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What Clonal Hematopoiesis
Can Teach Us About MDS

Irenaeus C. C. Chan”, Brian J. Wiley™ and Kelly L. Bolton

Washington University School of Medicine, St. Louis, MO, United States

Clonal hematopoiesis (CH), defined as the clonal expansion of mutated hematopoietic
stem and progenitor cells (HSPCs), is a common aging process. CH is a risk factor for the
development of hematologic malignancies, most commonly myeloid neoplasms (MNs)
including acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and
myeloproliferative neoplasm (MPN). Recent work has elucidated how the development
and cellular fitness of CH is shaped by aging, environmental exposures, and the germline
(inherited) genetic background of an individual. This in turn has provided valuable insights
into the pathogenesis of MNs including MDS. Here, in this review, we discuss the genetic
origins of CH, the environmental stressors that influence CH, and the implications of CH
on health outcomes including MDS. Since MNs have shared risk factors and underlying
biology, most of our discussion regarding the implications of CH surrounds MN in general
rather than focusing specifically on MDS. We conclude with future directions and areas of
investigation including how intervention studies of CH might inform future therapeutic
approaches to MN including MDS.

Keywords: clonal hematopoiesis (CH), myeloid neoplasm, genetic predisposition, environmental risk,
myelodysplastic syndrome (MDS)

MAIN

With every round of mitotic division, DNA damage and inefficient repair occur, resulting in the
accumulation of somatic mutations in aging hematopoietic stem and progenitor cells (HSPCs) over
time. The process of acquired mutations leading to clonal expansion of HSPCs is referred to as CH.
The most common biochemical mutational event giving rise to CH is spontaneous deamination of
methylated cytosine at CpG dinucleotides resulting in generation of thymine (1). CH is a normal
process of aging (2-7). Indeed, the acquisition of aging-related mutations is not limited to stem cells
of the hematopoietic system. Age-related somatic mutations are in fact pervasive across human
tissues (8-12). Differences in the rate of somatic mutational acquisition across human tissues
correlates with the rate of stem cell division and may in part explain variation in cancer risk among
human tissues (10, 13). The patterns of aging-related somatic mutagenesis are conserved even
across mammalian species with the mutation rate inversely correlated with species lifespan. This
suggests that beyond risk of cancer, somatic mutation rate may be a determinant of lifespan (14).
Mathematical reconstruction of HSPC lineage histories suggests that CH mutations may arise as
early as childhood (even in utero) with some mutations undergoing a gradual expansion throughout
life (11, 15).
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Our ability to detect CH mutations and the observed
prevalence of CH is dependent on the sensitivity of sequencing
as determined by sequencing depth. For example, analysis of
whole exome sequencing data sequenced at a depth of under
100-fold coverage generally reports age-dependent single
nucleotide variants (SNVs) or small insertions/deletions
(indels) in approximately 6% of subjects over 65 years of age
(2, 3, 14). In contrast, next-generation sequencing (NGS)
technologies with advanced error-correction methods such as
unique molecular indices, can accurately detect mutations below
0.5% variant allele fraction (VAF) when performed at a high
depth (16). Using approaches such as these, the prevalence of CH
mutations in the blood of adults over 50 appears closer to 100%
(17). Sequencing technologies such as duplex consensus
sequencing (9) and bottleneck sequencing (15) may enable the
detection of individually mutated stem cells that have not
undergone clonal expansion. The VAF used to define a
clonally expanded stem cell is not well-defined and depends on
assumptions regarding the number of stem cells actively
contributing to white blood cell production. Studies tracking
the clonal contributions of cells labelled directly in vivo have
suggested that long-term homeostatic hematopoiesis is driven by
many thousands of cells (18-20). However, recent work using
single-cell-derived HSPCs suggests that the number of
hematopoietic stem cells that are actively making white blood
cells at any one time to be in the range of 50,000-200,000 (21).

The mutations driving CH confer a survival advantage over
wild-type cells that results in the clonal expansion of the mutated
cell. Thus, there is overlap in the genetic mutations driving CH
and early drivers of hematologic cancer. CH driven by SNVs or
indels are most commonly drivers of MNs. This includes
epigenetic modifiers (DNMT3A, TET2, ASXLI1, IDHI, IDH?2),
splicing factors (SF3BI, SRSF2, U2AFI), genes involved in the
DNA damage response (TP53, PPMID, CHEK2), and JAK2.
Murine models have been useful in understanding the role that
mutations in these genes play in conferring a fitness advantage.
Mutations in the epigenetic regulators such as DNMT3A and
TET2 have been shown to confer an advantage by enhancing self-
renewal of stem and progenitor cells and inhibiting their
differentiation (22, 23). Mutations in other genes involved in
the DNA damage response may enhance cell survival under
specific cellular stressors (5, 24, 25).

Copy number events (amplifications, deletions, or copy
neutral loss of heterozygosity) are also known to drive CH.
Analysis of genome-wide single nucleotide polymorphism (SNP)
array data initially suggested that large >2 Mb copy number
events in autosomal chromosomes were observed rarely, in
roughly 2% of individuals aged 70-75 (2). Computational tools
that incorporate long-range phase information have since
improved the sensitivity to detect copy number-driven CH
almost 10-fold (26). Somatic loss of chromosome Y (LOY) in
males is the most common copy number event driving CH,
occurring in over 25% men over the age of 60 (6). Interestingly,
many of the large copy number events driving CH overlap with
those driving lymphoid malignancies (e.g., trisomy 12, deletion
13q, deletion 11q, among others). This likely reflects the

importance of copy number events as early drivers in
lymphoid malignancies (27). Other classes of mutational events
such as medium-sized (>50 bp) copy number events, structural
events and noncoding mutations have relevance in hematologic
cancer and may also drive CH, yet are not well characterized.
With the decreasing cost of high-depth whole genome
sequencing and other technologies better positioned to detect
these classes of events, the mutational spectrum of the events
driving CH will likely become better defined.

Germline Genetic Predisposition to

Clonal Hematopoiesis

Germline (inherited) genetic factors appear important in
determining both mutational acquisition and expansion of CH.
Both common and rare germline CH susceptibility loci have
been identified (19-21). Some genetic loci appear to be associated
with CH driven by multiple driver genes (e.g., variants within the
TERT and CHEK2 loci are associated with CH driven by
alterations in DNMTA, JAK2, and copy number events
including LOY). Others, however, show heterogeneity in the
strength of the association across driver genes. For example,
germline TCLIA variants are associated with DNMT3A-mutant
CH but not JAK2-mutant CH (28). While diverse, many loci
converge upon key pathways regulating the cell cycle, DNA
damage sensing, and the apoptotic process. Another theme is the
high overlap between CH susceptibility genes and known cancer
susceptibility genes (29). Other loci appear to be the objects of
positive or negative clonal selection, i.e., CH events occurring in
cis achieve a strong selective advantage by duplicating or
removing inherited alleles. This was observed within the
setting of healthy individuals in the UK Biobank where rare
inherited variants were associated strongly with the acquisition
of deletions or loss of heterozygosity in cis (26). Somatic
reversion or compensation for pathogenic germline alleles
through CH has also been observed in the setting of inherited
bone marrow failure syndromes (30, 31).

Studies of genetic susceptibility to LOY have shed light into
the mechanism driving the long-established association between
LOY and increased cancer susceptibility (32, 33), including MDS
(34). Using data from the UK Biobank study, Thompson et al.
identified 156 autosomal germline determinates of LOY (6).
Genetic susceptibility to LOY was associated with risk of
multiple types of cancer not only in men but also in women.
Interestingly, LOY genetic susceptibility variants were also
associated with age at natural menopause in women. Taken
together, this suggests that LOY in men may represent a
biomarker of genomic instability occurring in multiple tissue
types thus supporting a “common-soil” hypothesis linking LOY
to cancer risk. Future studies of genetic susceptibility to CH will
provide further insights into the mechanisms linking CH to a
diverse array of health outcomes.

Characterization of CH in individuals harboring MN-
susceptibility genes has helped define the mechanisms driving
genetic predisposition to MN. Two such examples include severe
congenital neutropenia (SCN) and Shwachman-Diamond
syndrome (SDS). SDS is a rare recessive disorder caused by
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bi-allelic mutations of SBDS that leads to impaired ribosome
assembly, bone marrow failure, and MN early in life. CH due to
mutations in TP53 have been shown to occur much more
frequently among children with SDS (48%-76%) compared
with aged-matched controls (<1%) although the frequency of
other common CH mutations (DNMT3A, TET2, ASXL1) was
comparable. The most common molecular event demarcating
the transition of TP53 CH to MN in SDS was bi-allelic TP53
inactivation and distinguished high from low-risk patients with
CH. This suggests the presence of specific stressors in SDS that
strongly select for HSPCs bearing TP53 mutations and the
importance of bi-allelic loss of TP53 in determining malignant
progression (35, 36). Individuals with SCN also have a unique
molecular profile of CH with 40% of individuals having truncating
mutations in the cytoplasmic domain of granulocyte colony-
stimulating factor receptor (CSF3R) compared with 0% of age-
matched controls (35). Treatment with granulocyte colony-
stimulating factor (G-CSF) is the standard of care for SCN, and
expression of the truncated G-CSF receptor confers a sustained
increased signal in response to G-CSF (37). These observations
suggest that high levels of endogenous G-CSF provide a powerful
selective pressure on CSF3R-mutated HSPCs among individuals
with SCN. Thus, studies of CH in patients with rare, pathogenic
MN susceptibility syndromes provide a unique window into the
convergence of genetic and environmental factors dictating CH
selection and malignant progression.

Environmental Influences on CH

We are in the infancy of understanding how environmental
factors shape the risk of MDS. Indeed, beyond established
associations between MDS and benzene exposure, cigarette
smoking, and cytotoxic therapy, little is known regarding
environmental risk factors. Problems with the diagnosis and
classification of MDS have hampered the conduct of large-scale
studies. However, recent work regarding the impact of
environmental factors on CH have yielded important insights
into how environmental factors might shape the development of
MDS. Multiple observational studies have shown that CH is
enriched among those exposed to cigarette smoke (2, 3, 5) and
oncologic therapy (5, 22, 23). The strength of these associations
varies by gene. For example, ASXLI-mutant CH is more strongly
enriched among smokers compared with DNMT3A-mutant CH
(5, 38), and CH mutations in genes belonging to the cell-cycle/
DNA-damage response (DDR) pathway (39) are more common
following exposure to cytotoxic therapy or radiation. Specific
classes of cytotoxic therapy may confer a higher selective
advantage on DDR-mutant HSPCS including platinum,
radionuclide therapy, and topoisomerase I/II inhibitors.
Chemotherapy-induced DNA damage in HSPCs triggers
activation of apoptotic pathways resulting in cell death. HSPCs
with mutations in genes regulating cell-cycle arrest and apoptosis
including TP53 and PPMID carry a competitive advantage (38,
40) as HSPCs bearing these mutations result in decreased cell
death following DNA damage (24, 25, 39). This suggests that
different hematopoietic stressors promote the expansion of
specific types of mutant clones. Indeed, this gene-specific
selective pressure was confirmed previously by us through

longitudinal blood sampling of solid tumor patients receiving
cytotoxic therapy (5).

Conflicting epidemiologic findings exist regarding the
association between chronic inflammation and risk of MN.
Some studies have shown a modestly elevated risk of MN
among those with a history of autoimmune diseases (41-43)
while others report no significant association (44). Studies of the
relationship between CH and inflammation may help address
this question. Experimental data in murine model systems
suggests that inflammation drives competitive advantage of CH
clones. TET2-deficent and TET2-mutant HSCs show a strong
proliferative advantage when exposed to exogenous TNF-o (45)
and LPS-induced (46) inflammatory stress. Similarly, DNMT3A-
mutant HSCs outcompete wild-type cells during infection. The
frequency of CH has been reported to be elevated in individuals
with some chronic inflammatory conditions [e.g., ulcerative
colitis (47), HIV (48)] but not others (e.g., rheumatoid
arthritis). Interpretation of these associations is limited by
several factors. First, because these studies are cross-sectional,
causality is difficult to determine (i.e., whether CH induces or is
promoted by these conditions). Second, there are many possible
confounders of these associations including related exposures
such as medication effects. Serial sequencing of CH in
longitudinal patient cohorts will provide further clarity
regarding whether inflammatory conditions promote CH
in humans.

Consequences of CH
The vast majority of individuals with CH will never develop MN.
However, in a subset, clonal selection and the acquisition of
additional genetic aberrations will demarcate the transition to
malignancy (5, 18). Individuals with multiple mutations,
mutations with high clonal burden (high VAF), mutations in
TP53, the spliceosome pathway, and IDHI/2 are high-risk
features (4-6). However, mutational features alone provide
only modest predictive ability for risk of MN even when
combined with blood count parameters and other clinical data
(4, 5). Other factors likely play a major modifying role in the risk
of developing MN. This could include clonal composition,
epigenetic changes, or environmental factors among others.
Clonal cytopenia of undetermined significance (CCUS) is a
condition in which individuals with CH also have unexplained
low blood counts (cytopenia). Individuals with CCUS have a
high probability of progression to hematologic malignancy,
particularly MN, compared with individuals with cytopenias
but no evidence of CH (5- and 10-year cumulative probability
of progression: 82% vs. 9% and 95% vs. 9%, respectively) (49).
Similar to CH, individuals with CCUS bearing only isolated
DNMT3A mutations have a lower risk of progression to MN
whereas individuals harboring TET2, ASXLI, TP53, and
spliceosome mutations have higher risks of MN (50).
Characterization of hematopoietic stem cell population
dynamics is critical in developing interventional approaches.
CH driver mutations exert varying degrees of fitness advantage
on HSPCs which partially explains variation in VAF between CH
mutations (51, 52). In line with data that higher VAF CH is
associated with an increased risk of MN, high-fitness variants
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(that confer faster CH growth) are associated with a higher risk
of MN (51, 53). Longitudinal studies in healthy individuals have
shown that while most clones display stable exponential growth
over time, there is considerable variability with respect to
accelerated and decelerated growth depending on the specific
mutation and age of the individual (53). The clonal fitness and
the risk of malignant progression may be shaped by not only
driver mutations but also perhaps modified by co-occurring
passenger mutations (14). Phylogenetic reconstruction suggests
that in many cases, the CH mutations that eventually lead to MN
may arise early in life, even in utero (54, 55). Thus, further
characterization of the lifelong clonal dynamics that demarcate
high-risk features for progression will be critical to informing
MN prevention strategies.

Beyond hematologic malignancies, CH is associated with an
ever increasing list of diseases and health outcomes including
cardiovascular disease (24-26), chronic obstructive pulmonary
disease (27), infection risk including risk of severe COVID-19
(28, 29), autoimmune diseases (30), and HIV (31). We are in the
early stages of understanding the mechanisms underlying this
diverse list of disease associations. For example, multiple murine
models and human data suggest that CH-induced changes in the
hematopoietic stem cell inflammatory milieu may casually
contribute to cardiovascular disease risk (26, 32, 33). However,
a recent study suggests that HSC proliferation and resultant CH
is elevated in mice with atherosclerosis, an observation supported
in a small patient cohort (34). A combination of both functional
data and longitudinal human studies will be critical in defining
causality and the mechanisms driving these associations.

Treatment Options and Prevention
While there are no established treatments for CH, surveillance and
interventional strategies are an emerging area of research.
Therapeutic intervention for patients with solid tumors with CH
represents a possible avenue. Therapy-related MN (t-MN) is
defined by the development of MN following exposure to
cytotoxic chemotherapy and represents 10%-20% of MN (56).
Among adult patients who develop t-MN following oncologic
therapy, CH mutations (that develop into the dominant MN
clone) can often be detected prior to therapy (5). Thus,
assessment of CH prior to and during therapy could be used to
identify patients at high risk of MN. For patients considering
adjuvant therapy who have “high-risk” CH, consideration of dose
reduction or avoidance of therapies known to be highly
leukemogenic could be considered (5). This might be of
particular relevance for individuals bearing CH mutations in
TP53 which are known to be promoted by oncologic therapy.
However, this would need to be carefully weighed against the
survival benefits of adjuvant therapy. Formal evaluation in specific
clinical scenarios would be required prior to implementation.
Elimination of CH through use of a targeted therapy is an
attractive goal. In patients with malignancies in which a dominant
genetic alteration drives tumor, single agent-targeted therapies are
highly effective. Examples include ¢-KIT mutations in
gastrointestinal stromal tumors (GIST) and the BCR-ABL
translocation in chronic myelogenous leukemia (CML). Thus, the
use of targeted therapies in the setting of CH where the vast

majority of patients harbor few mutations might be expected to
show superior efficacy compared with MN. However, given the low
rate of progression to MN, any adverse effects of treatment aimed at
clone elimination must be weighed against the benefit. In this
regard, focus on patients at the highest risk such as individuals with
CCUS or patients with CH and hereditary predisposition
syndromes to MN are of particular interest. Clinical trials
utilizing IDH inhibitors in individuals with IDH-mutant CCUS
are underway (NCT05030441, NCT05102370). While attractive,
IDH-mutant CH is rare and far less common than CH-associated
mutations in DNMT3A, TET2, or ASXL1. As additional targeted
therapies are shown to be efficacious and safe in MN, more
therapeutic options for CCUS and other high-risk forms of CH
will emerge. However, most mutations driving CH exert their effects
through loss of function of the corresponding gene rather than gain
of function and thus will be more difficult to directly target.

A key safety outcome of therapeutic studies in CH,
particularly targeted therapy, will be the long-term impact of
suppressing specific CH clones with regard to the risk of
emergence of other CH clones of malignant potential. The
mechanisms of resistance to targeted therapies are diverse and
yet to be completely characterized. Broad themes include the
acquisition of secondary mutations in the targeted gene that
influence drug binding and the emergence or selection of clones
in alternative pathways. The extent to which long-term
treatment with targeted therapies might suppress/eliminate
specific CH mutations at the risk of selection of more
pathogenic clones is not defined. Nevertheless, application of
targeted therapies to the premalignant setting will further
elucidate clonal dynamics and mechanisms of resistance.

CONCLUSIONS

Characterization of the causes and consequences of clonal
hematopoiesis will continue to provide insights into the
pathogenesis of MN, including MDS. We are in the early
stages of developing approaches for surveillance and
intervention strategies for individuals with high-risk forms of
CH. The successes (and failures) of these initial studies will
provide additional avenues for optimizing MDS therapy.
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