AUTHOR=Luo Michael C. , Nikolopoulou Elpiniki , Gevertz Jana L. TITLE=From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers JOURNAL=Frontiers in Oncology VOLUME=Volume 12 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2022.793908 DOI=10.3389/fonc.2022.793908 ISSN=2234-943X ABSTRACT=An outstanding challenge in the clinical care of cancer is moving from a one-size-fits-all approach that relies on population-level statistics towards personalized therapeutic design. Mathematical modeling is a powerful tool in treatment personalization, as it allows for the incorporation of patient-specific data so that treatment can be tailor-designed to the individual. In this work, we employ two fitting methodologies to personalize treatment in a mathematical model of murine cancer immunotherapy. Unexpectedly, we found that the predicted personalized treatment response is sensitive to the fitting methodology utilized. This raises concerns about the ability of mathematical models, even relatively simple ones, to make reliable predictions about individual treatment response. Our analyses shed light onto why it can be challenging to make personalized treatment recommendations from a model, but also suggest ways we can increase our confidence in personalized mathematical predictions.