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Purpose: We aimed to establish a prognostic model based on magnetic resonance
imaging (MRI) radiomics features for individual distant metastasis risk prediction in patients
with nasopharyngeal carcinoma (NPC).

Methods: Regression analysis was applied to select radiomics features from T1-
weighted (T1-w), contrast-enhanced T1-weighted (T1C-w), and T2-weighted (T2-w)
MRI scans. All prognostic models were established using a primary cohort of 518
patients with NPC. The prognostic ability of the radiomics, clinical (based on clinical
factors), and merged prognostic models (integrating clinical factors with radiomics) were
identified using a concordance index (C-index). Models were tested using a validation
cohort of 260 NPC patients. Distant metastasis-free survival (DMFS) were calculated by
using the Kaplan-Meier method and compared by using the log-rank test.

Results: In the primary cohort, seven radiomics prognostic models showed similar
discrimination ability for DMFS to the clinical prognostic model (P=0.070-0.708), while
seven merged prognostic models displayed better discrimination ability than the clinical
prognostic model or corresponding radiomics prognostic models (all P<0.001). In the
validation cohort, the C-indices of seven radiomics prognostic models (0.645-0.722) for
DMFS prediction were higher than in the clinical prognostic model (0.552) (P=0.016
or <0.001) or in corresponding merged prognostic models (0.605-0.678) (P=0.297 to
0.857), with T1+T1C prognostic model (based on Radscore combinations of T1 and T1C
Radiomics models) showing the highest C-index (0.722). In the decision curve analysis of
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the validation cohort for all prognostic models, the T1+T1C prognostic model displayed
the best performance.

Conclusions: Radiomics models, especially the T1+T1C prognostic model, provided
better prognostic ability for DMFS in patients with NPC.
Keywords: MRI, radiomics, nasopharyngeal carcinoma, prognosis, predictive model
INTRODUCTION

Nasopharyngeal carcinoma (NPC) is endemic to southern
China, southeastern Asia, and northern Africa, where the peak
incidence rate is 20–50 cases per 100 000 individuals (1, 2).
Advances in NPC diagnosis and treatment using MRI, intensity-
modulated radiotherapy, and combined chemotherapy, has
significantly improved locoregional control, and distant
metastasis is regarded as the main cause of treatment failure
(3–5). In a meta-analysis that reviewed 13304 participants,
intensity-modulated radiotherapy was associated with better 5-
year locoregional control (odds ratio 2.08; 95% confidence
interval [CI]=1.82–2.37), while there were no significant
differences seen in distant metastasis-free survival (DMFS)
compared with conventional radiotherapy (4). Although the
current 5-year overall survival rate of NPC patients reach 80-
88%, 15–25% of patients develop distant metastasis after
treatment, especially in advanced NPC (5, 6), so to identify
high-risk patients to guide optimal treatment decisions is vital.

Currently, the TNM staging system is widely used to predict
prognosis and establish treatment strategies among patients with
NPC. However, patients at the same clinical stage receiving
similar treatments often have different outcomes (7). Among
NPC patients with distant metastasis after treatment, nearly 80%
are stage III or IV (8), when it is difficult to identify high-risk
patients. The presence of plasma Epstein-Barr virus (EBV) DNA
influences the disease process in NPC patients and is regarded as
a potential biomarker with clinical applications (9). Other risk
factors have been associated with prognosis in patients with
NPC, including age, sex, smoking status, hepatitis B surface
antigen, serum lactate dehydrogenase, high-sensitivity C-reactive
protein, and microRNA or mRNA; however, results are
inconsistent (10–15). Therefore, the prognostic value of these
markers needs confirmation.

Radiomics focuses on extracting quantitative features from
medical images to find a possible association with tumor
phenotypic characteristics (16). Radiomic features were found
to be associated with gene and/or protein expression profiles,
treatment response, and clinical outcomes in different cancer
types (16, 17). Pretreatment MRI radiomics or MRI-based
radiomics nomograms were proposed to predict locoregional
recurrence, distant metastasis, and early response to induction
chemotherapy in endemic NPC (18–29). However, there is no
dex concordance index; DMFS distant
virus; NPC nasopharyngeal carcinoma;
1-w T1-weighted; T2-w T2-weighted.
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effective radiomics-based model to distinguish different risks
levels for distant metastasis among NPC patients.

We conducted a study of multiparametric MRI radiomics
features to identify and validate an MRI-based radiomics
model discriminating distant metastasis in patients with NPC.
Moreover, we compared the accuracy of a radiomics prognostic
model (based on selected radiomics features), a clinical
prognostic model (based on clinical risk factors), and a
prognostic model merging the two, for discriminating distant
metastasis in NPC patients.
METHODS

Participants
This retrospective study was approved by the Clinical Research
Ethics Committee of the Sun Yat-Sen University Cancer Center
(SYSUCC); pre-treatment written informed consent was
obtained from all patients or their next of kin. The authenticity
of the study was validated by uploading the fully raw data onto
the Research Data Deposit (RDD) public platform (http://www.
researchdata.org.cn), with the approval RDD number as RDDA
2021135093. There were 903 patients newly diagnosed with
untreated and non-metastatic NPC initially enrolled between
January 2010 and November 2012; 125 patients were excluded
from analysis (see Supplementary Materials). The remaining
778 NPC patients were randomly assigned in a 2:1 proportion to
the primary (n=518) or validation cohort (n=260).

All patients underwent pretreatment evaluation, including
clinical examinations of the head and neck region, fiber optic
nasopharyngoscopy, neck and nasopharynx MRI, chest
radiography, abdominal sonography, and whole-body bone
scan, and staged according to the eighth American Joint
Committee on Cancer TNM staging manual (30). Pre-
treatment blood samples were collected to determine blood
type and the presence or levels of EBV DNA, hepatitis B
surface antigen, lactate dehydrogenase, high-sensitivity C-
reactive protein, platelets, and leucocytes. A quantitative
polymerase chain reaction method was used for detecting
plasma EBV DNA (31). Clinical patient characteristics are
listed in Table 1.

All patients were treated according to the SYSUCC guidelines
for NPC patients, which recommend that stage I patients have
to receive radiotherapy alone, stage II radiotherapy alone, or
concomitant chemoradiotherapy, and stage III–IVa concomitant
chemoradiotherapy with or without induction chemotherapy.
All patients received definitive intensity-modulated radiotherapy
with 6-MV photons during the entire radiotherapy course.
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Concurrent chemotherapy, induction chemotherapy, and
intensity-modulated radiotherapy data are presented in the
Supplementary Material.

Complete follow-up data at 3, 5, and 8 years were available for
97.8%, 96.4%, and 87.6% of patients, respectively. Follow-up
visits occurred at least once every 3 months during the first 3
years and then once every 6 months after treatment. DMFS was
calculated from the date of treatment initiation to that of distant
metastasis at any site, death from any cause, or the date of the last
follow-up. Distant metastases were assessed using two imaging
methods, including chest radiography, abdominal sonography,
bone scan, and CT or MRI; elevation of plasma EBV DNA was
confirmed by pathological biopsy if necessary.

MRI Acquisition/Segmentation and
Radiomics Feature Extraction
All patients underwent MRI with a 1.5-T system (Signa CV/i;
General Electric Healthcare, Chalfont St. Giles, United Kingdom)
or 3.0 T system (Siemens Magnetom Tim Trio, Erlangen,
Germany), employing the fast spin-echo technique. The scan
region imaged ranged from the suprasellar cistern to the inferior
margin of the sternal end of the clavicle using a head-and-neck
combined coil. T1-weighted images (T1-w) in the axial, coronal,
and sagittal planes, T2-weighted (T2-w) images in the axial plane,
and contrast-enhanced T1-weighted (T1C-w) in the axial, coronal,
and sagittal planes were acquired in all patients. Detailed
information on MRI scans is shown in Supplementary Materials.

Axial T1-w, T2-w, and T1C-w Digital Imaging and
Communications in Medicine (DICOM) images were retrieved
from the picture archiving and communication system (PACS)
and loaded into AnalyzePro (https://analyzedirect.com/
ana lyzepro/ ) for semi-manua l segmenta t ion wi th
normalization. One radiologist (Z. Guoyi) with over 10 years
of experience in head and neck cancers outlined the tumor
contour regions of interest (ROI) on each MRI slice, and each
segmentation was validated by a senior radiologist (L. Lizhi) with
20 years of experience in evaluating MRI scans of patients with
NPC. Differences were resolved by consensus. Extractions of
radiomics features were performed using the open-source
PyRadiomics (http://www.radiomics.io/pyradiomics.html). We
extracted 4527 radiomics features for each patient from axial
T1-w, T2-w, and T1C-w axial images (1509 features from each
unimodal MR image). Data from the radiomics features are
shown in the Supplementary Material.

Statistical Analysis Methods
The interclass correlation coefficient was used to assess the effect
of variations in manual segmentation on radiomics feature values
from 50 patients randomly extracted from the primary cohort.
Features with high reproducibility (median ± standard deviation:
interclass correlation coefficient >0.80) were retained for
subsequent analysis. After deleting features that had a Pearson
correlation coefficient ≥0.75, univariate analysis using the Cox
regression model was employed as the first step of feature
selection to assess the possible risk factor of DMFS. The least
absolute shrinkage and selection operator method was the
second feature-selection process for model building.
TABLE 1 | Patient demographic characteristics in the primary and validation cohorts.

Characteristic Primary
cohort (N=518)

Validation
cohort (N=260)

P

Age (years) 0.944
Median (IQR) 44 (38–53) 46 (38–52)

Gender 0.389
Male 371 (71.6%) 194 (74.6%)
Female 147 (28.4%) 66 (25.4%)

WHO pathologic classification 0.253
Type I/II 27 (5.2%) 19 (7.3%)

Type III 491 (94.8%) 241 (92.7%)
T classification 0.389
T1 140 (27%) 61 (23.5%)
T2 60 (11.6%) 37 (14.2%)
T3 186 (35.9%) 103 (39.6%)
T4 132 (25.5%) 59 (22.7%)

N classification 0.425
N0 128 (24.7%) 53 (20.4%)
N1 282 (54.4%) 151 (58.1%)
N2 69 (13.3%) 40 (15.4%)
N3 39 (7.5%) 16 (6.2%)

AJCC clinical stage (2010) 0.181
I 53 (10.2%) 19 (7.3%)
II 117 (22.6%) 57 (21.9%)
III 185 (35.7%) 112 (43.1%)
IVa 163 (31.5%) 72 (27.7%)

Treatment regimen 0.490
RT alone 71 (13.7%) 34 (13.1%)
CCRT 201 (38.8%) 91 (35%)
IC + CCRT 246 (47.5%) 135 (51.9%)

EBV DNA (103 copies/ml)* 0.262
<1 232 (44.8%) 125 (48.1%)
<10 117 (22.6%) 67 (25.8%)
<100 129 (24.9%) 49 (18.8%)
≥100 40 (7.7%) 19 (7.3%)

Blood type 0.145
A 139 (26.8%) 56 (21.5%)
B 130 (25.1%) 67 (25.8%)
AB 17 (3.3%) 16 (6.2%)
o 232 (44.8%) 121 (46.5%)

HBsAg 0.620
Negative 427 (82.4%) 210 (80.8%)
Positive 91 (17.6%) 50 (19.2%)

LDH (U/L)* 0.142
<245 492 (95%) 240 (92.3%)
≥245 26 (5%) 20 (7.7%)

hs-CRP (g/ml)* 0.186
<1 196 (37.8%) 101 (38.8%)
1–3 166 (32%) 96 (36.9%)
≥3 156 (30.1%) 63 (24.2%)

Platelet counts (109/L)* 0.459
<100 4 (0.8%) 2 (0.8%)
100–300 436 (84.2%) 227 (87.3%)
≥300 78 (15.1%) 31 (11.9%)

Leucocyte counts (109/L)* 0.347
<4 9 (1.7%) 9 (3.5%)
4–10 457 (88.2%) 225 (86.5%)
≥10 52 (10%) 26 (10%)

Follow-up time (months) 0.886
Median (min, max) 84.6 (3.3–104.1) 84.4 (6.9–103.9)
IQR, interquartile range; WHO, World Health Organization; Type I, keratinizing; Type II,
non-keratinizing differentiated; Type III, non-keratinizing undifferentiated; T, tumor; N, node;
AJCC, American Joint Committee on Cancer; RT, radiotherapy; CCRT, concurrent
chemoradiotherapy; IC, induction chemotherapy; EBV DNA, Plasma Epstein–Barr virus
DNA; HBsAg, hepatitis B surface antigen; LDH, serum lactate dehydrogenase levels;
hs-CRP, high-sensitivity C-reactive protein; min, minimum; max, maximum. *Results
before treatment.
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Supplementary Figures S1, S2 show the processes of radiomics
feature selection and radiomics feature selection using the least
absolute shrinkage and selection operator regression
model, respectively.

Kaplan-Meier survival curves and log-rank tests were used to
evaluate the time-event data. Clinical characteristics between the
primary and validation cohorts were compared using the chi-
square test for categorical variables and the Mann-Whitney U
test for continuous variables. Harrell’s concordance indices (C-
indices) were applied to evaluate the discriminating ability of
each prognostic model. The establishment flowchart of the
clinical prognostic model, radiomics prognostic models, and
merged prognostic models is shown in Supplementary
Figure S3.

Statistical analyses were performed using R software version
3.2.5. with the following R packages: the caret package for
Pearson correlation analysis; the survival package and
survminer for Kaplan-Meier survival curves; the glmnet
package for least absolute shrinkage and selection operator Cox
regression; the ggplot2 package for score plot; the rms package
for calibration curves and nomograms; the Hmisc package for
comparisons between models in terms of C-indices; the
pheatmap and gplots packages for heatmaps. All statistical tests
were two-tailed with P<0.05 indicating statistical significance.
RESULTS

Participants
Table 1 lists the clinical characteristics of patients with NPC. No
significant differences were found in clinical characteristics
between the primary and validation cohorts (P=0.142 to
0.944). During the follow-up period, 12.9% (67/518) and 13.1%
(34/260) of patients developed distant metastases in the primary
and validation cohorts, respectively. There was no significant
difference between the two cohorts in the distant metastases rate
(P=0.961). The median DMFS time was 84.3 months (range, 3.3–
104.1) for the primary cohort, and 84.4 months (range, 6.6–
103.9) for the validation cohort.

Clinical Prognostic Model Building
Univariate analysis indicated that pre-treatment T stage, N stage,
clinical stage, and plasma EBV DNA were associated with DMFS
in patients with NPC (Supplementary Table S1). Multivariable
analyses further identified that pre-treatment T stage, N stage,
and plasma EBV DNA were independent predictors for DMFS
(Supplementary Table S2). The clinical prognostic model for
DMFS discriminating was based on these three independent
factors. The C-index of this model for the primary cohort was
0.736 (95% CI=0.680–0.791), significantly higher than the C-
indices for the validation cohort, 0.552 (95% CI=0.457–
0.647) (Table 2).

Radiomics Prognostic Model Building
Supplementary Table S3 summarizes the features most strongly
associated with DMFS based on analysis of the primary cohort.
Frontiers in Oncology | www.frontiersin.org 4
The T1, T1c, and T2 prognostic models for DMFS prediction
were based on selected radiomics features derived from T1-w,
T1C-w, and T2-w MRI scans, respectively (Table 3). The
T1+T1C, T1+T2, T2+T1C, and T1+T2+T1C prognostic
models were based on Radscore combinations of the T1 and
T1C, T1 and T2, T2 and T1C, and T1, T2 and T1C prognostic
models, respectively (Supplementary Figure S3 and Table 3).

As shown in Table 2, in the primary cohort, seven radiomics
prognostic models showed similar DMFS discriminating ability
as that of the clinical prognostic model (P=0.070 to 0.708). While
in the validation cohort, the C-indices for DMFS prediction by
the seven models (0.645-0.722) were significantly higher than the
C-index calculated using the clinical prognostic model (P=0.016
or <0.001). Intriguingly, in the seven radiomics models of the
validation cohort, the T1+1C prognostic model showed the
highest C-index (0.722, 95% CI=0.632-0.811) for DMFS
discriminating, significantly superior to the C-indices of the T1
(0.676), T2 (0.645), and T1C (0.711) prognostic models
(P=0.008, 0.043, and 0.048, respectively) and higher than those
of the other three radiomics models, although without significant
differences (Supplementary Table S4).

Merged Prognostic Model Building
To identify whether integrating clinical factors with radiomics
prognostic models could increase predictive accuracy, we built
seven merged prognostic models (MT1, MT2, MT1C, MT1+T2,
MT1+T1C, MT2+T1C, andMT1+T2+T1C) based on combinations
of three clinical factors and the T1, T2, T1C, T1+T2, T1+T1C,
T2+T1C, and T1+T2+T1C radiomics models, respectively
(Supplementary Figure S3). In the primary cohort, merged
prognostic models displayed better discriminating ability in DMFS
than the corresponding radiomics prognostic models (all P<0.001).
While in the validation cohort, the C-indices of seven merged
prognostic models (0.605-0.678) for DMFS discriminating were all
lower than those of the corresponding radiomics prognostic models;
although, there were no significant differences (Table 2), indicating
that adding the clinical factors to the radiomics models weakened
their discriminating ability.

To confirm this finding, we removed the T stage from the
merged prognostic models and constructed seven additional
merged prognostic models (rMT1, rMT2, rMT1C, rMT1+T2,
rMT1+T1C, rMT2+T1C, and rMT1+T2+T1C) based on the
radiomics prognostic model, N stage, and EBV-DNA. The C-
indices of these seven models (0.612-0.685) were slightly better
than those of the corresponding merged prognostic models in
the validation cohort (Table 2).

Performance of the Clinical and T1+1C
Prognostic Model
Based on the results above, T1+1C radiomics model was
considered to provide the best prognostic ability for DMFS
(having the highest C-index and Least degree of freedom). We
further compared the discriminating ability between the clinical
prognostic model and the T1+T1C prognostic model for DMFS
from their nomograms, calibration curves, risk score
distributions, and decision curve analysis.
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Nomograms and calibration curves for the clinical and
T1+T1C radiomics prognostic models are shown in Figure 1.
The T1+T1C radiomics prognostic model predicted post-
treatment metastasis risk for patients with a 3-year DMFS
probability ≥40% or 5-year DMFS probability ≥30%, while the
clinical prognostic model required a 3-year DMFS probability
≥70% or 5-year DMFS probability ≥60% to predicted metastasis
risk (Figures 1A1, A2). Calibration curves in the probability of
5-year DMFS by a 1000-iteration bootstrap resampling
experiment in the validation cohort also showed the T1+1C
prognostic model had better discriminating ability than the
clinical prognostic model. Observations showed better
agreement with model predictions when the probability of 5-
year DMFS was ≥68.9% in the T1+1C prognostic model, while it
had to be ≥83.3% in the clinical prognostic model
(Figures 1B2, B4).

We calculated the risk scores in the clinical and T1+T1C
prognostic models for each patient and then classified patients
into the low- and high-risk groups, with zero as risk score cutoff.
The distributions of risk scores and 5-year DMFS in the low- and
high-risk groups are shown in Figure 2. As shown, post-
treatment metastatic patients were concentrated in the high
score area, and the survival curve of the T1+T1C prognostic
model showed good prognostic stratification for patients in the
low- and high-risk groups in the validation cohort, while such
trends were not observed in the validation cohort of the clinical
Frontiers in Oncology | www.frontiersin.org 5
prognostic model. When maximally selected rank statistics were
used to generate the optimal risk score cutoff value for the clinical
and T1+T1C prognostic models to divide patients into low- and
high-risk groups, the results were identical to when zero was used
as cutoff value (Supplementary Figures S4, 5).

The decision curve analysis of the validation cohort for the
clinical prognostic model, radiomics models T1, T2, T1C,
T1+T1C, T1+T2+T1C, MT1+T1C model, and rMT1C model
is shown in Figure 3 (other prognostic models are not listed).
The T1+T1C prognostic model provided the best performance,
while the clinical prognostic model showed no net benefit for
patients with a 5-year DMFS probability ≥14.9%.
DISCUSSION

Our radiomics prognostic models, especially the T1+T1C
prognostic model, had better discriminating ability than either
the clinical prognostic model or corresponding merged
prognostic models integrating clinical factors with selected
radiomics features. All seven radiomics prognostic models
could stratify patients into high- and low-risk groups based on
significantly different 5-year DMFS rates. To our knowledge, this
is the first study to clarify the role of multiple versus single MRI
sequence radiomics, of radiomics features versus clinical factors,
or the combination of clinical factors and radiomics features to
TABLE 2 | C-index values of different prognostic models for DMFS prediction in the primary and validation cohorts.

Prognostic model Degree of freedom Primary cohort Validation cohort

C-index (95% CI) P† P* C-index (95% CI) P† P*

Clinical prognostic model 9 0.736 (0.68 0.791) Reference 0.552 (0.457, 0.647) Reference

Radiomics prognostic model T1 7 0.723 (0.666, 0.780) 0.181 reference 0.676 (0.588, 0.764) <0.001 reference
T2 5 0.715 (0.656, 0.774) 0.232 reference 0.645 (0.546, 0.744) 0.016 reference
T1C 9 0.733 (0.676, 0.791) 0.708 reference 0.711 (0.615, 0.807) <0.001 reference
T1+2 2 0.771 (0.720, 0.823) 0.175 reference 0.679 (0.594, 0.763) <0.001 reference
T1+1C 2 0.757 (0.703, 0.81) 0.468 reference 0.722 (0.632, 0.811) <0.001 reference
T2+1C 2 0.763 (0.712, 0.813) 0.430 reference 0.697 (0.599, 0.795) <0.001 reference
T1+2+1C 3 0.784 (0.737, 0.831) 0.070 reference 0.711 (0.622, 0.799) <0.001 reference

Merged prognostic model MT1 10 0.784 (0.731, 0.837) <0.001 <0.001 0.640 (0.558, 0.723) 0.057 0.511
MT2 10 0.773 (0.719, 0.826) <0.001 <0.001 0.605 (0.500, 0.710) 0.055 0.647
MT1C 10 0.791 (0.741, 0.841) <0.001 <0.001 0.661 (0.563, 0.759) 0.003 0.857
MT1+2 11 0.801 (0.752, 0.850) <0.001 <0.001 0.648 (0.560, 0.735) 0.004 0.322
MT1+1C 11 0.812 (0.763, 0.860) <0.001 <0.001 0.678 (0.589, 0.767) <0.001 0.391
MT2+1C 11 0.806 (0.758, 0.854) <0.001 <0.001 0.653 (0.554, 0.753) <0.001 0.600
MT1+2+1C 12 0.818 (0.771, 0.865) <0.001 <0.001 0.677 (0.587, 0.767) <0.001 0.297

Remerged prognostic model rMT1 7 0.780 (0.726, 0.834) <0.001 <0.001 0.653 (0.570, 0.736) <0.001 0.843
rMT2 7 0.773 (0.719, 0.827) <0.001 <0.001 0.612 (0.508, 0.716) 0.046 0.964
rMT1C 7 0.789 (0.739, 0.839) <0.001 <0.001 0.671 (0.576, 0.766) <0.001 0.893
rMT1+2 8 0.799 (0.749, 0.848) <0.001 <0.001 0.661(0.573, 0.748) <0.001 0.480
rMT1+1C 8 0.809 (0.761, 0.857) <0.001 <0.001 0.685 (0.597, 0.774) <0.001 0.663
rMT2+1C 8 0.804 (0.757, 0.851) <0.001 <0.001 0.665 (0.566, 0.763) <0.001 0.874
rMT1+2+1C 9 0.815 (0.769, 0.862) <0.001 <0.001 0.683 (0.592, 0.775) <0.001 0.385
March 2022 | Volum
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Note.—C-index = concordance index; DMFS = distant metastasis-free survival; CI = confidence interval. MT1, MT2, MT1C, MT1+T2, MT1+T1C, MT2+T1C and MT1+T2+T1C prognostic
models were built, and they integrated clinical risk factors (T stage, N stage, and plasma EBV DNA) with the T1, T2, T1C, T1+T2, T1+T1C, T2+T1C and T1+T2+T1C radiomics prognostic
models, respectively. rMT1, rMT2, rMT1C, rMT1+T2, rMT1+T1C, rMT2+T1C and rMT1+T2+T1C prognostic models were built based on N stage, plasma EBV DNA with the T1, T2, T1C,
T1+T2, T1+T1C, T2+T1C and T1+T2+T1C radiomics prognostic models, respectively.
†P-values were calculated compared with the clinical prognostic model.
*P-values were calculated by comparing with the corresponding radiomics prognostic model. For example, P=.0511 was the result of the comparison between the MT1 model and the T1
model in the validation cohort.
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predict prognosis with such a large sample size of
nasopharyngeal carcinoma patients. Our findings could be
useful for the evaluation of individual distant metastasis risk
and the choice of a personalized therapeutic regimen in
nasopharyngeal carcinoma patients.

The TNM staging system is routinely used in clinical practice
to guide assessment of individual prognosis and treatment strategy
decisions. However, an obvious shortcoming of the TNM staging
system is that its basis on anatomical tumor extent does not reflect
intra-tumor heterogeneity, which has pronounced effects on
tumor diagnosis and prognosis. Plasma EBV DNA is a potential
biomarker for NPC clinical management, but the lack of a global
standardized testing methodology limits its widespread value (9).
Since NPC is spatially and temporally heterogeneous (32), plasma
EBV DNA does not completely characterize tumor heterogeneity.
In this study, the C-index of the clinical prognostic model was
0.736 in the primary cohort, while it was significantly reduced to
0.552 in the validation cohort, indicating that clinical risk factors
were inadequate for distinguishing between different metastasis
risk groups and not a reliable method for predicting DMFS in
NPC patients.

Radiomics transforms tumor images into detailed
quantifications of tumor characteristics to find possible prognostic
Frontiers in Oncology | www.frontiersin.org 6
information for patients (16). Our study showed that radiomics
features could be used as biomarkers for DMFS prediction in NPC
patients without considering the TNM staging system or other
clinical risk factors. There might be two reasons for this result.
First, clinical risk factors could not distinguish between different
metastasis risks; therefore, adding clinical factors into the radiomics
prognostic models could not significantly improve the models’
prediction efficiency. Second, the selected radiomics features might
contain prognostic information hidden in clinical factors, and
overfitting occurrence might weaken their prediction performance
when integrating clinical factors with radiomics prognostic models.
Zhang et al. (21) showed that the C-index of a radiomics prognostic
model using the TNM staging system or clinical factors (based on
age, sex, and hemoglobin) was reduced by 0.009 or 0.013 in the
validation cohort, respectively.

T1-w, T1C-w, and T2-w are three common methods used in
MRI tumor diagnosis. In single-MRI prognostic models for
DMFS, the T1C prognostic model had the highest
discriminating ability in our study, followed by the T1 and T2,
in both primary and validation cohorts. Differences in
discriminating ability may be due to imaging capabilities. T1-w
can detect tumor anatomical details; T2-w images are sensitive
for detecting effusion or edema; T1C-w images may reflect tumor
TABLE 3 | Multivariable analysis of radiomic features for the primary cohort.

Prognostic model Variable DMFS

coefficient HR (95% CI) P

T1 radiomics prognostic model T1_shape_Sphericity -4.67 0.01 (1.78E-04, 0.49) 0.021
T1_WLHH_GLSZM_LGLZE -1.47 0.23 (0.04, 1.37) 0.107
T1_WHHL_GLCM_IMC2 -6.33 1.78E-03 (5.51E-05, 5.76E-02) < 0.001
T1_WHHH_GLCM_IMC2 4.93 138.93 (2.39, 8.09E3) 0.017
T1_WHLH_GLCM_IMC2 -3.41 0.03 (6.41E-04, 1.71) 0.090
T1_log.sigma.3.0.mm.3D_NGTDM_Strength 1.36 3.91 (1.19, 12.89) 0.025
T1_WHHH_NGTDM_Contrast -14.64 4.37E-07(3.20E-16, 595.36) 0.172

T2 radiomics prognostic model T2_WHLL_GLDM_LDHGLE 8.04E-05 1.00008 (1.000006, 1.000115) 0.034
T2_log.sigma.5.0.mm.3D_FOS_Skewness -0.45 0.64 (0.38, 1.06) 0.084
T2_WHHL_GLSZM_SALGLE -23.50 6.25E-11 (6.92E-18, 5.64E-04) 0.004
T2_logarithm_NGTDM_Coarseness 17.62 4.48E+07 (1.22E+02, 1.65E+13) 0.007
T2_WLLH_GLCM_IDMN 25.21 8.86E+10 (1.22E-01, 6.45E+22) 0.070

T1C radiomics prognostic model T1C_WHLL_GLCM_Correlation 6.59 7.30E+02 (6.08, 8.77E+04) 0.007
T1C_WLLH_GLSZM_SAHGLE 0.03 1.03 (1.01, 1.05) 0.010
T1C_Gradient_GLCM_IMC1 9.33 1.13E+04 (0.40, 3.23E+08) 0.075
T1C_Square_GLCM_Correlation 3.22 25.02 (1.95, 3.21E+02) 0.013
T1C_Gradient_GLSZM_ZE 0.60 1.83 (0.93, 3.58) 0.079
T1C_square_GLRLM_RE -1.66 0.19 (0.06, 0.61) 0.005
T1C_log.sigma.3.0.mm.3D_GLSZM_ZE 0.94 2.55 (1.07, 6.07) 0.035
T1C_WLHL_GLSZM_ZE -1.05 0.35 (0.11, 1.06) 0.063
T1C_gradient_GLSZM_GLN 0.04 1.04 (0.99, 1.08) 0.104

T1+1C radiomics prognostic model T1 radscore* 0.59 1.80 (1.25, 2.59) 0.002
T1C radscore* 0.75 2.12 (1.53, 2.94) <0.001

T1+2+1C radiomics prognostic model T1 radscore* 0.42 1.52 (1.04, 2.23) 0.031
T2 radscore* 0.48 1.61 (1.14, 2.28) 0.007
T1C radscore* 0.58 1.79 (1.26, 2.54) 0.001
March 2022 | Volume 12 | Article
CI, confidence interval; DMFS, distant metastasis free survival; HR, hazard ratio. Textural features should be decomposed into three-dimensional wavelet transform (8 decompositions),
and the wavelet decompositions are labeled as WLLL, WLLH, WLHL, WLHH, WHLH, WHHL, WHHL, and WHHH. T1-w = T1-weighted; T2-w = T2-weighted; T1C-w = contrast-enhanced T1-
weighted. GLSZM, Gray Level Size Zone Matrix; GLCM, Gray Level Co-occurrence Matrix; NGTDM, Neighbouring Gray Tone Difference Matrix; GLDM, Gray Level Dependence Matrix;
FOS, First order statistics; GLRLM, Gray Level Run Length Matrix; LGLZE, Low Gray Level Zone Emphasis; IMC, Informational measure of correlation; JA, Joint Average; LDHGLE, Large
Dependence High Gray Level Emphasis; SALGLE, Small Area Low Gray Level Emphasis; IDMN, Inverse Difference Moment Normalized; SAHGLE, Small Area High Gray Level Emphasis;
ZE, Zone Entropy; RE, Run Entropy; GLN, Gray Level Non-Uniformity.
*radscore from nomogram.
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angiogenesis, closely related to tumor invasion and metastasis.
For multiple-MRI prognostic models for DMFS, the T1+T1C
prognostic model had the best performance in the validation
cohort, with a higher C-index than the T1+T2, T2+T1C or
T1+T2+T1C prognostic models. Among all prognostic models,
the T1+T1C prognostic model also showed the best performance
in the decision curve analysis of the validation cohort. Therefore,
the radiomics features from T1-w and T1C-w MRI sequences
better characterize metastatic biological behaviors than other
combinations of the three MRI modalities. Except for one shape
fature (sphericity), the other 15 features of the composition of
T1+T1C radiomics model are textural features, which reflect
tumor heterogeneity. This indicates a radiomic signature of some
textural features can be reguarded as a potential prognostic
biomark to discriminate different metastasis risk groups in
NPC patients.

Our study had several limitations. First, the patients in the
primary and validation cohorts were enrolled from the same
institution, which may reduce the generalizability of our
findings. Second, follow-up was incomplete for some patients,
which may have led to distortions. Third, although PyRadiomics
adheres for the most part to the Image Biomarker Standardization
Initiative (IBSI), some small differences have been duly noted for it
in terms of quantifying the grey level values, removing features
associated with the ROI volum from the very beginning for
example. Fourth, other MRI-based radiomics were not included,
especially diffusion-weighted imaging and dynamic contrast-
enhanced, significant for treatment monitoring and outcome
prediction in different cancer types (33–35). Thus, the usefulness
of diffusion-weighted imaging and dynamic contrast-enhanced
MRI-based radiomics in NPC patients should be further explored.

In conclusion, a T1+T1C radiomics prognostic model could
be a reliable approach for individual risk discriminating of
Frontiers in Oncology | www.frontiersin.org 9
distant metastasis in nasopharyngeal carcinoma patients. This
model provided better prognostic performance than other
radiomics prognostic models, clinical risk factors, and
combination models, and may facilitate personalized risk
stratification and treatment strategies for patients with
nasopharyngeal carcinoma. To expand the generalizability of
this prognostic model, validation with data from prospective,
large sample, multicenter studies is required.
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