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Glioblastoma (GBM) is a malignant tumor with a median survival rate of 15-16 months with
standard care; however, cases of successful treatment offer hope that an enhanced
understanding of the pathology will improve the prognosis. The cell of origin in GBM
remains controversial. Recent evidence has implicated stem cells as cells of origin in many
cancers. Neural stem/precursor cells (NSCs) are being evaluated as potential initiators
of GBM tumorigenesis. The NSCs in the subventricular zone (SVZ) have demonstrated
similar molecular profiles and share several distinctive characteristics to proliferative
glioblastoma stem cells (GSCs) in GBM. Genomic and proteomic studies comparing
the SVZ and GBM support the hypothesis that the tumor cells and SVZ cells are related.
Animal models corroborate this connection, demonstrating migratory patterns from the
SVZ to the tumor. Along with laboratory and animal research, clinical studies have
demonstrated improved progression-free survival in patients with GBM after radiation to
the ipsilateral SVZ. Additionally, key genetic mutations in GBM for the most part carry
regulatory roles in the SVZ as well. An exciting avenue towards SVZ modeling and
determining its role in gliomagenesis in the human context is human brain organoids.
Here we comprehensively discuss and review the role of the SVZ in GBM genesis,
maintenance, and modeling.

Keywords: SVZ, glioblastoma, modeling, ventricular, organoid
INTRODUCTION

Glioblastoma (GBM) is the most common and most aggressive malignant glial tumor found in
adults (1, 2). While prognosis varies with factors such as age and specific mutations (2–4), GBM
remains an incurable tumor with a median survival of 9 months without treatment and 15-16
months with treatment (5–7). However, a small percentage of patients achieve long-term survival
(>2.5yrs) (8, 9). Cases of longer-term survival and response to treatment provide hope that
increasing knowledge of the disease pathology can lead to treatments with improved survival.
Conventional treatment for GBM includes surgical resection followed by concurrent radiotherapy
and temozolomide (TMZ) and subsequently, 6-12 cycles of TMZ (6, 10, 11). Aggressive tumor
cell migration and growth preclude complete surgical resection, resulting in a near 100% relapse
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rate (12–15). Incomplete resection, post-operative recovery time,
and neurologic deficits may delay subsequent treatment, thus,
leading to GBM progression early within weeks of surgery or
delayed within 2 years for a majority of patients (16, 17).

Cancer stem-like cells have been suggested as the origin of
many cancers (18). Neural stem/precursor cells (NSCs), in
particular, have been linked to cancer (19). Molecular evidence
establishes a strong link between stem cells and cancer stem cells
(20). Animal studies have corroborated this link, supporting a
hypothesis of tumor origination from neural precursor cells (19,
21–23). Furthermore, a clinical report of neural precursor
transplantation leading to the formation of donor cell-derived
tumors demonstrates a possible stem cell origin of cancer in
humans (24). Altogether, these findings provide strong support
for NSCs as one of the cells of origin for cancer. Specifically,
NSCs in the subventricular zone are implicated (25).

The subventricular zone (SVZ) is a 3-5mm layer between
the lateral ventricle, corpus callosum, and striatum (26–28)
that harbors the largest population of NSCs in the brain
(3, 4, 29–32). The SVZ in humans is characterized by an
astrocytic ribbon that is separated from a layer of ependymal
cells by a hypocellular layer (33). The SVZ in animals differs in
cellular composition and structure from the SVZ in humans
(33–35).

Disease modeling towards identifying specific therapies for
numerous cancers has been described (36). While numerous
models have been developed for GBM research, faithfully
recapitulating the microenvironment, structure, and molecular
characteristics (36), GBM modeling has remained a challenge.
Each model is unique and complex with benefits and drawbacks.
Models range from in vitro cellular tumor systems to animal
models (36). The recent advent of 3D models has increased the
ability to effectively model the brain and associated tumors in the
human context (37). These models more effectively simulate and
maintain tumor structure compared to 2D models. However,
challenges remain to model GBM, those include a lack of
regionalized organoids and the underdevelopment of an
immunological/inflammatory response, as well as the presence
of only primitive vascular systems (37). It follows that utilizing a
combination of models may be most apt for developing novel
and effective therapeutic interventions.

Recent research has shed new light on the role of the SVZ in
GBM (38, 39). This review addresses current hypotheses in SVZ
involvement in gliomagenesis, maintenance, and modeling
standards, as well as the capacity of current models to
incorporate these hypotheses.
GLIOBLASTOMA CELL OF ORIGIN

Cancer cells expressing stem cell surface markers reside in brain
tumors, comprising between < 1% of cancer cells in low-grade
tumors and over 25% of cancer cells in high-grade tumors (40,
41). A connection between glioblastoma initiating cells (GICs)
and NSCs has been identified, but the specific lineages
downstream of GICs remain understudied (42). The GBM
Frontiers in Oncology | www.frontiersin.org 2
stem cell and the astrocyte dedifferentiation theory are the two
prevailing hypotheses for the origin of GBM (43, 44).

Both of these theories serve to explain the presence of cancer
stem cells within the tumor (45, 46). The astrocyte
dedifferentiation theory relies on the multi-step process of
tumorigenesis leading a mature astrocyte to dedifferentiate to
become a malignant stem-like cell. This model is supported by
recent experiments demonstrating the formation of tumors that
are histologically similar to GBM after activation of oncogenes
and suppression of tumor suppressor genes in astrocytes (47).
These experiments show that genetic manipulation of astrocytes
can lead to tumorigenesis. To induce GBM formation, both
tumor suppressors and oncogenes must be manipulated in
astrocytes, whereas progenitor cells only require oncogene
activation (44, 47). This manipulation in astrocytes results in
their acquisition of stem cell-like characteristics, offering one
possible explanation for the similarities between GICs and stem
cells (48, 49).

The glioblastoma stem cell theory proposes that GICs are
derived from NSCs. NSCs are self-renewing, multipotent cells in
the brain responsible for differentiating into neurons, astrocytes,
and oligodendrocytes (50–52). These cells are most active during
development; however, recent evidence has suggested small
populations in specific stem-cell niches remain functional in
the adult brain (53–57). As such, neurogenesis in the human
brain continues throughout life (58, 59). The glioblastoma stem
cell theory is based on a longstanding hypothesis that cancers
arise from a stem-like cell population, and thus, that tumors
contain a subset of multipotent cells with stem cell
characteristics. In the case of GBM, partially differentiated glial
cells including oligodendrocyte precursor cells (OPCs) and
astrocyte precursor cells may contribute to or be responsible
for tumorigenesis (38). Lee et al (38) proposed that the most
likely pathogenesis involves driver mutations in NSCs that
contribute to tumorigenesis after differentiation into the
oligodendrocyte cell line. The presence of cells with stem cell-
like characteristics has been identified in many cancers (60),
including brain tumors (41, 44, 61). Clinical evidence
supporting this theory includes the formation of a donor-
derived brain tumor after NSCs were injected intracerebrally
and intrathecally into an Ataxia Telangiectasia patient (24). This
case example demonstrates a stem cell to tumor transition in the
human brain. Considering the heterogeneity of GBM, each of
these theories may contribute a portion of the total tumor
population included in the category of GBM.
NEURAL STEM CELLS AND
GLIOBLASTOMA STEM CELLS ARE
MOLECULARLY RELATED

Many molecular characteristics are shared between GBM stem
cells (GSCs) and NSCs. Genome-Wide CRISPR-Cas9 screens of
NSCs and GSCs identified several genetic commonalities (20).
SOCS3, a modulatory protein that is responsible for maintaining
stemness in NSCs (62), was identified as a top-scoring
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GBM-specific fitness gene (20). Loss of function of SOCS3 leads
to downregulation of multiple GSC fitness genes, upregulation of
neuronal progenitor markers, and ultimately GSC differentiation
(20). SOX2, another important NSC factor (63), is also a high-
scoring fitness gene for both NSCs and GBM (20). Other genes
with similar fitness scores in NSCs and GSCs include SQLE,
CDK6, and DOT1L (20). Similar fitness scores in these genes
provide evidence that developmental growth patterns are
reactivated in GBM (20). Some genes with high fitness scores
in GBM had low fitness scores in NSCs, including JUN and
SOX9 (20). This could suggest that GBM-specific gene activation
promotes the maintenance of GSCs (20). Stem cell gene
networks, similar to those of non-transformed NSCs, generate
and maintain GSCs (20).

Proteomic analysis similarly highlights the relationship
between NSCs and GSCs (64–71). Of 108 proteins
differentially expressed in GSC, NSC, and other tumor tissues,
22 were overexpressed in GSC and NSC but not tumor tissue.
Most of these genes are involved in chromatin, mRNA, and DNA
processing (64). Pathways necessary for self-renewal properties
are common between NSCs and GSCs (66–72). One of the
proteins overexpressed in GSCs and NSCs is vimentin (64, 73).
Hepatoma-derived growth factor (HDGF), an angiogenesis-
promoting factor, is expressed at normal levels in NSCs but is
overexpressed and secreted in GSCs (64), indicating a potential
oncogenic alteration of a normal NSC process. Overexpression of
HDGF is implicated in various cancers (74–80) including GBM
(64). In addition to HDGF, other growth factors associated with
development are produced in GSCs including vascular
endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF), transforming growth factor-alpha (TGFa), and
stromal-derived factor 1 (SDF1) (64, 81–84). A study specifically
examining chromosome 19 proteins in GSCs found upregulation
of multiple molecular patterns related to stemness and
development (85). These molecular markers highlight the
relationship between NSCs and GSCs, as well as the potential
avenues for the transformation of NSCs to GSCs.
Frontiers in Oncology | www.frontiersin.org 3
SUBVENTRICULAR ZONE

Human Subventricular Zone
The SVZ is the largest neural stem cell niche in the adult brain. In
humans, the SVZ is divided into four regions comprised of
different cell types. The ependymal layer (Layer I) is the cellular
layer closest to the ventricle common to all areas of SVZ within
the brain. The hypocellular layer (Layer II) borders the
ependymal layer and consists of basal processes of ependymal
cells, astrocyte processes, and diffuse astrocyte cell bodies.
Opposite the hypocellular gap from the ependymal layer is the
astrocytic ribbon of cells (Layer III). This is the proliferative
region where astrocyte-like cells act as stem cells (33, 86). Layer
IV is the transitional zone to the brain parenchyma. Myelinated
neuronal processes and neuron bodies are abundant in this
area (87) (Figure 1). The cytoarchitecture of the human SVZ
is unlike any other studied mammals. Cell types present in this
region include astrocytes, NSCs, neurons, ependymal cells,
oligodendrocytes, OPCs, and neuroblasts with transitory
amplifying progenitors noticeably missing (39). The human
subventricular zone is unique in its organization and cellular
composition making it difficult to translate research from
animals to humans.

Subventricular Zone in Humans vs.
Subventricular Zone in Animals
Structurally, the SVZ in studied animals differs quite significantly
from the human SVZ. The SVZ in rodents is not separated into
four distinct layers; in fact, no hypocellular zone exists in adult
mice (34). The hypocellular zone is only reported in humans and
bovines (88), with all other mammalian models having close
contact between ependymal cells and NSCs (35). Another unique
characteristic of the human SVZ is the astrocytic ribbon
containing proliferative cells previously thought to be NSCs
(33, 89). No progenitor cells or migration has been observed
from this region, calling into question the activity of these
“NSCs” (89). However, when cultured in vitro, astrocytes from
FIGURE 1 | A schematic illustration depicting a coronal view of the subventricular zone (SVZ) neurogenic niche in the adult human brain.
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this region have the capacity to form neurospheres consisting of
astrocytes, oligodendrocytes, and neurons (90) potentially
indicative of function in the human SVZ. Regardless of
function, the astrocytic ribbon is an aspect of the SVZ unique
to humans.

Cytoarchitecture also differs. The rodent SVZ includes four
cell types based on electron microscopic analysis of
ultrastructural characteristics. Unlike in humans, the only cell
types are astrocytes, transitory amplifying progenitors (type C
cells), neuroblasts, neurons, and ependymal cells (35, 91). NSCs
have a radial morphology similar to radial glial cells, their
predecessors. NSCs are capable of giving rise to type C cells
(29) and ependymal cells (92, 93). Type C cells, located near the
blood vessels, are rapidly dividing cells that give rise to OPCs,
neuroblasts and astrocytes (94–98). Neuroblasts migrate from
the SVZ to the olfactory bulb (OB) where they can undergo
neurogenesis (27, 99–101). The rodent SVZ is characterized by a
much higher number of neurons than the human SVZ (33, 35,
87). The number of proliferating cells in the human SVZ is also
much lower than that seen in rodents (33, 87, 102). While the
rodent SVZ has more neuroblasts and increased proliferation,
GFAP+, nestin+ radial glia observed in the human third ventricle
SVZ are absent from the corresponding third ventricle SVZ in
mice (34). Lastly, the rodent SVZ contains chains of migrating
neuroblasts, which the human SVZ lacks (103). Migration from
the SVZ in adult humans remains controversial (33, 58, 102,
104). In postnatal humans, migration from the SVZ occurs but
quickly declines (105). In addition to the rostral migratory
stream, a medial migratory stream was identified in humans
leading from the SVZ to the prefrontal cortex (58). The medial
migratory stream is absent from postnatal mice (58). In rodents,
neural progenitor cells differentiate into local interneurons,
granule cells, and periglomerular cells after migrating to the
OB (106–110). Despite a much lower rate of neurogenesis, the
adult human SVZ retains the ability to regenerate neurons (58,
111, 112). Neurogenesis in the SVZ can be regulated by
GABAergic, dopaminergic, serotonergic, cholinergic, and nitric
oxide-releasing neurons (113–116). Specific circumstances,
including depression and Parkinson’s disease, increase
neurogenesis from insignificant to noticeable levels (117, 118).

Studies over the past five decades have demonstrated cellular
proliferation in the SVZ in multiple species including mice, rats,
rabbits, voles, dogs, cows, monkeys, and humans (33, 87, 88,
119–126). Rodent and other model SVZs share characteristics
with the human SVZ, yet there are structural and functional
differences (127). One major difference is the destination of new
neurons from the SVZ. In humans, the rostral migratory stream
contains only a small number of migratory neuroblasts that do
not form the chains observed in rodents. These neuroblasts
express immature neuron and proliferation signals similar to
those in rodents but do not migrate to the OB, a major
destination for neuroblasts in rodents and monkeys (119).
Carbon 14 analysis of cells in the human OB confirms
negligible post-developmental neuronal proliferation in this
area (128). Rather, the striatum seems a much more likely
target for neuroblast migration in humans. Located adjacent to
Frontiers in Oncology | www.frontiersin.org 4
the SVZ, the striatum has cells co-expressing the neuroblast
markers DCX and PSA-NCAM, indicating migration to this
region (129). Carbon dating of a subpopulation of DARP23-
negative interneurons in striatum demonstrates a 2.7% turnover
rate, significantly higher than that of the OB (< 1% over 100
years). Furthermore, recently developed striatal neurons and
neuroblasts co-express the markers calretinin and neuropeptide
Y, supporting an SVZ origin for striatal neurogenesis (129).
Other animals demonstrate decreased striatal neurogenesis
compared to humans (130–135). Research in mice found
Notch-dependent local astrocyte-mediated neurogenesis in the
striatum (136). It is unclear the extent to which this occurs in
humans (135). These differences highlight the challenges
involved with translating animal research to humans in this area.

Additional Elements of the
Subventricular Zone
The following elements of the SVZ have been established in non-
human mammals, but the extent to which they are present in the
human SVZ is unclear. The SVZ stem cell niche is comprised of
various cellular and acellular components along with the major
cell types. Blood vessels influence differentiation and migration
patterns in this niche. Brain-derived neurotropic factor (BDNF)
signaling guides neuroblast migration parallel to blood vessels
adjacent to the SVZ (92, 137, 138). The SVZ has a leaky blood-
brain barrier, permitting neural progenitor cells (NPCs) of the
SVZ to respond to signals in the blood more readily (95). SVZ
cells are drawn to blood vessels by molecules secreted by
endothelial cells (139). Endothelial cells also promote
neuroblast proliferation (94, 95, 140) and influence cell
migration to and from the niche through SDF1/CXCR4
signaling (139). An extensive basal lamina contacts nearly
every cell in the SVZ providing an avenue for molecular
signaling to the entire niche (141, 142). These extracellular
matrix structures, called fractones, bind growth factors and
modulate NSC proliferation in the SVZ (143). Fractones are
fractal-like structures consisting of laminins, collagens II and
XVIII, nidogen, HSPGs, and perlecan (143). Laminin constructs
both NSC and cancer stem cell (CSC) niches (144, 145) and
supports stem cell renewal (146). Additionally, laminin
interaction with integrin a-6 is important for the maintenance
of NSCs and CSCs (147). Non-stem tumor cells produce laminin
a-2, which permits GBM stem cell growth (148).

Macro-structure of the SVZ also facilitates signaling and
subsequent cellular responses. Viewed from the ventral surface,
the SVZ is organized in pinwheel structural units composed of
ependymal cells spiraled around astrocytic processes. Cells in the
pinwheels are connected by adherens junctions. Adherens
junctions allow one daughter cell to remain a stem cell while
the other differentiates into a progenitor. The pinwheel structure
is important for stem cell proliferation and is characteristic of
other stem cell niches in the body (149).

Gliogenesis is prominent in the developing SVZ from
embryonic day (E) 90 until after E125. The SVZ serves as the
origin of many of the glial cells in the mammalian brain
(150–152). Studies examining multiple sclerosis and the rodent
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OB indicate that gliogenesis in the SVZ continues in adults (153,
154) and evidence indicates that injury in the adult brain leads to
increased gliogenesis from the SVZ (155, 156). Galectin-3 (Gal-
3), up-regulated in brain injury, inflammation, and cancer, has a
suggested role in modulating both neurogenesis and gliogenesis
in the adult SVZ (157).
NEURAL STEM CELLS IN THE
SUBVENTRICULAR ZONE IMPLICATION
IN THE ORIGIN OF GLIOBLASTOMA

Subventricular Zone Neural Stem Cells
Play a Role in Tumorigenesis
Genomic and proteomic analyses of GBM and the SVZ have
supported an association between the two. Recent molecular and
genetic analysis of human GBM by Lee et al. (38) backs the
theory that GBM develops from NSCs in the SVZ. They
described direct molecular and genetic evidence from
glioblastoma patients’ tissue and mouse models that there were
astrocyte-like NSCs in the SVZ that could be the cell of origin.
These cells contain the main driver mutations known to form
GBM in humans. In their experiment, they performed
sequencing of patient-matched tissues types (normal SVZ
tissue, tumor tissue, and normal brain cortex or blood) from
28 patients with variable genetic profiles including isocitrate
dehydrogenase-1 wild type (IDH-WT). They concluded that
low-level driver mutations of GBM were present in the non-
tumor SVZ tissue in 56.3% of IDH wild-type patients.
Furthermore, single-cell sequencing and laser microdissection
analysis of the obtained brain tissue as well as genome editing of
their mouse model showed astrocyte-like NSCs carry driver
mutations that lead to the development of high-grade gliomas
(38). Additionally, extensive analysis of 28 tumors from both
adults and children by Neftel et al. (158), indicates the presence
of four cellular states that drive GBM malignant cells
heterogeneity. These cellular states are associated with cycling
cells representing mostly NPC-like and OPC-like states,
particularly in pediatric tumors. Earlier reports of lineage
tracing methods (159) also revealed significant aberrant growth
prior to malignancy in OPCs. These findings suggest OPCs could
be the major source of malignancy though initial mutations
could occur in NSCs. This highlights the importance of analyzing
premalignant stages to identify the cancer cell of origin.

SVZ-related markers, such as GFAP and vimentin, are
upregulated in GBM (160). This association supports the
hypothesis that tumor cells in GBM are most related to the
SVZ cells (160). Specifically, neuroblasts in GBM contain high
levels of c-Myc, implicating the population of SVZ cells with high
c-Myc expression in oncogenic transformation (160). In fact,
overexpression of c-Myc may play a role in tumorigenesis and
migration as it is expressed in SVZ cells with migratory
potential (160).

Furthermore, restriction of proteases in GBM inhibits
tumorigenesis, providing support for the theory of long-
distance migration of GBM pathogenesis. Genomic
Frontiers in Oncology | www.frontiersin.org 5
investigation of SVZ-associated GBM supports this analysis,
identifying genes commonly altered in SVZ and GBM (161).
Differences between SVZ+ (SVZ-associated GBM) and SVZ-
(Non-SVZ-associated GBM) GBM have also been observed
(161). Notch signaling upregulation in SVZ+ GBM is
correlated with Notch upregulation in the SVZ. The differential
expression of various Notch signaling molecules is associated
with predictable prognostic factors, including overall survival
(OS) and progression-free survival (PFS) (162).

Proteome analysis of SVZ+ serum and tissue shows increased
acute-phase proteins, lipid carrying proteins, and increased
regulatory proteins potentially implicated in increased SVZ+
aggressiveness (163). CD133 expression, which is associated with
a shorter time to distant recurrence, is greater in SVZ+ tumors
(determined by imaging) than in SVZ- tumors (164). Additionally,
the prognosis for GBM is strongly associated with the intracranial
location in relation to the SVZ. Tumors contacting the SVZ have
worse OS and PFS compared to more distant GBM (165).
Furthermore, recurrence of GBM is significantly associated with
neurogenic regions (12). The niche factors secreted by the SVZ
promote proliferation and migration of GBM progenitor cells,
promoting tumor growth and progression (166, 167). In contrast,
the hippocampus is often spared fromGBM invasion, possibly due
to a less compatible extracellular matrix (ECM) (168).
Furthermore, NSCs in the hippocampus are less likely involved
in tumorigenesis. There are a few factors that differentiate NSCs in
the SVZ from hippocampal NSCs in the subgranular zone (SGZ).
Like NSCs in the SVZ, hippocampal NSCs have an apical process
that contacts blood vessels; however, their basal process contacts
neurons and glial cells (169, 170). These stem cells lack CSF
contact which is normally a source of factors moderating
proliferation for NSCs in the SVZ (25, 171). Abnormal signaling
from the CSF is a potential mechanism for malignant
transformation (25). Additionally, NSCs in the SGZ only
differentiate into local granule neurons. The SGZ niche
promotes differentiation without migration, whereas the SVZ
promotes proliferation and migration while restricting
differentiation (25).

Commonalities of GSCs and NSCs in the SVZ include nestin
expression, proliferation capability, high motility, diverse
progeny, association with vasculature, and communication
with other niche components (25, 172). Much like NSCs (173,
174), GSCs rely on endothelial cells for factors promoting self-
renewal, tumorigenicity, and survival (175–177). GSCs are also
able to recruit microglia through cytokine production (178–180),
which in turn promote tumor growth through angiogenesis and
trophic factors (181). Much like in the tumor niche, NSCs and
microglia regulate each other in the SVZ (182). Additionally,
astrocytes and ECM proteins support the proliferation of both
GSCs and NSCs (183–186). These similarities highlight the
likeness the tumor niche displays for the SVZ. One notable
difference is the lack of CSF within close proximity to cells within
the tumor niche, which may contribute to the tumor pathology
due to absence of regulation from CSF signaling (25).

Tumorigenesis experimentation in mice supports the theory
that GBM-like invasive tumors originate in the SVZ. High-grade
tumors are formed from NSCs/NPCs in mouse models after
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migration. Migration occurs following the leader cell creation of
an infiltrative path. Most infiltrations occur along blood vessels,
fiber tracts, or over the surface via the subarachnoid space (187).
In mice, SVZ cell migration occurs through the rostral migratory
stream to many areas including the OB, hippocampus, and
striatum. These cells have more migratory potential than other
NPC niches, traveling further and to more locations (153).
Neuroblasts have been identified in high numbers between the
SVZ and the tumor in mice models, indicating SVZ cell
migration to the tumor. Upregulation of neural precursors in
the ipsilateral SVZ in mice with tumors contributes to this
hypothesis (188). Follistatin secretion from NPCs decreases
tumor growth and can even inhibit tumor growth in vitro
(189). Follistatin expression by NPCs in the SVZ may explain
why migration occurs before tumorigenesis. Neural precursor
cell migration from the SVZ to the tumor zone is a critical
finding in the pathogenesis of GBM tumors. This pathway
represents an important target of future therapy and more
models are needed to further investigate this relationship.

Common Genes Implicated in
Glioblastoma Play a Role in the
Subventricular Zone
There are several common mutations associated with human
GBM. Primary GBM is classified by de novo mutations without
evidence of a prior lesion (160). Primary GBM typically results
from epidermal growth factor receptor (EGFR) amplification
and loss of PTEN (190), while secondary GBMs result from
IDH1 or IDH2 mutations (191, 192). Inactivation of TP53 (23),
PTEN (193), and mutations in telomerase reverse transcriptase
(TERT) (194, 195) are also commonly thought to contribute to
the pathogenesis of GBM. Each of these genes, with the exception
of IDH1, is known to be involved in the control of the SVZ NSCs
(160). Matarredona and Pastor (25) recently reviewed some of
the most common genetic mutations and their involvement in
implicating the SVZ in GBM development.

Epidermal Growth Factor (EGF) induces proliferation and
inhibits differentiation of NSCs in the SVZ (196–198).
Amplification of the EGFR gene has been proposed as a
potential mechanism for the development of GBM because of its
role in the SVZ (160, 199). Both TP53 and PTEN are tumor
suppressor genes. TP53, which modulates cell division,
differentiation, and proliferation in the SVZ, is commonly
mutated in both primary and secondary GBM (23, 190, 200–
202). PTEN is involved in regulating migration, apoptosis, and
proliferation for NSCs in the SVZ (203, 204). Knockout of TP53 or
PTEN induces proclivity towards oncogenic transformation (193,
205). In adult mammals, telomerase expression is restricted to the
OB and the SVZ (206), where it permits the growth and survival of
NSCs (207). TERT is frequently upregulated in cancers (208),
including more than half of GBMs (194, 209). In a study of human
GBM mutations in IDH1 wild-type, the tumor-free SVZ had
TERT promoter mutations, suggesting this could be an early
mutation in the progression from NSC to GBM (38, 194).

While IDH1 has no known direct influence on the SVZ, IDH1
mutation is correlated with platelet-derived growth factor
(PDGF) expression in GBM (210). PDGF promotes the
Frontiers in Oncology | www.frontiersin.org 6
proliferation of NSCs in the SVZ (211). Some other factors
and pathways commonly altered in GBM and SVZ include c-
Met, FoxO3, the Wnt pathway, and the sonic hedgehog pathway
(160, 172, 212–216). These mutations provide strong evidence
that SVZ NSCs are the origin of GBM in humans and accentuate
pathways that could be targeted with therapeutics.

Clinical Significance of the Subventricular
Zone in Glioblastoma
Understanding the role of the SVZ in GBM provides significant
clinical value. Proposed therapy for GBM includes administering
radiation to the SVZ to prevent tumor reoccurrence. So far, the
reported effect of SVZ irradiation on outcomes in GBM patients
has been inconsistent. In a meta-analysis of four studies observing
the effects of high vs lose dose radiation on prognosis, increased
radiation dose to the ipsilateral SVZ significantly increased PFS
while failing to significantly improve OS (217). Irradiation dose to
the contralateral SVZ did not significantly improve PFS.
Contralateral SVZ radiation dose effect on OS was not analyzed
as it did not meet the study’s inclusion criteria. Higher cutoffs for
“high dose irradiation” in the various studies correlated with
increased PFS and OS as compared to lower cutoffs (217). Gupta
et al. (218) found increased OS with increased radiation to the
ipsilateral SVZ but decreased OS with increased radiation to the
contralateral SVZ. Consistent with the results described above,
Rizzo et al. (219) showed that increasing bilateral SVZ radiation
dose directly correlates with increased PFS and OS. Furthermore,
they found that a high radiation dose to the ipsilateral SVZ is
associated with increased PFS and that there is no correlation
between the dose administered to the contralateral SVZ and OS or
PFS (219).

Gross total resection (GTR) may account for some of the
variations in the results, as Chen et al. (220) found that high dose
irradiation of the SVZ improves PFS only in patients with GTR,
not in patients with subtotal resection or biopsy. In patients with
GTR, PFS and OS were both improved with high-dose
irradiation when compared to low-dose irradiation. This
suggests that residual tumors may be responsible for
recurrence in irradiated patients without GTR, and therefore,
that irradiation may potentially prevent GBM recurrence
originating from the SVZ (220). CXCL12 mediated
upregulation of mesenchymal traits protects GSCs located in
the SVZ from radiation, potentially explaining the increased
effectiveness of higher doses of radiation (221). These data point
to promising evidence that links radiation of areas of the SVZ to
increased measures of survival and highlight the importance of
studying GBM in the context of the SVZ. By means of human
cerebral organoid SVZ models, we hope to expand on the
research that has highlighted this relationship between the SVZ
and GBM prognosis (Figure 2).
MODELS

There are several different methods of modeling GBM.
Robertson et al. (36) organize GBM models into five separate
categories: Patient-derived glioblastoma cell lines are cultured
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directly from patient tumors; engineered GBM-like cell lines are
cells genetically manipulated to represent GBM; ex vivo models
study animal tissue in relation to GBM; in vivo tumor
transplantation models involve human tumor implantation in
animal models, and genetically engineered mouse models
(GEMMs) involve the introduction of GBM through germline
genetic manipulation. Organoid models are 3D patient-derived
suspensions discussed separately. Each model has unique
benefits and drawbacks in the study of GBM.

Patient-Derived Glioblastoma Cell Lines
In vitro models are often the simplest models. They involve
culturing and experimenting on cell lines meant to represent
GBM. Investigators have the choice of experimenting on widely
used highly passaged ‘classic’ cell lines or patient-derived models
such as low passage primary cell lines or tumor tissue slice
cultures. The reliability of classically used cell lines, and the
tumors they produce, have been called into question because
they have assumed a differentiated state that may no longer
reflect the GSCs intended to be represented. Tumors resulting
from orthotopic transplantation of the classic cell lines that are
grown in serum adherent to plates in 2D culture settings, often
do not resemble GBM, but rather grow as an encapsulated tumor
in the mouse brain, resembling the growth pattern of brain
metastasis (65). One of the most popularly studied cell lines,
U87MG, is genetically different in many respects and no longer
matches the original culture (222, 223). Even without these
issues, in vitro cell models using classic cell lines, have limited
utility for simple mechanistic studies and likely should be moved
away from (36, 222, 224).

Unlike classic cell lines, patient-derived GBM cell models retain
the genetic and transcriptional state of the parent tumor, when
cultured in similar conditions, long term (41, 61, 65, 225, 226).
Cultures are deemed viable for long-term self-renewal after 10
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passages which equate to at least 2 months in culture and can be
frozen for long-term preservation (227). In one study, eight out of
nine patient-derivedmodels that lasted at least 8 passages were still
viable after 50 passages (228). However, in practice low passage
cultures are always archived. Patient-derived GBM cell models
were originally grown as neurospheres in suspension culture, but
the suspension is not necessary for survival and expansion.
Adherent cultures are viable, permitting easier experimentation
with these models (147, 229, 230). Additionally, adherent cultures
were effective in deriving new cell lines in >90% of cases when
using IDH-WT GBM cell lines (36, 224, 226). While adherent
cultures are often easier to manipulate and study, suspension
cultures can be developed into organoid models. These models are
discussed more in a later section.

Engineered Glioblastoma-Like Cell Lines
GBM can also be engineered in vitro. Introduction of driver
mutations stepwise into NSCs or other cells, in vitro, can cause
these cells to transform phenotypically into cancer cells. They
can then be transplanted and studied in vivo (36). Various
methods such as plasmid transfection, lentiviral or retroviral
transduction (48), and CRISPR/Cas9 technology (231) are used
to induce these mutations and produce a GBM-like phenotype.
CRISPR/Cas9 technology enables gene knock-out/in and more
precise insertions/deletions compared to previous methods. It
also allows for more experimental control through novel genetic
screening techniques in vitro and in vivo (232, 233). CRISPR is
effective for genetic manipulation of both human and mouse
NSCs and could be used in a variety of future experiments
towards this (36, 234). Additionally, it has been used to induce
tumorigenesis in organoid models by knocking out tumor
suppressor genes. The resulting tumor cells are molecularly
similar to GBM and can be implanted into mice to grow into
tumors (235, 236).
FIGURE 2 | The subventricular zone (SVZ) of a mature cortical organoid highly resembles the (SVZ) of an adult human brain. Positive immunofluorescence
signatures of the common (SVZ) markers are represented in (A–D). NESTIN (Green) is an intermediate filament protein that is expressed by neural stem cells (NSCs)
in the subventricular zone (SVZ) and it is generally recognized as a marker of undifferentiated nervous system cells. CD31 [Red, (A)] also known as Platelet
endothelial cell adhesion molecule-1 (PECAM-1), is a glycoprotein highly expressed on endothelial cells and it is generally recognized as blood vessel markers. SOX-2
[Red, (B)] is an HMG-Box transcription factor that is expressed in neural progenitor cells and is considered as a marker of high pluripotency. Beta-Tubulin III [Red,
(C)] an essential structural protein of the neural microtubule network that correlates with the earliest phases of neuronal differentiation. GFAP [Red, (D)] is a marker
for the glial fibrillary acidic protein expressed by astrocytes and ependymal cells during development. (Source Zinn lab).
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Ex Vivo Animal Models
Ex vivo modeling is a popular neuroscience procedure adapted
for GBM study (36, 237). Mice are the most common model due
to their short breeding times, relatively low cost, easy genetic
manipulation, and mammalian organ systems (36). Both slice
culture methods and whole animal models can be studied. Slice
culture methods allow an accurate microanatomical analysis of
tissue-tumor interaction, which has provided insight into the
interaction between GBM and the SVZ (238). However, whole
animal models are often necessary as comprehensive disease-
relevant models (36). Both tumor cell transplantation and
genetically manipulated de novo tumors are viable methods of
tumor induction of GBM in vivo.

In Vivo Tumor Transplantation Models
Tumor cells are directly transplanted into the brain or the skin in
in vivo tumor transplantation models via orthotopic or
subcutaneous injections. Orthotopic grafts are preferred due to
spatial and temporal selectivity which allows for the induction of
similar tumor physiology in multiple mice (36). Some drawbacks
of orthotopic grafts include the technical challenge of
implantation, lack of control over engraftment and seeding,
and disruption of normal tissue architecture where the injury
is caused by the injection procedure. Subcutaneous grafts are easier
to introduce but lack the specific brain microenvironment and
infiltration characteristic of GBM (239). Patient-derived
orthotopic xenografts (PDOX) models involve the implantation
of human tumor cells into immunocompromised mice, potentially
simulating the tumor microenvironment of human GBM (36).
Golebiewska et al. (240) reported the generation of a unique set of
organoids and patient-derived xenografts of various glioma
subtypes and corresponding longitudinal PDOX from primary
and recurrent tumors. The model they presented captured a wide
spectrum of the molecular genotypes of GBM that highlights the
potential of these models for precision medicine. The mutations
described in their models include: IDH1, ATRX, TP53, MDM2/4,
amplification of EGFR, PDGFRA, MET, CDK4/6, MDM2/4, and
of CDKN2A/B deletion, PTCH, and PTEN. With regards to the
corresponding PDOX model, they found that it recapitulates
the limited genetic evolution of gliomas in patients following
treatment. The model they presented showed a clinically
relent response to TMZ and targeted therapies and could be
used as starting point to develop more advanced models that
may help develop a therapeutically effective GBM precision
treatment modality.

Genetically Engineered Mouse Models
GEMMs are created by introducing germline genetic mutations
of tumor suppressors and oncogenes. This can occur via
mutagen exposure (241), Cre-lox recombination (19),
lentivirus administration (242), or CRISPR- technology (36,
243). Selective breeding allows for the maintenance of mice
litters with reproducible, mutated genotypes that are more
susceptible to developing tumors and are useful for
experimentation (36). These models provide insight into
initiation events and driver mutations for GBM. A GEMM
study revealed NF1 as a driver mutation for malignant
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astrocytoma (244), contributing to the subsequent discovery of
NF1 as a driver mutation in GBM (245). Other work with
GEMMs supports the theory that GBM derives from NSCs in
the SVZ (242, 246–248). These studies found that NSCs are
easier to transform to tumor cells than astrocytes are (242, 246,
248) and that expression of an IDH1 mutation in the adult SVZ
can model gliomagenesis (247).

Organoids
Three-dimensional organoid models are some of the most useful
models for studying GBM. Lancaster et al. (249) developed the
first organoid model in 2013 by creating neuroectoderm tissue
from induced pluripotent stem cells (iPSCs) and then suspending
this tissue in a rotating bioreactor to enhance growth. These
models recapitulate the cellular heterogeneity and structure seen
in vivo (249). Organoids can either represent a brain structure or a
tumor cytoarchitecture by culturing iPSCs or GSCs respectively
(250). Eventually, the model develops to contain differentiated
cells of various populations, mirroring the microenvironment of
the brain, or tumor, structure. Organoid models allow cells
representing a large spectrum of differentiation to coexist within
a model (250). Additionally, primary tumors are able to grow to
size in organoid models allowing expression of necrotic and
hypoxic features of human tumors (250). These features can
create a relatively realistic experimental model of a tumor in the
human context; however, there are limitations to this model
system. Cerebral organoid models take months to culture and
can be highly variable, as well as often lack functional vasculature
or immune responses (36). Despite these drawbacks, we believe
human cerebral organoid technology is an excellent adjunct
model system to the current models described above. Other
models remain important as adherent cultures are used when a
more reductionist model is needed and suspension cultures are
used when a more comprehensive heterogenic model is necessary.

Azzarelli et al. (37), identified five different methods developed
to create organoid models: (1) adding minced GBM specimen to
Matrigel (250), (2) culturing extracted tumor into a matrigel-free
serum-free environment on an orbital shaker (251), (3)
nucleofecting embryonic stem cell brain organoids (235, 236),
(4) adding 2D cultured patient-derived GSCs to embryonic stem
cell brain organoids (236, 252), (5) and 3D bioprinting of GBM
and endothelial cells with added ECM components (253).
Preference for 3D organoid models stems from their ability to
potentially recapitulate in vivo response to therapy more
accurately than other models such as 2D cultures and PDOXs
(235, 250, 252). Additionally, organoids are advantageous because
they are able to culture a heterogeneous population of cells in the
same environment (37). This allows CSC heterogeneity and
development to be studied in the proper environment
surrounded by a heterogeneous population of cells (37, 254).
Recent techniques have enabled the creation of organoid models
within 1-2 weeks (251), dramatically reducing the previous
procedural time of multiple months (235, 236, 250, 252). This
time reduction is key for therapeutic relevance because patients
may begin treatment 1-2 weeks after surgical resection (37).

Some future challenges for 3D models include maintaining
tumor complexity, establishing a microenvironment to mimic
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inflammatory responses, and reducing variability (255). A
combination of models that takes advantage of each model’s
strengths may be most beneficial (37). In some cases, tumors
were unable to develop despite genetic alterations consistent with
pathogenesis (255). Regionalized organoids for the area of origin
of a particular tumor may be required to solve this problem
(255–258). It follows, that if human cerebral organoids do
demonstrate a relatively faithful microarchitecture and
presence of various differentiated cell types, that organoids
may be an ideal model to study the human SVZ and how it
relates to gliomagenesis.

Subventricular Zone Organoid Models
Organoid models have a variety of uses at various stages of
research. Kim et al (259) reasons that organoid research is useful
in four capacities: basic research, biobanking, disease modeling,
and precision medicine. Given the clinical and basic science
evidence supporting an association between the SVZ and GBM,
an organoid model that accurately resembles the SVZ would be
extremely valuable for the study of GBM. In the basic research
sense, such a model may provide a comprehensive picture of
gliomagenesis from driver mutations to tumor formation, unlike
any other model. Biobanking is critical to improving
standardization of study, allowing for research on tumors from
patients with naturally developed tumors. Ideally, this model
should reliably mimic both structural and cytoarchitectural
components of the human SVZ to allow for analysis of the
involvement of various niche components in GBM formation
and maintenance. Heterogeneity in organoids permits additional
factors such as immunologic response to be incorporated to
judge their influence on the tumor within the simulated
environment (260). Using an SVZ model, therapeutic strategies
can be tailored to and tested on tumors in the early stages of
development. Organoid models have the advantage of being
created using iPSCs from a patient in just a few weeks to allow
for the personalization of the treatment regimens for a tumor
with specific mutations (261). The SVZ, in particular, is
important to study in this context as this is where the earliest
Frontiers in Oncology | www.frontiersin.org 9
mutations are hypothesized to occur meaning this could be the
earliest therapeutic target.

Current regional organoid models for the SVZ have some
difficulties for GBM research purposes. The Qian et al. (262)
model includes SVZ specific cells but lacks non-neurally
differentiated structures important to GBM pathology like
vasculature and meninges. Lack of vasculature severely limits
the size of the organoid. Hypoxia and the absence of nutrients for
cells more than 300-500 mm from the surface result in a necrotic
core. Due to size limitations, this model only mirrors the human
fetal cerebral cortex up to the second trimester, rendering it
ineffective for studying tumor pathology in adults (262). Linkous
et al. (252) created a model that includes SVZ zone markers, but
for the developing brain only. Additionally, no structural or
cytoarchitectural analysis of the region confirms an accurately
simulated human SVZ (252). Other cerebral organoid models do
not demonstrate the presence of a subventricular zone-like
region altogether (235, 236, 250, 251, 253, 263). A model that
accurately recapitulates the structure, cytoarchitecture, and
molecular patterns of the SVZ is necessary for a more
comprehensive understanding of GBM initiation and
recurrence (Figure 3).
FINAL REMARKS/CONCLUSION

The recent evidence is in support of NSCs in the SVZ as the cells
of origin of GBM, however, the astrocyte dedifferentiation
hypothesis has not been rejected and in fact, gliomagenesis can
certainly be a combination of oncogenic differentiation and
dedifferentiation events. In addition to the site of origin, the
SVZ may be involved in the recurrence of GBM as evidenced by
improved PFS with radiation therapy to the ipsilateral SVZ (217).
Modeling of this region could provide great insight into the
pathology of GBM. Such a model could enable therapeutic
testing in vivo, allowing for the creation of an individualized
treatment profile specifically targeting the culprit cells for
recurrence (264). Organoid modeling is an all-humanoid and
FIGURE 3 | Genetically engineered cancer organoids show histopathological similarity to CNS tumors such as Glioblastoma. Panel A shows the characteristic
histopathological features of cancerous tissue such as increased nuclear to cytoplasmic ratio.
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3D system, an intriguing adjunct model system for brain cancers
as opposed to xenotransplantation in animal models and 2D
cultures (37). In this review we discuss the role of the
subventricular zone in glioblastoma genesis, maintenance, and
modeling. We also pointed out the potential impact of
introducing novel iPSC-based cerebral organoid SVZ models
in the study of gliomagenesis. This is an exciting field of research
and may lead to a more personalized approach since iPSC-based
models can readily be patient-tailored. It is certain that the SVZ
in general and particularly its role in cancer is not entirely
understood to date; and it will remain of great interest across
various fields of study such as neuroscience, neurodegeneration,
and cancer research.
Frontiers in Oncology | www.frontiersin.org 10
AUTHOR CONTRIBUTIONS

Conception and design: PZ. Interpretation of data: PZ and JB.
Drafted the manuscript: JB and AH. Approved the final version
to be published: PZ. Agree to be accountable for all aspects of the
work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated
and resolved: PZ.
FUNDING

UPMC University of Pittsburgh medical center startup funds.
REFERENCES
1. Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al.

CBTRUS Statistical Report: Primary Brain and Central Nervous System
Tumors Diagnosed in the United States in 2006-2010. Neuro Oncol (2013)
15:ii1–56. doi: 10.1093/neuonc/not151

2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,
Cavenee WK, et al. The 2016 World Health Organization Classification of
Tumors of the Central Nervous System: A Summary. Acta Neuropathol
(2016) 131:803–20. doi: 10.1007/s00401-016-1545-1

3. Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, et al. Radial Glia
Cells Are Candidate Stem Cells of Ependymoma. Cancer Cell (2005) 8:323–
35. doi: 10.1016/j.ccr.2005.09.001

4. Castillo M. Stem Cells, Radial Glial Cells, and a Unified Origin of Brain
Tumors. Am J Neuroradiol (2010) 31:389–90. doi: 10.3174/ajnr.A1674

5. Koshy M, Villano JL, Dolecek TA, Howard A, Mahmood U, Chmura SJ,
et al. Improved Survival Time Trends for Glioblastoma Using the SEER 17
Population-Based Registries. J Neurooncol (2012) 107:207–12. doi: 10.1007/
s11060-011-0738-7

6. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB,
et al. Radiotherapy Plus Concomitant and Adjuvant Temozolomide for
Glioblastoma. N Engl J Med (2005) 352:987–96. doi: 10.1056/
NEJMoa043330

7. Bi WL, Beroukhim R. Beating the Odds: Extreme Long-Term Survival With
Glioblastoma. Neuro-Oncology (2014) 16:1159–60. doi: 10.1093/neuonc/
nou166

8. Smoll NR, Schaller K, Gautschi OP. The Cure Fraction of Glioblastoma
Multiforme. Neuroepidemiology (2012) 39:63–9. doi: 10.1159/000339319

9. Smoll NR, Schaller K, Gautschi OP. Long-Term Survival of Patients With
Glioblastoma Multiforme (GBM). J Clin Neurosci (2013) 20:670–5.
doi: 10.1016/j.jocn.2012.05.040

10. Stupp R, Tonn JC, Brada M, Pentheroudakis G. High-Grade Malignant
Glioma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and
Follow-Up. Ann Oncol (2010) 21:v190–3. doi: 10.1093/annonc/mdq187

11. Macdonald DR, Kiebert G, Prados M, Yung A, Olson J. Benefit of
Temozolomide Compared to Procarbazine in Treatment of Glioblastoma
Multiforme at First Relapse: Effect on Neurological Functioning,
Performance Status, and Health Related Quality of Life. Cancer Invest
(2005) 23:138–44. doi: 10.1081/CNV-200050453

12. Chen L, Chaichana KL, Kleinberg L, Ye X, Quinones-Hinojosa A.
Glioblastoma Recurrence Patterns Near Neural Stem Cell Regions.
Radiother Oncol (2015) 116:294–300. doi: 10.1016/j.radonc.2015.07.032

13. Bette S, Barz M, Huber T, Straube C, Schmidt-Graf F, Combs SE, et al.
Retrospective Analysis of Radiological Recurrence Patterns in Glioblastoma,
Their Prognostic Value and Association to Postoperative Infarct Volume. Sci
Rep (2018) 8:4561. doi: 10.1038/s41598-018-22697-9

14. Oh J, Sahgal A, Sanghera P, Tsao MN, Davey P, Lam K, et al. Glioblastoma:
Patterns of Recurrence and Efficacy of Salvage Treatments. Can J Neurol Sci
(2011) 38:621–5. doi: 10.1017/S0317167100012166
15. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC,
et al. Effects of Radiotherapy With Concomitant and Adjuvant
Temozolomide Versus Radiotherapy Alone on Survival in Glioblastoma in
a Randomised Phase III Study: 5-Year Analysis of the EORTC-NCIC Trial.
Lancet Oncol (2009) 10:459–66. doi: 10.1016/S1470-2045(09)70025-7

16. Bastiancich C, Vanvarenberg K, Ucakar B, Pitorre M, Bastiat G, Lagarce F,
et al. Lauroyl-Gemcitabine-Loaded Lipid Nanocapsule Hydrogel for the
Treatment of Glioblastoma. J Cont Rel (2016) 225:283–93. doi: 10.1016/
j.jconrel.2016.01.054

17. Pinel S, Thomas N, Boura C, Barberi-Heyob M. Approaches to Physical
Stimulation of Metallic Nanoparticles for Glioblastoma Treatment. Adv
Drug Deliv Rev (2019) 138:344–57. doi: 10.1016/j.addr.2018.10.013

18. Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJA. The Origin of the
Cancer Stem Cell: Current Controversies and New Insights. Nat Rev Cancer
(2005) 5:899–904. doi: 10.1038/nrc1740

19. Alcantara Llaguno S, Chen J, Kwon C-H, Jackson EL, Li Y, Burns DK, et al.
Malignant Astrocytomas Originate From Neural Stem/Progenitor Cells in a
Somatic Tumor Suppressor Mouse Model. Cancer Cell (2009) 15:45–56.
doi: 10.1016/j.ccr.2008.12.006

20. MacLeod G, Bozek DA, Rajakulendran N, Monteiro V, Ahmadi M, Steinhart
Z, et al. Genome-Wide CRISPR-Cas9 Screens Expose Genetic Vulnerabilities
and Mechanisms of Temozolomide Sensitivity in Glioblastoma Stem Cells.
Cell Rep (2019) 27:971–86.e9. doi: 10.1016/j.celrep.2019.03.047

21. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, et al.
Expression of Mutant P53 Proteins Implicates a Lineage Relationship
Between Neural Stem Cells and Malignant Astrocytic Glioma in a Murine
Model. Cancer Cell (2009) 15:514–26. doi: 10.1016/j.ccr.2009.04.001

22. Yang ZJ, Ellis T, Markant SL, Read T-A, Kessler JD, Bourboulas M, et al.
Medulloblastoma Can Be Initiated by Deletion of Patched in Lineage-
Restricted Progenitors or Stem Cells. Cancer Cell (2008) 14:135–45.
doi: 10.1016/j.ccr.2008.07.003

23. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, et al. P53
and Pten Control Neural and Glioma Stem/Progenitor Cell Renewal and
Differentiation. Nature (2008) 455:1129–33. doi: 10.1038/nature07443

24. Amariglio N, Hirshberg A, Scheithauer BW, Cohen Y, Loewenthal R,
Trakhtenbrot L, et al. Donor-Derived Brain Tumor Following Neural
Stem Cell Transplantation in an Ataxia Telangiectasia Patient. PloS Med
(2009) 6:e1000029. doi: 10.1371/journal.pmed.1000029

25. Matarredona ER, Pastor AM. Neural Stem Cells of the Subventricular Zone
as the Origin of Human Glioblastoma Stem Cells. Therapeutic Implications.
Front Oncol (2019) 9:779. doi: 10.3389/fonc.2019.00779

26. Kishi K. Golgi Studies on the Development of Granule Cells of the Rat
Olfactory Bulb With Reference to Migration in the Subependymal Layer.
J Comp Neurol (1987) 258:112–24. doi: 10.1002/cne.902580109

27. Luskin MB. Restricted Proliferation and Migration of Postnatally Generated
Neurons Derived From the Forebrain Subventricular Zone. Neuron (1993)
11:173–89. doi: 10.1016/0896-6273(93)90281-U

28. Lois C, Alvarez-Buylla A. Long-Distance Neuronal Migration in the Adult
Mammalian Brain. Science (1994) 264:1145–8. doi: 10.1126/science.8178174
March 2022 | Volume 12 | Article 790976

https://doi.org/10.1093/neuonc/not151
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1016/j.ccr.2005.09.001
https://doi.org/10.3174/ajnr.A1674
https://doi.org/10.1007/s11060-011-0738-7
https://doi.org/10.1007/s11060-011-0738-7
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1093/neuonc/nou166
https://doi.org/10.1093/neuonc/nou166
https://doi.org/10.1159/000339319
https://doi.org/10.1016/j.jocn.2012.05.040
https://doi.org/10.1093/annonc/mdq187
https://doi.org/10.1081/CNV-200050453
https://doi.org/10.1016/j.radonc.2015.07.032
https://doi.org/10.1038/s41598-018-22697-9
https://doi.org/10.1017/S0317167100012166
https://doi.org/10.1016/S1470-2045(09)70025-7
https://doi.org/10.1016/j.jconrel.2016.01.054
https://doi.org/10.1016/j.jconrel.2016.01.054
https://doi.org/10.1016/j.addr.2018.10.013
https://doi.org/10.1038/nrc1740
https://doi.org/10.1016/j.ccr.2008.12.006
https://doi.org/10.1016/j.celrep.2019.03.047
https://doi.org/10.1016/j.ccr.2009.04.001
https://doi.org/10.1016/j.ccr.2008.07.003
https://doi.org/10.1038/nature07443
https://doi.org/10.1371/journal.pmed.1000029
https://doi.org/10.3389/fonc.2019.00779
https://doi.org/10.1002/cne.902580109
https://doi.org/10.1016/0896-6273(93)90281-U
https://doi.org/10.1126/science.8178174
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Beiriger et al. Subventricular Zone in Glioblastoma Genesis
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217. Şus ̧man S, Leucuta̧ DC, Kacso G, Florian ŞI. High Dose vs Low Dose
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