016/j.esmoop.2021.100060
https://doi.org/10.1016/j.cell.2013.06.018
https://doi.org/10.1002/cncr.23001
https://doi.org/10.1158/1078-0432.CCR-10-3436
https://doi.org/10.1158/1078-0432.CCR-10-3436
https://doi.org/10.1016/j.canlet.2010.12.011
https://doi.org/10.1016/j.tibtech.2013.04.004
https://doi.org/10.18632/oncotarget.10234
https://doi.org/10.1038/s41467-021-22756-2
https://doi.org/10.1016/j.biochi.2020.02.006
https://doi.org/10.1016/j.mam.2018.07.003
https://doi.org/10.1007/s13353-021-00652-1
https://doi.org/10.1371/journal.pone.0027722
https://doi.org/10.18632/oncotarget.4232
https://doi.org/10.18632/oncotarget.7884
https://doi.org/10.18632/oncotarget.7884
https://doi.org/10.1186/s12885-016-2350-x
https://doi.org/10.1186/s12885-016-2350-x
https://doi.org/10.1111/1759-7714.13257
https://doi.org/10.3892/ol.2020.12296
https://doi.org/10.3892/ol.2020.12296
https://doi.org/10.1002/jcp.29840
https://doi.org/10.1007/s13277-013-1087-2
https://doi.org/10.1007/s13277-013-1087-2
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Bahado-Singh et al. Methylation Profiling of Lung Cancer
55. Li W, Cui Y, Wang D, Wang Y, Wang L. MiR-141-3p Functions as a Tumor
Suppressor Through Directly Targeting ZFR in Non-Small Cell Lung Cancer.
Biochem Biophys Res Commun (2019) 509:647–56. doi: 10.1016/j.bbrc.2018.12.089

56. Sun CC, Li SJ, Yuan ZP, Li DJ. MicroRNA-346 Facilitates Cell Growth and
Metastasis, and Suppresses Cell Apoptosis in Human Non-Small Cell Lung
Cancer by Regulation of XPC/ERK/Snail/E-Cadherin Pathway. Aging (Albany
NY) (2016) 8:2509–24. doi: 10.18632/aging.101080

57. Ohdaira H, Nakagawa H, Yoshida K. Profiling of Molecular Pathways
Regulated by microRNA 601. Comput Biol Chem (2009) 33:429–33. doi:
10.1016/j.compbiolchem.2009.09.003

58. Zhao M, Li L, Zhou J, Cui X, Tian Q, Jin Y, et al. MiR-2861 Behaves as a
Biomarker of Lung Cancer Stem Cells and Regulates the HDAC5-ERK System
Genes. Cell Reprogram (2018) 20:99–106. doi: 10.1089/cell.2017.0045

59. Du X, Wang S, Liu X, He T, Lin X, Wu S, et al. MiR-1307-5p Targeting TRAF3
Upregulates the MAPK/NF-kb Pathway and Promotes Lung Adenocarcinoma
Proliferation. Cancer Cell Int (2020) 20:502. doi: 10.1186/s12935-020-01595-z

60. Xu C, Zhang L, Li H, Liu Z, Duan L, Lu C. MiRNA-1469 Promotes Lung
Cancer Cells Apoptosis Through Targeting STAT5a. Am J Cancer Res (2015)
5:1180–9.

61. Liu C, Hu W, Li LL, Wang YX, Zhou Q, Zhang F, et al. Roles of miR-200
Family Members in Lung Cancer: More Than Tumor Suppressors. Future
Oncol (2018) 14:2875–86. doi: 10.2217/fon-2018-0155

62. Roth C, Kasimir-Bauer S, Pantel K, Schwarzenbach H. Screening for
Circulating Nucleic Acids and Caspase Activity in the Peripheral Blood as
Potential Diagnostic Tools in Lung Cancer. Mol Oncol (2011) 5:281–91. doi:
10.1016/j.molonc.2011.02.002

63. Zhou C, Chen Z, Zhao L, Zhao W, Zhu Y, Liu J, et al. A Novel Circulating
miRNA-Based Signature for the Early Diagnosis and Prognosis Prediction of
Non-Small-Cell Lung Cancer. J Clin Lab Anal (2020) 34:e23505. doi: 10.1002/
jcla.23505

64. Wu H, Zhou J, Mei S, Wu D, Mu Z, Chen B, et al. Circulating Exosomal
microRNA-96 Promotes Cell Proliferation, Migration and Drug Resistance by
Targeting LMO7. J Cell Mol Med (2017) 21:1228–36. doi: 10.1111/jcmm.13056
Frontiers in Oncology | www.frontiersin.org 10
65. Karlsson A, Jönsson M, Lauss M, Brunnström H, Jönsson P, Borg Å., et al.
Genome-Wide DNA Methylation Analysis of Lung Carcinoma Reveals One
Neuroendocrine and Four Adenocarcinoma Epitypes Associated With Patient
Outcome. Clin Cancer Res (2014) 20:6127–40. doi: 10.1158/1078-0432.CCR-
14-1087

66. Zhang H, Jin Z, Cheng L, Zhang B. Integrative Analysis of Methylation and
Gene Expression in Lung Adenocarcinoma and Squamous Cell Lung
Carcinoma. Front Bioengineering Biotechnol (2020) 8. doi: 10.3389/
fbioe.2020.00003

67. Leenen FA, Muller CP, Turner JD. DNA Methylation: Conducting the
Orchestra From Exposure to Phenotype? Clin Epigenet (2016) 8:92. doi:
10.1186/s13148-016-0256-8

Conflict of Interest: Author BA was employed by Meridian Health Plans. Author
JG was employed by Vugene, LLC.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Bahado-Singh, Vlachos, Aydas, Gordevicius, Radhakrishna and
Vishweswaraiah. This is an open-access article distributed under the terms of the
Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal is
cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.
May 2022 | Volume 12 | Article 790645

https://doi.org/10.1016/j.bbrc.2018.12.089
https://doi.org/10.18632/aging.101080
https://doi.org/10.1016/j.compbiolchem.2009.09.003
https://doi.org/10.1089/cell.2017.0045
https://doi.org/10.1186/s12935-020-01595-z
https://doi.org/10.2217/fon-2018-0155
https://doi.org/10.1016/j.molonc.2011.02.002
https://doi.org/10.1002/jcla.23505
https://doi.org/10.1002/jcla.23505
https://doi.org/10.1111/jcmm.13056
https://doi.org/10.1158/1078-0432.CCR-14-1087
https://doi.org/10.1158/1078-0432.CCR-14-1087
https://doi.org/10.3389/fbioe.2020.00003
https://doi.org/10.3389/fbioe.2020.00003
https://doi.org/10.1186/s13148-016-0256-8
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Precision Oncology: Artificial Intelligence and DNA Methylation Analysis of Circulating Cell-Free DNA for Lung Cancer Detection
	Introduction
	Epigenetics and Cancer
	Circulating Tumor DNA and LC

	Materials and Methods
	Study Subjects and Sample Collection
	Sample Processing and Methylation Profiling
	Statistical Analysis
	Artificial Intelligence and Predictive Models for LC Detection
	Disease and Functional Enrichment Analysis
	Principal Component Analysis

	Results
	Artificial Intelligence and Lung Cancer Detection
	Gene Enrichment Analysis

	Discussion
	Conclusion

	Data Availability Statement
	Ethics Statement
	Author Contributions
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


