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Purpose: This study aimed to construct a prognostic signature consisting of immune-
related RNA-binding proteins (RBPs) to predict the prognosis of patients with head and
neck squamous cell carcinoma (HNSCC) effectively.

Methods: The transcriptome and clinical data of HNSCC were downloaded from The
Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. First, we
ascertained the immunological differences in HNSCC, through single-sample gene set
enrichment analysis, stromal and immune cells in malignant tumor tissues using
expression data (ESTIMATE), and cell-type identification by estimating relative subsets
of RNA transcripts (CIBERSORT) deconvolution algorithm. Then we used univariate
proportional hazards (Cox) regression analysis and least absolute shrinkage and
selection operator (LASSO) Cox regression analysis to screen immune-related RBPs
and acquire the risk score of each sample. Subsequently, we further investigated the
difference in prognosis, immune status, and tumor mutation burden in high- and low-risk
groups. Finally, the efficacy of immunotherapy was measured by the tumor immune
dysfunction and exclusion (TIDE) score.

Results: We derived 15 immune-related RBPs, including FRMD4A, ASNS, RAB11FIP1,
FAM120C, CFLAR, CTTN, PLEKHO1, SELENBP1, CHCHD2, NPM3, ATP2A3, CFDP1,
IGF2BP2, NQO1, and DENND2D. There were significant differences in the prognoses of
patients in the high- and low-risk groups in the training set (p < 0.001) and the validation
set (p < 0.01). Furthermore, there were statistical differences between the high-risk group
and low-risk group in immune cell infiltration and pathway and tumor mutation load
(p < 0.001). In the end, we found that patients in the low-risk group were more sensitive to
immunotherapy (p < 0.001), and then we screened 14 small-molecule chemotherapeutics
with higher sensitivity to the high-risk group (p < 0.001).
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Conclusion: The study constructed a prognostic signature of HNSCC, which might
guide clinical immunotherapy in the future.
Keywords: head and neck squamous cell carcinoma, RNA binding protein, prognostic, immune microenvironment,
tumor mutation burden, copy number variations, immunotherapy, chemotherapeutic
INTRODUCTION

Head and neck squamous carcinoma (HNSCC), which has a
mortality rate of 50.5%, is one of the most common tumors,
accounting for 3.6% of malignant tumors (1). HNSCC is a
histologically and genetically heterogeneous disease that
originates from a variety of anatomical parts, including the
oral cavity, tongue, salivary glands, nasopharynx, and larynx
(2). Smoking, drinking, and human papillomavirus infection are
the main causes of HNSCC (3). Patients with HNSCC often
experience cervical lymph node metastasis, local recurrence, and
resistance to radiotherapy and chemotherapy (4).

At present, the treatment strategy for HNSCC patients is still
based on tumor location and disease stage, not tumor biology.
Many biomolecular markers, such as proteins, DNA, RNA, and
microRNA, have been proposed to detect primary and secondary
malignancies in the initial stages of the disease, but the above
indicators are still very limited in terms of prognostic assessment
and optimization of treatment options. In order to improve the
treatment outcome of HNSCC, a clinically useful method is
urgently needed to identify the risk of HNSCC and judge the
effectiveness of adjuvant therapy.

The tumor microenvironment (TME) plays a vital role in the
occurrence, progression, and treatment response of tumors.
TME includes proliferating tumor cells, tumor stroma, blood
vessels, cancer-related fibroblasts, infiltrating inflammatory cells,
and various related signal molecules (5, 6). In the
microenvironment of HNSCC, immune cells and mesenchymal
cells, as the two main non-tumor components, have caused a
large number of inflammatory reactions (7). Since HNSCC is an
immunosuppressive disease, immune checkpoint inhibitors have
emerged as a new treatment option (8). The basic principle of
immunotherapy is to block the immunosuppressive effect of
immune checkpoints while activating the endogenous immune
system, thus increasing the number and cytotoxicity of T cells,
which is beneficial to attack tumor cells (9). Consequently, it
would be valuable to investigate the role of immune cells and
their regulators in the TME of HNSCC.

From the nucleus to the peripheral cytoplasm, RNA-binding
proteins (RBPs) play a vital role in the post-transcriptional
regulation of genes (10). RBPs are able to affect pre-mRNA
processing, transport and localization, mRNA stability/
degradation, and translation (11). In a variety of tumors, some
RBPs were found to be dysfunctional and aberrantly regulated
(12, 13). Meanwhile, RBPs are important components of the
immune system, which respond quickly to inflammatory
mediators and in modulating inflammatory responses (14).
Considering the important role of RBPs in immunity, it is
necessary to explore the relationship between RBPs and HNSCC.
2

This study aimed to develop a prognostic prediction model for
HNSCC based on immune-related RBPs. First, we classified
HNSCC patients into two immune phenotypes based on the
enrichment fraction of immune cells, then screened for
differentially expressed RBPs in two immune phenotypes, and
defined them as immune-related RBPs. Through univariate
proportional hazards (Cox) regression analysis and least absolute
shrinkage and selection operator (LASSO) Cox regression analysis,
we identified immune-related RBPs related to prognosis and then
constructed a risk model for patients with HNSCC. Based on the
validation of the prognostic relevance and predictive capacity of the
risk model, we further analyzed the infiltrating immune cells and
immune-related pathways, somatic mutations, copy number
variations (CNVs), the efficacy of immunotherapy, and sensitivity
of chemotherapeutic agents in patients with HNSCC. The results
showed that the risk model consisting of immune-related RBPs can
effectively differentiate the clinical outcomes and show superiority in
predicting the prognosis of patients with HNSCC.
METHODS

Data Access
The transcriptome data in the fragment per kilobase million
(FPKM) format and clinical data of 499 patients with HNSCC
were downloaded from The Cancer Genome Atlas (TCGA) as
the training set (https://portal.gdc.cancer.gov) (15) and
downloaded the transcriptome data and clinical data of 97
HNSCC samples from the GSE41613 dataset of the Gene
Expression Omnibus (GEO) database for validation (https://
www.ncbi.nlm.nih.gov/geo/) (16). The data of somatic
mutation and CNVs of patients with HNSCC were
downloaded from UCSC (http://xena.ucsc.edu/) (17). The gene
list of RBPs was collected from Gerstberger (10), SONAR (18),
GO: RNA binding (19), poly(A) RBPs (20–24), CARIC (25), and
XRNAX (26).

Immunophenotyping Based on Single-
Sample Gene Set Enrichment Analysis
Single-sample gene set enrichment analysis (ssGSEA) is an
algorithm based on rank ordering, which can calculate the
degree of enrichment of a single sample in a given gene set
(27). On this basis, the enrichment scores of immune cells and
some related immune processes were calculated through the
GSEA program (28, 29) and then quantified through the default
parameters of the “Gene Set Variation Analysis (GSVA)” R
package (30). Subsequently, the “ConsensusClusterPlus” R
package was used to co-cluster the infiltration levels of 23
types of immune cells in HNSCC samples from TCGA to
April 2022 | Volume 12 | Article 795781
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identify and distinguish immune subtypes (31). In the
cumulative distribution function (CDF), the K value with the
largest area under the curve was selected as 2, and so the HNSCC
samples were divided into two types (31). The Estimation of
STromal and Immune cells in MAlignant Tumor tissues using
Expression data (ESTIMATE) algorithm was utilized to calculate
the immune score, stromal score, ESTIMATE score, and tumor
purity (32). The immune cell infiltration calculated by the Cell-
type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) deconvolution algorithm was used
to verify the immune difference between the two types (33).
Finally, the GSEA program was used to compare the differences
in pathway enrichment between the above immunotypes from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (34).

Construction and Validation of Risk Model
The “limma” R package was used to distinguish RBPs with different
expressions between immunotypes. With a 1.4-fold difference and
corrected p less than 0.05 as the screening conditions, 238 immune-
related RBPs were obtained. Subsequently, 47 immune-related RBPs
associated with prognosis were obtained through univariate
proportional hazards regression (p < 0.05). The “glmnet” package
was then utilized to perform LASSO Cox regression analysis (35).
After 1,000 times of cross-validation, 15 immune-related RBPs and
the correlation coefficients of the corresponding risk genes were
obtained to construct a risk model at the same time. Risk score =
Sn
i  Expi� Coefi, in which Expi is the expression of each risk gene

and Coefi is its correlation coefficient. All patients were divided into
a high-risk group and a low-risk group characterized by the median
risk score of patients with HNSCC in the training set. The Kaplan–
Meier curves were used to compare the overall survival (OS)
difference of patients in the high- and low-risk groups. Receiver
operating characteristic (ROC) curves were generated to evaluate
the effectiveness and accuracy of the risk score in predicting the
prognosis of patients with HNSCC. Next, the “ggExtra” R package
was used to calculate the correlation between the risk score and the
OS of patients with HNSCC. The independent correlation between
the risk score and the prognosis of patients with HNSCC was then
evaluated by univariate and multivariate proportional hazards
regression analyses. Subsequently, a nomogram that could predict
the prognosis of individual patients with HNSCC was constructed
based on the stage, T stage, N stage, and risk group of patients with
HNSCC through the “rms” R package (36). The C index was then
used to assess the ability of the nomogram to distinguish prognosis,
and a calibration chart was drawn to evaluate the accuracy of the
nomogram. In addition, GSEA and gene set variation analysis
(GSVA) were used to compare the differences in KEGG pathway
enrichment between risk groups.

Analysis of Somatic Mutation and Copy
Number Variations
The tumor mutation burden (TMB) of HNSCC samples from
TCGA was analyzed through the “maftools” R package (37). The
differences in TMB between the high- and low-risk groups were
compared and showed the top 20 genes with the highest
mutation rate and their mutation types in the high- and low-
Frontiers in Oncology | www.frontiersin.org 3
risk groups. Then the impact of TMB on the OS of patients with
HNSCC was evaluated through the Kaplan–Meier survival
curves. After that, gistic 2.0 was used to detect significant copy
number amplification or deletion (38). In the end, the CNVs of
22 pairs of autosomes between the high- and low-risk groups
were compared and showed the top 20 genes with most CNVs
and their variation types.

Prediction of the Curative Effect of
Immunotherapy and Chemotherapy
Tumor immune dysfunction and exclusion (TIDE) (http://tide.
dfci.harvard.edu/) was used to calculate the TIDE score, which
was reported to be able to predict the response of patients with a
malignant tumor to immunotherapy (39). On the other hand, the
“pRRophetic” R package was used to compare the half-maximal
inhibitory concentration (IC50) differences of some common
small-molecule chemotherapeutics between the high- and low-
risk groups and screened out chemotherapeutics that may have
better efficacy for patients in the high-risk group (40).

Statistical Analysis
All statistical analyses were based on R 4.0.4 software (https://
www.r-project.org/). Categorical variables were tested by the chi-
square test or Fisher’s exact test. The t-test or Wilcoxon test was
performed on continuous variables. p < 0.05 was deemed
statistically significant.
RESULTS

Development and Validation of the
Prognostic Model Based on
Immunophenotyping of Head and Neck
Squamous Cell Carcinoma
The flowchart of this research is shown in Figure 1. First, we
obtained patient data from TCGA database and divided
the patients into two groups according to differences in immune
cells. The CIBERSORT deconvolution and ESTIMATE algorithm
confirmed the difference in the immune microenvironment
between the Sub1 and Sub2 groups (Figure 1A). After
differential expression analysis, 238 immune-related RBPs were
identified. Through univariate and LASSO Cox regression
analysis, 15 immune-related RBPs related to prognosis were
selected, and then the Kaplan–Meier curves showed the
difference between the high- and low-expression immune-
related RBPs groups (Figure 1B). Subsequently, we found that
the risk score was significantly related to the OS of patients with
HNSCC in training and validation sets, respectively (Figure 1C).
In addition, the differences in immune cells and pathways between
the high- and low-risk groups are further elaborated (Figure 1D).
In terms of genes, we showed the differences in somatic mutation
and CNVs (Figure 1E). In addition, we have also produced a
nomogram combining the stage, T stage, N stage, and risk
group to predict the prognosis (Figure 1F). In the end, the
efficacy of immunotherapy was analyzed through the TIDE
April 2022 | Volume 12 | Article 795781
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score, and the sensitivity of different risk groups to small-molecule
chemotherapeutics was also revealed (Figure 1G).

Based on the transcriptome data of TCGAHNSCC, we evaluated
and quantify 23 kinds of immune cells and 15 kinds of immune
Frontiers in Oncology | www.frontiersin.org 4
processes by ssGSEA. After that, co-clustering analysis was used to
distinguish the infiltration of 23 immune cells in the HNSCC
samples in TCGA. When K = 2, the CDF curve had the largest
area under the curve, so all samples were divided into two types
A

B

C

D E F G

FIGURE 1 | Flowchart of this study. Two immune subtypes identified by single-sample gene set enrichment analysis (ssGSEA) and co-clustering analysis, and
difference of infiltrating immune cells assessed by CIBERSORT deconvolution algorithm and ESTIMATE algorithm (A). Fifteen immune-related RNA-binding proteins
(RBPs) screened out through “limma” package, univariate and least absolute shrinkage and selection operator (LASSO) Cox analysis, and the Kaplan–Meier curves
for high- and low-expression immune-related RBP groups (B). Validation of the risk model composed of immune-related RBPs for prognosis in The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO) database (C). Immune cell infiltration and pathways in high- and low-risk groups (D). Somatic mutation and copy
number variations (CNVs) in high- and low-risk groups (E). Construction and calibration of prognosis nomogram (F). The differences of tumor immune dysfunction
and exclusion (TIDE) score and sensitivity to chemotherapeutics of patients with head and neck squamous cell carcinoma (HNSCC) in high- and low-risk groups (G).
*p < 0.05; **p < 0.01; ***p < 0.001.
April 2022 | Volume 12 | Article 795781
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(Sub1 and Sub2) (Figure S1A). Among them, there were 271 cases
in the Sub1 group and 228 cases in the Sub2 group. It was worth
mentioning that the immune cells and pathways weremore enriched
in the Sub2 group than the Sub1 group (Figure 2A). Compared with
the Sub2 group, the Sub2 group had lower immune score
(Figure 2B, p < 0.001), lower stromal score (Figure 2C, p <
0.001), lower ESTIMATE score (Figure 2D, p < 0.001), and higher
tumor purity (Figure 2E, p < 0.001). For the purpose of
authenticating the difference between the two types, we used the
CIBERSORT deconvolution algorithm and the ESTIMATE
algorithm to calculate the infiltration of immune cells. Among the
Sub1 group, M0 macrophages, activated dendritic cells, and mast
cells infiltrated more, while in the Sub2 group, primitive B cells,
plasma cells, CD8 T cells, activated CD4 memory T cells, follicular
helper T cells, Treg cells, M1 macrophages, resting mast cells, and
eosinophils infiltrated more (Figure 2F, p < 0.05). As far as the
human leukocyte antigen (HLA) family is concerned, the expression
of the Sub1 group is lower (Figure 2G, p < 0.001). Considering the
rise of immune checkpoint inhibitor therapy, we also analyzed the
differences between immune checkpoints. The expressions of
checkpoint LAG3, PDCD1, HAVCR2, CTLA4, and CD274 in the
Sub2 group are extremely higher than that in the Sub1 group
(Figure 2H, p < 0.001). In addition, as the result of pathway
enrichment shows, there was more immune-related pathway
enrichment in the Sub2 group, such as cytokine receptor
interaction, chemokine signaling pathway, JAK-STAT signaling
pathway, cell adhesion molecules cams, toll-like receptor signaling
pathway, and natural killer cell-mediated cytotoxicity (Figure 2I, p <
0.001). It was worth noting that the Kaplan–Meier curves showed a
better prognosis of the Sub2 group than that of the Sub1 group
(Figure 2J, p = 0.007).

Construction and Validation of Risk Model
We screened 238 immune-related RBPs through the “limma” R
package (Figure 3A). Among these 238 immune-related RBPs, most
of themwere highly expressed in the Sub2 group, and the others were
highly expressed in the Sub1 group (Figure 3B). Subsequently, 47
prognostic-related immune-related RBPs were obtained through
univariate proportional hazards regression (Figure 3C, p < 0.05). In
order to avoid overfitting, we then used LASSO Cox regression
analysis and cross-validated 1,000 times to obtain 15 immune-related
RBPs and the correlation coefficients of their corresponding risk genes
(Figures 3D, E, Table S1). The risk model was thus constructed:

RiskScore  = ExpFRMD4A*(� 0 : 0573) + ExpASNS*(0 : 1068)

+ExpRAB11FIP1*(0:1068) + ExpFAM120C  �  ð�0:1220Þ
+ ExpCFLAR  �  ð�0:0026Þ  + ExpCTTN  �  ð0:0341Þ
+ ExpPLEKHO1  �  ð�0:0663Þ  +  ExpSELENBP1  �  ð0:0181Þ
+ ExpCHCHD2  �  ð0:0547Þ  +  ExpNPM3  �  ð0:0507Þ
+ ExpATP2A3  �  ð0:0787Þ  +  ExpCFDP1  �  ð0:0787Þ
+ ExpIGF2BP2  �  ð0:0149Þ +  ExpNQO1  �  ð0:0459Þ
+ ExpDENND2D  �  ð�0:0207Þ:
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The negative correlation coefficient indicated that the
expression of the gene was beneficial to the prognosis, and the
positive value indicated no benefit or even hindrance.

We assigned TCGA data as the training set and GEO data as
the validation set. According to the median risk score of
patients with HNSCC in TCGA, all patients were divided into
the high-risk group and low-risk group (Figures 4A, H). In the
training and validation sets, the mortality of patients in the
high-risk group was higher than that in the low-risk group
(Figures 4B, I). In the high-risk group, ASNS, CTTN,
CHCHD2, NPM3, CFDP1, IGF2BP2, and NQO1 were
expressed higher, while in the low-risk group, there were
higher expressions of FRMD4A, RAB11FIP1, FAM120C,
CFLAR, PLEKHO1, SELENBP1, ATP2A3, and DENND2D
(Figures 4C, J). The OS was negatively correlated with the
risk score, which meant the OS of patients with HNSCC gradually
decreases as the risk score increased (Figures 4D, K). The area
under the ROC (AUC) of the risk score of the training set was
0.60 (1 year), 0.70 (3 years), and 0.64 (5 years) (Figure 4E). In
contrast, the AUC of the validation set was 0.63 (1 year), 0.63
(3 years), and 0.64 (5 years) (Figure 4L). The Kaplan–Meier
curves also indicated that the high-risk group had a poor
prognosis (Figures 4F, G, p < 0.01).

In order to verify the validity and independence of the risk
score, we combined the clinical characteristics and pathological
staging data from TCGA database to perform univariate and
multivariate Cox regression analyses. Univariate Cox analysis
showed that age (p < 0.05), stage (p < 0.001), T (p < 0.01), N (p <
0.001), and risk score (p < 0.001) were significantly related to the
prognosis (Figure 5A, Table S2). Multivariate analysis indicated
that age (p < 0.01), N (p < 0.05), and risk score (p < 0.001) were
significantly correlated with the prognosis (Figure 5B, Table S3).
This implied that our risk model based on immune-related RBPs
could be used as independent and effective indicators for the
prognosis of patients with HNSCC.

In addition, we combined the stage (I–II and III–IV), T stage
(T1–2 and T3–4), N stage (N0 and N1–3), and risk group (low
and high) to construct 1-, 3-, and 5-year prognostic nomogram
models (Figure 5C), which could guide clinical judgment more
conveniently and effectively. For example, when an 80-year-old
patient in a low-risk group is stage III–IV, T3–4, and N1–3, he
would get a score of 375, which means that the probability of his
survival time at less than 1 year, less than 3 years, and less than 5
years is 0.268, 0.574, and 0.698, respectively. The following
calibration chart showed the difference between the OS
predicted by this nomogram and the actual OS from TCGA
database and suggested that the nomogram had certain
accuracy (Figure 5D).

Finally, we evaluated the relationship between each of the 15
immune-related RBP genes in the model and the OS of patients
with HNSCC. Patients with high expressions of ASNS, IGF2BP2,
CFDP1, CHCHD2, CTTN, NPM3, and NQO1 have poor OS,
while patients with high expressions of FRMD4A, FAM120C,
ATP2A3, PLEKHO1, RAB11FIP1, DENND2D, CFLAR, and
SELENBP1 have a better OS (Figures 6A–O, p < 0.05).
April 2022 | Volume 12 | Article 795781
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Exploration of the Immune
Microenvironment
The established risk model was based on immune-related RBPs,
so it was necessary to confirm whether the model was related to
the immune microenvironment of HNSCC. CIRBERSORT
results showed that the 15 immune-related RBPs in the model
Frontiers in Oncology | www.frontiersin.org 6
all had associated immune cells (Figure 7A). Through the
ESTIMATE algorithm, we found that the immune score,
stromal score, and ESTIMATE score were lower and that the
tumor purity was higher in the high-risk group (Figures 7B–E,
p < 0.001). Then, we compared the expressions of the HLA
family, and most of them were lower in the high-risk group
A B

F G

H I J

D

C E

FIGURE 2 | Immune subtypes of head and neck squamous cell carcinoma (HNSCC) were identified based on the tumor-infiltrating immune cells. Heatmap of
single-sample gene set enrichment analysis (ssGSEA) scores for Sub1 group (n = 271) and Sub2 group (n = 228) (A). Comparison of immune score (B), stromal
score (C), ESTIMATE score (D), and tumor purity (E) between Sub1 and Sub2 groups. Difference of immune cell infiltration between Sub1 and Sub2 groups (F).
The expressions of HLA family genes in Sub1 and Sub2 groups (G). The discrepancy of immune checkpoint genes between Sub1 and Sub2 groups, including
LAG3, PDCD1, HAVCR2, CTLA4, and CD274 (H). The divergence of enrichment pathways between Sub1 and Sub2 groups (I). Kaplan–Meier curves of Sub1 and
Sub2 groups (J). ***p < 0.001.
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(Figure 7F, p < 0.05). Subsequently, the checkpoint expressions
of PDCD1, CD274, CTLA4, HAVCR2, and LAG3 in the low-risk
group were relatively high (Figures 7G–K, p < 0.001). Every
immune checkpoint is negatively correlated with the risk score
(Figures 7L–P, p < 0.001).
Frontiers in Oncology | www.frontiersin.org 7
Analysis of Somatic Mutation and Copy
Number Variations
In the high-risk group and the low-risk group, the genes with the
highest mutations are TP53, TTN, FAT1, and CDKN2A.
Moreover, there are more mutations of TP53, FAT1,
A

C

B

D E

FIGURE 3 | Construction of risk model for prognosis in patients with head and neck squamous cell carcinoma (HNSCC). Volcano plot exhibiting the differentially
expressed immune-related RNA-binding proteins (RBPs) between Sub1 group (n = 271) and Sub2 group (n = 228) in HNSCC (A). Heatmap of differentially
expressed immune-related RBPs in Sub1 and Sub2 groups (B). The result of univariate Cox analysis (C) and least absolute shrinkage and selection operator
(LASSO) Cox analysis (D, E).
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A H

B I

C J

F G

D KE L

FIGURE 4 | Application and validation of the risk model for prognosis. Samples in The Cancer Genome Atlas (TCGA) dataset were designated as training set, and
samples in Gene Expression Omnibus (GEO) dataset were designated as validation set. On basis of the mean risk score of samples in training set, patients were
divided into high-risk (red dot) and low-risk (green dot) groups. Distribution of the risk scores of the patients in training set (A). Distribution of survival time of patients
in training set (B). The heatmap depicting the expression difference of 15 immune-related RNA-binding proteins (RBPs) between the high-risk group and the low-risk
group in training set (C). Correlation between overall survival and risk score in training set (D). ROC curves of risk score for predicting 1, 3, and 5 years of overall
survival in training set (E). Kaplan–Meier curves of high- and low-risk groups in training set (F). Distribution of the risk scores of the samples in validation set (H).
Distribution of survival time of samples in validation set (I). The heatmap showing the expression patterns of 15 immune-related RBPs between the high- and low-risk
groups in validation set (J). Correlation between overall survival and risk score in validation set (K). Receiver operating characteristic (ROC) curves of risk score for
predicting 1, 3, and 5 years of overall survival in validation set (L). Kaplan–Meier curves of high- and low-risk groups in validation set (G).
Frontiers in Oncology | www.frontiersin.org April 2022 | Volume 12 | Article 7957818
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CDKN2A, NOTCH1, SYNE1, and NSD1 in the high-risk group,
and the mutation rate of PIK3CA is higher in the low-risk group
(Figures 8A, B). TMB is higher in the high-risk group
(Figure 8C, p < 0.001). The prognosis of patients with high
TMB was significantly worse than that of patients with low TMB
(Figure 8D). Considering that the risk score was an independent
prognostic factor, we evaluated the superimposed influence of
TMB and risk score. The prognosis in descending order is the
low-mutation and low-risk group, the high-mutation and low-
risk group, the low-mutation and high-risk group, and the high-
mutation and high-risk group (Figure 8E, p < 0.001).

Extensive copy number amplification was detected in 22 pairs
of autosomes in all two groups. In the low-risk group, high-
frequency deletion regions were found on chromosomes 3 and
13, and high-frequency amplification regions were found on
chromosome 8 (Figure 8F). In the high-risk group, CNVs
analysis indicated the following most relevant genes: MIR7641-
2|chr8, CASC19, CCAT1, CASC21, CASC8, CCAT2, POU5FIB,
and CSMD1 (Figure 8G). Among them, gene CSMD1 had a
significant copy number deletion (Figure 8G). On the other
hand, the five most correlative genes in the low-risk group
Frontiers in Oncology | www.frontiersin.org 9
included NAALADL2, TP63, LINC01206, TPRG1, and
TPRG1-AS2 (Figure 8H).

GSEA (Figure 9A) and GSVA (Figure 9B) revealed the
differences in pathway enrichment between the high- and low-
risk groups. Most of the pathways enriched in the low-risk group
were associated with immune responses, which may be involved
in immune-related RBPs, including Fc gamma R-mediated
phagocytosis, B-cell receptor signaling pathway, T-cell receptor
signaling pathway, autoimmune thyroid disease, cell adhesion
molecules cams, cytokine–cytokine receptor interaction,
leukocyte transendothelial migration, and natural killer cell-
mediated cytotoxicity.

Prediction of the Efficacy of
Immunotherapy and Chemotherapy
We used the TIDE score to predict the immunotherapy response
of patients with HNSCC to immunotherapy. It could be briefly
described that the higher the TIDE score, the higher the
likelihood of immune dysfunction or evasion, and the less
likely the patient will benefit from immune checkpoint
inhibitors. As a result, the TIDE score of the high-risk group
A B

C D

FIGURE 5 | Independence of risk score and construction of nomogram consisting of risk score and clinicopathological characteristics. Univariate Cox regression
analysis was used to validate whether age, gender, grade, stage, T, N, and risk score had an independent influence on prognosis (A). Multivariate Cox regression
analysis was used to validate whether age, gender, grade, stage, T, N, and risk score had independent influence on prognosis (B). Construction of integrated
nomogram to predict survival in head and neck squamous cell carcinoma (HNSCC) (C). Calibration curve for predicting 1, 3, and 5 years of overall survival (D).
*p < 0.05, **p < 0.01.
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was significantly higher than that of the low-risk group, which
means that immunotherapy is less effective in the high-risk
group (Figure 10A, p < 0.001).

In addit ion, we screened out 14 small-molecule
chemotherapeutics that may be more effective for patients with
HNSCC in the high-risk group. The IC50 represents the
concentration of an inhibitor that is required for 50%
inhibition of carcinoma cells. A lower IC50 value means better
drug sensitivity. Patients in the high-risk group were more
sensitive to bosutinib, bryostatin.1, camptothecin, cytarabine,
docetaxel, doxorubicin, erlotinib, gefitinib, gemcitabine,
lapatinib, paclitaxel, parthenolide, sorafenib, and thapsigargin
(Figures 10B–O, p < 0.001).
DISCUSSION

Immunotherapy has become an effective method for treating
malignant tumors (41). Furthermore, immunosuppressant
therapy has made important progress in the treatment of
patients with HNSCC (42). Nevertheless, it cannot be ignored
that only a limited one-third of patients respond to
Frontiers in Oncology | www.frontiersin.org 10
immunotherapy in most types of tumors (43). Further studies
of immune-related RBPs in HNSCC may provide new ways to
improve the clinical prognosis of patients. At present, there is an
urgent need for an accurate and operational prognostic
evaluation model for HNSCC in clinical practice. Based on
TCGA and GEO databases and a variety of algorithms starting
with ssGSEA, our study established a new model for predicting
immune response, efficacy of conventional chemotherapy and
immunotherapy, and individual outcome.

There are many kinds of myeloid immune cells in the HNSCC
microenvironment that have a unique immune profile prior to
treatment (44). In this study, we retrospectively analyzed the
transcriptomic data of 499 HNSCC patients in TCGA database
and further classified them into Sub1 and Sub2 on the basis of
differences in immune cell infiltration. Regarding the infiltrating
immune cells in the Sub1 group, M0 macrophages infiltrated
more, while in the Sub2 group, there was more infiltration of
naive B cells, plasma cells, T cells, and M1 macrophages.
Compared with the Sub1 group, the Sub2 group had higher
immune, stromal, and ESTIMATE scores but lower tumor
purity, and its prognosis was significantly better than that of
the Sub1 group. In addition, the expressions of the HLA family
A B C D

E F G H

I J K L

M N O

FIGURE 6 | Validation of each immune-related RNA-binding protein (RBP) in the risk model. Kaplan–Meier curves showing the differences of overall survival in high-
and low-expression immune-related RBPs ASNS (A), IGF2BP2 (B), CFDP1 (C), CHCHD2 (D), CTTN (E), NPM3 (F), NQO1 (G), FRMD4A (H), FAM120C (I), ATP2A3
(J), PLEKHO1 (K), RAB11FIP1 (L), DENND2D (M), CFLAR (N), and SELENBP1 (O) between high-expression (blue) group and low-expression (yellow) group.
April 2022 | Volume 12 | Article 795781

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Ming et al. A Prognostic Signature for HNSCC
were significantly lower in the Sub1 group, which assisted tumor
cells to escape the immune system (45). The immune-related
pathways in the Sub2 group were more abundant.

Some RBPs are able to rapidly react to inflammatory
mediators and regulate the reprogramming of immune cells to
tumor-associated phenotypes (12). After recognizing the
difference in RBP expressions between the Sub1 and Sub2
groups, we constructed a risk model containing 15 immune-
related RBPs through univariate and LASSO Cox regression
analysis. Then, according to the risk score calculated by the
above model, patients with HNSCC were divided into low- and
high-risk groups. Patients in the high-risk group had poorer
clinical outcomes. The model even had good validity and stability
in determining the prognosis at 1, 3, and 5 years, which was
further confirmed in the GEO database. After confirming the risk
score as an independent prognostic factor, we constructed a
prognostic nomogram model according to the staging, T, N, and
age of patients, which was also accurate in predicting OS at 1, 3,
and 5 years.

The relationship between the prognostic characteristics of 15
immune-related RBPs and the immune microenvironment has
also been investigated. In contrast with the high-risk group, the
Frontiers in Oncology | www.frontiersin.org 11
low-risk group had lower tumor purity and higher immune
score, stromal score, and ESTIMATE score. In the high-risk
group, M0 macrophages, activated dendritic cells, and mast cells
infiltrated more, but the expression of the HLA family decreased.
In the low-risk group, there were more M1 macrophages, naive B
cells, CD4 memory and CD8 T cells, plasma cells, and
eosinophils. This is similar to previous reports suggesting that
exhausted immunity with lower survival is characterized by
enrichment of stromal activation and anti-inflammatory M2
macrophage, whereas enhanced immunity associated with
better prognosis is characterized by M1 macrophages
providing stronger pro-inflammatory signaling, enhanced
cytolytic activity, and massive lymphocyte infiltration (7). The
activation of M1 macrophages is beneficial to patients because it
can induce acute inflammation secreting tumor-killing molecules
such as tumor necrosis factor a (TNFa) (46). On the other hand,
if acute inflammation is not controlled, differentiation of M2
macrophages facilitates chronic inflammation, promoting tumor
cell growth, angiogenesis, fibrosis, and immunosuppression (47),
which is certainly harmful to patients. Both B cells and partial T
cells also contribute to the prognosis of patients with HNSCC. As
reported by Norouzian et al., the composition of B-cell
A B C
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FIGURE 7 | Immune landscape of patients with head and neck squamous cell carcinoma (HNSCC) in high- and low-risk groups. Correlation matrix of 15 immune-
related RNA-binding proteins (RBPs) and infiltrating immune cells (A). Comparison of immune score (B), stromal score (C), ESTIMATE score (D), and tumor purity
(E). The differential expressions of HLA family genes in patients with HNSCC in high- and low-risk groups (F). The expression level of immune checkpoint genes
PDCD1 (G), CD274 (H), CTLA4 (I), HAVCR2 (J), and LAG3 (K) in low-risk group and high-risk group. The correlation between risk score and immune checkpoints
PDCD1 (L), CD274 (M), CTLA4 (N), HAVCR2 (O), and LAG3 (P). “ns” means p ≥ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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subpopulations changes in TME of HNSCC, and the B cells with
atypical memory and regulatory phenotype are significantly
related to favorable prognostic (48). Notably, the high
abundance of tumor-infiltrating lymphocyte B and high
density of direct B-cell/CD8+ T-cell interactions predict a
better outcome (49). Dense T-cell infiltration, especially
cytotoxic CD8 T cells, represents superior antitumor ability
(50, 51).

Based on the risk score, we further elaborated on TMB,
somatic mutations, and CNVs. The high-risk group had a
higher TMB, which implied a higher mortality rate. Mutations
in TP53 were overwhelmingly predominant in both groups and
were more frequent in the high-risk group than in the low-risk
Frontiers in Oncology | www.frontiersin.org 12
group (70% vs. 55%). As previously reported by Lawrence, TP53
mutations and CDKN2 inactivation are intimately involved in
HNSCC (52). Remarkably, TP53 mutations are common and
associated with a poor prognosis in patients with HNSCC (53).
MIR7641 is highly expressed in the exosomes of metastatic
tumor cells and can enhance the proliferation, migration, and
invasion of recipient tumor cells (54, 55). Cub and Sushi Multiple
Domains-1 (CSMD1) acts as a tumor suppressor, whose low
expression promotes the invasion of HNSCC and gastric tumor
(56, 57) and is also correlated with a poorer prognosis of
HNSCC (58).

The efficacy of immunotherapy has been reported to be
generally superior to that of conventional chemotherapy (42).
A B C

D E
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F

FIGURE 8 | Somatic mutation and copy number variations (CNVs) in high- and low-risk groups. Heatmap of somatic mutations in high-risk group (A) and low-risk
group (B). The difference of tumor mutation burden between high- and low-risk groups (C). Kaplan–Meier curves showing the differences in high- and low-tumor
mutation burden (TMB) groups (D). Kaplan–Meier curves revealing the differences in high-TMB and high-risk group, high-TMB and low-risk group, low-TMB and
high-risk group, and low-TMB and low-risk group (E). Amplification and deletion of copy number in the high-risk group (inner) and low-risk group (outer) (F). The 20
genes with maximum CNVs in high-risk group, and the percentage meaning the proportion of patients with head and neck squamous cell carcinoma (HNSCC) who
suffered gene deletion (blue) or amplification (red) in high-risk group (G). Top 20 genes with maximum CNVs in low-risk group, and the percentage representing the
ratio of patients with HNSCC who suffered gene deletion (blue) or amplification (red) in low-risk group (H).
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Besides, the combined application of PD-1/PD-L1 inhibitors and
platinum drugs also shows positive therapeutic potential (59).
This implies that the exploration of medication regimens is
potentially valuable. On the one hand, the immune checkpoint
expressions of LAG3, PDCD1, HAVCR2, CTLA4, and CD274
increased in the low-risk group. The efficacy of corresponding
immune checkpoint inhibitors is better for the low-risk group
but the opposite for the high-risk group. On the other hand, the
low-risk group has a lower TIDE score, which means that the
lower TIDE score is related to a better curative effect. TIDE can
Frontiers in Oncology | www.frontiersin.org 13
be used to identify two mechanisms of tumor immune escape:
inducing T-cell immunotherapeutic dysfunction in tumors with
high infiltration of cytotoxic T lymphocytes (CTLs) and blocking
T-cell infiltration in tumors with low CTL in TME (39). In our
study, the low-risk group had more infiltration of CTLs, so they
would respond better to immunotherapy, due to better recovery
from T-cell dysfunction. The high-risk group had less CTL
infiltration, so they would benefit less from immunotherapy,
which may be due to T-cell repulsion. In short, the low-risk
group will benefit more from immunotherapy. Furthermore, we
A

B

FIGURE 9 | Enrichment signaling pathways of different risk groups. The pathway enrichment of gene set variation analysis (GSVA) between the low- and high-risk
groups (A). The pathway enrichment of gene set enrichment analysis (GSEA) between the low- and high-risk groups (B).
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screened out 15 chemotherapy drugs that are more suitable for
the high-risk group. The new model constructed by immune-
related RBPs could serve as a new marker to help guide the
selection of chemotherapeutic drugs and distinguish who would
benefit more from antitumor immunotherapy.

Some of the RBPs in this article have been reported to have a
practical relationship with tumorigenesis and progression.
Asparagine synthetase (ASNS) catalyzes the synthesis of the
nonessential amino acid asparagine, while ASNS knockdown
significantly hinders cell proliferation (60). In other words,
stable ASNS gene expression guarantees the growth of tumor
cells. Cortactin (CTTN) gene encodes a protein, cortacn, which
plays an essential role in the migration of oral carcinoma cells by
regulating filamentous actin and prominent structures on cell
membranes (61). The high expression of CTTN was related to a
poorer OS rate (62). Coiled-coil-helix-coiled-coil-helix domain-
containing protein 2 (CHCHD2) as a small mitochondrial protein
can regulate mitochondrial outer membrane permeabilization and
is one of the negative regulators that mediate apoptosis (63).
CHCHD2 indicates a poor prognosis and is overexpressed in
hepatocellular carcinoma, breast tumor, non-small cell lung
carcinoma, and renal cell carcinoma (64, 65). The loss of the
human Cranio Facial Development Protein 1 (CFDP1) affects the
dynamic changes of chromosomes and cell cycle progression (66).
Moreover, some studies have confirmed that CFDP1 is a risk gene
for pancreatic carcinoma (67, 68). High expression of insulin
Frontiers in Oncology | www.frontiersin.org 14
growth factor 2 mRNA binding protein 1 (IGF2BP1) is associated
with a poor prognosis such as advanced clinical stage, increased
tumor size, lymph node metastasis, and low survival rate of
patients with HNSCC (69, 70). NAD(P)H quinone
oxidoreductase (NQO1), a cytoplasmic enzyme that mediates
the reduction of quinone substrates, is highly expressed in a
multitude of tumors and can catalyze quinone drugs to poison
tumor cells (71). NQO1 is considered a promising direct tumor
target. For example, the drug b-lapachone, catalyzed by NQO1,
triggers the innate perception of T cells in the TME, thereby
enhancing antitumor capacity and even overcoming checkpoint
blockade (72). Casein kinase 2-interacting protein-1 (CKIP-1, also
known as PLEKHO1) inhibits tumor growth by causing
inactivation of serine/threonine kinases and self-degradation of
Smurf1, which is a potential oncogenic target in various tumor
cells (73). Selenium binding protein 1(SELENBP1) is significantly
downregulated in esophageal adenocarcinoma, ovarian tumor,
and oral squamous cell carcinoma, but its overexpression can
lead to incremental cellular senescence and apoptosis, as well as
enhanced cytotoxicity of cisplatin (74–76). Three different genes
(ATP2A1-3) encode the Ca2+-ATPases from the Sarco/
endoplasmic reticulum (SERCA) to maintain calcium
homeostasis between the cell cytoplasm and the endoplasmic
reticulum, and they have been reported to downregulate
transcription in gastric and colon tumors (77). In particular,
ATP2A2 gene inactivation is closely related to oral squamous
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FIGURE 10 | The value of the risk model in predicting the efficacy of immunotherapy and chemotherapy. The score of tumor immune dysfunction and exclusion of
patients with head and neck squamous cell carcinoma (HNSCC) in high- and low-risk groups (A). The box plots of the estimated IC50 for bosutinib (B), bryostatin.1
(C), camptothecin (D), cytarabine (E), docetaxel (F), doxorubicin (G), erlotinib (H), gefitinib (I), gemcitabine (J), lapatinib (K), paclitaxel (L), parthenolide (M), sorafenib
(N), and thapsigargin (O).
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cell carcinoma (78). DENN/MADD domain-containing protein
2D (DENND2D) is less expressed in malignant tumors and is
thought to contribute to the worsening prognosis and high
recurrence rate (79–81). However, other RBPs may have a
prospective regulatory impact on HNSCC. Some articles
reported the relationship between genes FRMD4A and HNSCC.
High expression of FRMD4A is associated with an increased risk
of HNSCC recurrence, and the silencing of FRMD4A inhibits the
growth and metastasis of human squamous cell carcinoma in skin
and tongue metastases and reduces the proliferation and cell
adhesion of squamous cell carcinoma (82, 83). Interestingly, in
our study, patients with high expression of FRMD4A experienced
a better prognosis (Figure 6H), which is worthy of further study.
RAB proteins play the role of small GTPases in the regulation of
vesicle and protein transport, membrane targeting, and fusion,
and a group of them can actively or inversely regulate tumor cell
generation, migration, and invasion (84). RAB11 affects the
invasiveness of breast cancer cells (85). RAB11FIP1 is positively
related to dendritic cells and CD4 T cells, and the low expression
of RAB11FIP1 revealed a poor prognosis for lung adenocarcinoma
(86). CASP8 and FADD-like apoptosis regulator (CFLAR), also
known as c-FLICE-like inhibitory protein (c-FLIP), is a vital anti-
apoptotic protein (87). Some studies have identified FLIP as an
independent poor prognostic indicator for colorectal carcinoma,
cervical carcinoma, and acute myeloid leukemia (88).

Although some studies have explored the association of RBPs
with HNSCC (89, 90), our research has made further progress.
On the basis of differentiated immunophenotyping, we take the
lead in the screening of differentially expressed RBPs, which
represents a more effective prognostic biomarker and a more
accurate predictor of response to immunotherapy in different
groups of patients. In general, the prognosis model system
constructed based on the immune-related RBPs and clinical
information of patients with HNSCC drew the landscape in
the immune microenvironment of HNSCC and could effectively
predict the prognosis of patients with HNSCC in the high- and
low-risk groups. The nomogram based on this model is more
helpful for predicting the clinical outcome of patients with
HNSCC. Last but not least, the differences in immune
checkpoints and TIDE scores between the high- and low-risk
groups provide new ideas for the immunotherapy of patients
with HNSCC.

Our study still has some limitations. First, we only used public
databases to construct and verify the prognostic risk model, and
we need to validate this model in subsequent clinical trials.
Second, how the immune-related RBPs regulate immunity still
needs to be verified by experiments in vitro and in vivo.
Eventually, human papillomavirus is an independent
prognostic factor for HNSCC, which is worth further
stratified analysis.
Frontiers in Oncology | www.frontiersin.org 15
CONCLUSION

In summary, the signature constructed by 15 immune-related
RBPs could effectively predict the clinical outcome of patients
with HNSCC. Subsequently, we demonstrated the immune
landscape, TMB, CNVs, and efficacy of immunotherapy in
different risk groups, which might guide clinical therapy.
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