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Objective: Monitoring biomarkers using machine learning (ML) may determine
glioblastoma treatment response. We systematically reviewed quality and performance
accuracy of recently published studies.

Methods: Following Preferred Reporting Items for Systematic Reviews and Meta-
Analysis: Diagnostic Test Accuracy, we extracted articles from MEDLINE, EMBASE and
Cochrane Register between 09/2018–01/2021. Included study participants were adults
with glioblastoma having undergone standard treatment (maximal resection, radiotherapy
with concomitant and adjuvant temozolomide), and follow-up imaging to determine
treatment response status (specifically, distinguishing progression/recurrence from
progression/recurrence mimics, the target condition). Using Quality Assessment of
Diagnostic Accuracy Studies Two/Checklist for Artificial Intelligence in Medical Imaging,
we assessed bias risk and applicability concerns. We determined test set performance
accuracy (sensitivity, specificity, precision, F1-score, balanced accuracy). We used a
bivariate random-effect model to determine pooled sensitivity, specificity, area-under the
receiver operator characteristic curve (ROC-AUC). Pooled measures of balanced
accuracy, positive/negative likelihood ratios (PLR/NLR) and diagnostic odds ratio (DOR)
were calculated. PROSPERO registered (CRD42021261965).

Results: Eighteen studies were included (1335/384 patients for training/testing
respectively). Small patient numbers, high bias risk, applicability concerns (particularly
confounding in reference standard and patient selection) and low level of evidence, allow
limited conclusions from studies. Ten studies (10/18, 56%) included in meta-analysis gave
0.769 (0.649-0.858) sensitivity [pooled (95% CI)]; 0.648 (0.749-0.532) specificity; 0.706
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(0.623-0.779) balanced accuracy; 2.220 (1.560-3.140) PLR; 0.366 (0.213-0.572) NLR;
6.670 (2.800-13.500) DOR; 0.765 ROC-AUC.

Conclusion: ML models using MRI features to distinguish between progression and
mimics appear to demonstrate good diagnostic performance. However, study quality and
design require improvement.
Keywords: glioblastoma, machine learning, monitoring biomarkers, meta-analysis, artificial intelligence, treatment
response, deep learning, glioma
1 INTRODUCTION

Glioblastoma is the most common primary malignant brain tumor
with a median 14.6 month overall survival (1). This is in spite of a
standard care regimen comprising maximal debulking surgery,
followed by radiotherapy with concomitant temozolomide,
followed by adjuvant temozolomide. Monitoring biomarkers (2)
identify longitudinal change in the growth of tumor or give
evidence of response to treatment, with magnetic resonance
imaging (MRI) proving particularly useful in this regard. This is
due both to the non-invasive nature of MRI, and its ability to
capture the entire tumor volume and adjacent tissues, leading to its
recommended incorporation into treatment response evaluation
guidelines in trials (3, 4). Yet challenges occur when false-positive
progressive disease (pseudoprogression) is encountered, which
may take place during the 6 month period following the
completion of radiotherapy and is manifest as an increase in
contrast enhancement on T1-weighted MRI images, which
reflects the non-specific disruption of the blood-brain barrier
(Figure 1) (5, 6).

Non-specific increased contrast enhancement occurs in
approximately 50% of patients undergoing the standard care
regimen. There is an approximately equal chance that the tumor
may represent pseudoprogression or true progression because
pseudoprogression occurs in approximately 10-30% of all
patients (7, 8). For more than a decade, researchers have
attempted to distinguish pseudoprogression from true
progression at the time of increased contrast enhancement
because of the substantial potential clinical impact. If there is
true progression the treating clinical team typically will initiate a
prompt modification in treatment strategy with termination of
ineffectual treatment or initiation of second-line surgery or
therapies (9). If there is pseudoprogression the treating clinical
team typically will continue with the standard care regimen.
However, the decision making can only be made retrospectively
with current treatment response evaluation guidelines (4). A
monitoring biomarker (2) that reliably distinguishes
pseudoprogression from true progression at the time of
increased contrast enhancement would fully inform the difficult
decision contemporaneously.

Under the standard care regimen, pseudoprogression occurs
as an early-delayed treatment effect as opposed to radiation
necrosis which is a late-delayed radiation effect (10). Radiation
necrosis also manifests as non-specific increased contrast
enhancement, however, pseudoprogression appears within 6
months of radiotherapy completion whereas radiation necrosis
2

occurs beyond 6 months. Radiation necrosis occurs with an
incidence an order of magnitude less than that of
pseudoprogression (11). Another difference between the two
entities is that much evidence suggests that pseudoprogression
is significantly correlated with O6-methylguanine DNA
methyltransferase (MGMT) promoter methylation. As with
pseudoprogression, there is a need to distinguish radiation
necrosis from true progression at the time of increased
contrast enhancement because, again, there is substantial
potential clinical impact. In particular, if there is true
progression the treating clinical team typically would initiate
second-line surgery or therapies. However, the decision making
can only be made retrospectively with current treatment
response evaluation guidelines (3). Therefore, a monitoring
biomarker (2) that reliably distinguishes radiation necrosis
from true progression at the time of increased contrast
enhancement would fully inform the treating clinical team’s
decision contemporaneously.

Developing monitoring biomarkers to determine treatment
response has been the subject of many studies, with many
incorporating machine learning (ML). A review of such neuro-
oncology studies up to September 2018 showed that the evidence
is relatively low level, given that it has usually been obtained in
single centers retrospectively and often without hold-out test sets
(11, 12). The review findings suggested that those studies taking
advantage of enhanced computational processing power to build
neuro-oncology monitoring biomarker models, for example deep
learning techniques using convolutional neural networks (CNNs),
have yet to show benefit compared toML techniques using explicit
feature engineering and less computationally expensive classifiers,
for example using support vector machines or even multivariate
logistic regressions. Furthermore, studies show that using ML to
make neuro-oncology monitoring biomarker models does not
appear to be superior to applying traditional statistical methods
when analytical validation and diagnostic performance is
considered (the fundamental difference between ML and
statistics is that statistics determines population inferences from
a sample, whereas ML extracts generalizable predictive patterns).
Nonetheless, the rapidly evolving discipline of applying radiomic
studies to neuro-oncology imaging reflects a recent exponential
increase in published studies applying ML to neuroimaging (13),
and specifically to neuro-oncology imaging (14). It also mirrors
the notable observation that in 2018, arXiv (a repository where
computer science papers are self-archived before publication in a
peer-reviewed journal) surpassed 100 new ML pre-prints per day
(15). Given these developments, there is a need to appraise the
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evidence of ML applied to monitoring biomarkers determining
treatment response since September 2018.

The aim of the study is to systematically review and perform a
meta-analysis of diagnostic accuracy of ML-based treatment
response monitoring biomarkers for glioblastoma patients
using recently published peer-reviewed studies. The study
builds on previous work to incorporate the rapidly growing
body of knowledge in this field (11, 16), providing promising
avenues for further research.
2 MATERIALS AND METHODS

This systematic review and meta-analysis are registered with
PROSPERO (CRD42021261965). The review was organized in
line with the Preferred Reporting Items for Systematic Reviews
and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA)
(17) incorporating Cochrane review methodology relating to
“developing criteria for including studies” (18), “searching for
studies” (19), and “assessing methodological quality” (20).
Frontiers in Oncology | www.frontiersin.org 3
Pseudoresponse (bevacizumab-related response mimic), an
important concern in the United States where it is licensed, was
not the focus of the systematic review and meta-analysis.

2.1 Search Strategy and Selection Criteria
Recommendations were followed to perform a sensitive search
(with low precision), including the incorporation of subject
headings with exploded terms, and without any language
restrictions (19). Search terms were applied to MEDLINE,
EMBASE and the Cochrane Register to capture original
research articles published from September 2018 to January
2021 (Supplementary Table S1). Pre-prints and non-peer
reviewed material were excluded.

2.1.1 Inclusion Criteria
Study participants included were adult glioblastoma patients
treated with a standard care regimen (maximal debulking
surgery, followed by radiotherapy with concomitant
temozolomide, followed by adjuvant temozolomide) who
underwent follow-up imaging to determine treatment response
FIGURE 1 | Longitudinal series of MRI images in two patients (A, B) with glioblastoma, IDH-wildtype. All images are axial T1-weighted after contrast administration.
Images (Aa–Ad) demonstrate tumor progression. (Aa) Pre-operative MRI of a glioblastoma in the occipital lobe. (Ab) Post-operative MRI five days after resection;
there is no contrast enhancement therefore no identifiable residual tumor. (Ac) The patient underwent a standard care regimen of radiotherapy and temozolomide. A
new enhancing lesion at the inferior margin of the post-operative cavity was identified on MRI at three months after radiotherapy completion. (Ad) The enhancing
lesion continued to increase in size three months later and was confirmed to represent tumor recurrence after repeat surgery. Images (Ba–Bd) demonstrate
pseudoprogression. (Ba) Pre-operative MRI of a glioblastoma in the insula lobe. (Bb) Post-operative MRI at 24 hours after surgery; post-operative blood products
are present but there is no contrast enhancement therefore no identifiable residual tumor. (Bc) The patient underwent a standard care regimen of radiotherapy and
temozolomide. A new rim-enhancing lesion was present on MRI at five months after radiotherapy completion. (Bd) Follow-up MRI at monthly intervals showed a
gradual reduction in the size of the rim-enhancing lesion without any change in the standard care regimen of radiotherapy and temozolomide or corticosteroid use.
The image shown here is the MRI four months later.
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status (explicitly, differentiating true progression/recurrence
from mimics of progression/recurrence (defined below), and
designated as the target condition of the systematic review).

2.1.2 Exclusion Criteria
Studies were excluded if they focused on pediatrics,
pseudoresponse, or had no ML algorithm employed in the
extraction or selection of features, or in classification/regression.

2.1.3 Index Test and Reference Standard
The ML model determined the treatment response outcome, and
was designated as the index test of the systematic review. Either
clinicoradiological follow up or histopathology at re-operation or
a combination of both, were designated as the reference standard
of the systematic review. The bibliography of each included
article was checked manually for other relevant studies.

A neuroradiologist, T.C.B., and a data scientist, A.C., with 16
and 2 years, respectively, of experience in neuroimaging applied
to neuro-oncology, independently performed the literature
search and selection.

2.2 Data Extracted and Risk of
Bias Assessment
For every study, risk of bias as well as concerns regarding
applicability, were assessed by applying QUADAS 2
methodology (21) alongside proformas incorporating items from
the Checklist for Artificial Intelligence in Medical Imaging
(CLAIM) (22). Data was extracted from published studies to
determine: whether the datasets analyzed contained any tumors
other than glioblastomas, especially anaplastic astrocytomas and
anaplastic oligodendrogliomas; the index test ML algorithm and
any cross validation processes; training and hold-out test set
information; what reference standard(s) were employed; non-
imaging features and MRI sequence(s) included in the analysis.

The appropriateness of reference standard follow-up imaging
protocols was reviewed. The handling of confounding factors such
as second-line medication therapy, temozolomide cessation, and
steroid use were assessed. It was also determined whether the
treatment response (target condition) used in the published study
was appropriate. Under the standard care regimen, contrast-
enhancing lesions enlarging due to pseudoprogression typically
occur within 0-6 months after radiotherapy, whereas contrast-
enhancing lesions enlarging due to radiation necrosis typically
occur beyond this 6 month window, according to the evidence.
When “post-treatment related effects” (PTRE) is employed as a
term for treatment response outcome, the phenomena of
pseudoprogression and radiation necrosis are both included (23,
24). These three terms therefore capture detail regarding the time
period when the mimics of progression/recurrence occur.
Deviations in the use of the three terms defined here were noted.
Data on the length of follow-up imaging after contrast-enhancing
lesions enlarged were additionally extracted and evaluated.
Clinicoradiological strategies considered optimal in designating
outcomes as PTRE or true progression/recurrence included the
following: assigninganMRIscanas baselineafter radiotherapy (25);
excluding outcomes based on T2-w lesion enlargement (25);
permitting a period of 6-month follow up from the first time
Frontiers in Oncology | www.frontiersin.org 4
when contrast-enhancing lesions enlarged; during this 6-month
period having two subsequent follow-up scans as opposed to a
single short interval “confirmatory” follow-up scan. Two follow-up
scans mitigate against some scenarios where the contrast-
enhancing lesions due to PTRE continue to enlarge over a short
interval, and this continued enlargement is seen at a short interval
scan confounding assessment by falsely “confirming” true
progression (26, 27). This might be termed an “upslope effect”.

A neuroradiologist (US attending, UK consultant), T.C.B., and a
data scientist, A.C., with 16 and 2 years, respectively, of experience in
neuroimaging applied to neuro-oncology, independently performed
the data extraction and quality assessment. Discrepancies between the
two reviewers were considered at a research meeting chaired by a
third neuroradiologist (US attending, UK consultant), A.A-B. (8 years
experience of neuroimaging applied to neuro-oncology), until a
consensus was reached.

2.3 Data Synthesis and Statistical Analysis
2.3.1 Performance Accuracy for Individual Studies
Based on the published study data, 2 x 2 contingency tables were
made for hold-out test sets from which the principal diagnostic
accuracy measures of sensitivity (recall) and specificity were
calculated. The area under the receiver operating characteristic
curve (ROC-AUC) values and confidence intervals were
extracted in studies where these were published. Additional
secondary outcome measures of balanced accuracy, precision
(positive predictive value) and F1-score were also determined
from the contingency tables. In those studies where there was a
discrepancy in the principal diagnostic accuracy measures and
the accessible published study raw data, this was highlighted. If
both internal and external hold-out test sets were published in a
study, the principal diagnostic accuracy measures for the external
test set alone were calculated. In studies without hold-out test
sets, “no test set” was recorded (22) and the training set principal
diagnostic accuracy measures from the training set were
summarized. The unit of evaluation was per-patient. All test
set data included glioblastoma.

2.3.2 Meta-Analysis
The principal diagnostic accuracy measures of sensitivity (recall)
and specificity were subject to meta-analysis. We determined two
pooled primary measures of accuracy: the true positive rate
(sensitivity/recall) and the false negative rate (1-specificity). A
bivariate random-effect model (28), which allows for two
important circumstances (29–31) (Supplementary Statistical
Information), was chosen to determine the two pooled primary
measures of accuracy. Briefly, the circumstances are first, that the
values of the selected principal diagnostic accuracy measures are
usuallyhighly related toone another through the cut-off value.With
an increase of sensitivity, specificity is likely to decrease and, as a
consequence, these two measures are usually negatively correlated.
Second, a relatively high level of heterogeneity is commonly
observed among the results of diagnostic studies. This is verified
in various ways ranging from visual assessment through chi-square
based tests to random-interceptmodels decomposing total variance
of results into between- and within- study levels. The bivariate
random-effect model not only allows for the simultaneous analysis
January 2022 | Volume 12 | Article 799662
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of diagnostic measures but also addresses their heterogeneity (28).
Bivariate joint modelling of the primary measures of accuracy
assumes that the logits of these quantities follow a bivariate
normal distribution and allows for a non-zero correlation. Based
on this assumption, a linear random-effect model is applied to the
data and estimates of mean true positive rate (sensitivity) and false
positive rate (1-specificity), along with their variances and
correlation between them, can be obtained. The pooled estimates
of true positive rate and false positive rate are initially estimated on
the logit scale (Supplementary Statistical Information). To be
interpretable they require transformation back to the original
probability scale (ranging within 0-1 limits).

The parameters of this model also allowed us to plot the
summary ROC (SROC) curve and determine the summary
ROC-AUC. Using a resampling approach (32), the model
estimates were also used to derive the pooled measures of
balanced accuracy as well as the positive and negative likelihood
ratios and the diagnostic odds ratio.

The meta-analysis was conducted by a statistician, M.G., with
15 years of relevant experience. All the statistical analyses were
performed in R (v 3.6.1). The R package mada (v 0.5.10) (33) was
used for the bivariate model. Since some of the 2 x 2 contingency
table input cell values (true positive, false positive, false negative,
true negative) derived from the individual studies contained
zeros, a continuity correction (0.5) was applied.

2.4 Prognostic Biomarkers Predicting
Future Treatment Response
Most studies of prognostic imaging biomarkers in glioblastoma
predict the outcome measure of overall survival using baseline
images. Nonetheless, we found a small group of studies using ML
models that predicted the outcome measure of future treatment
response using baseline images. The studies were examined using
identical methodology to that applied to monitoring biomarkers.
3 RESULTS

3.1 Characteristics and Bias Assessment
of Studies Included
In all, 2362 citations fulfilled the search criteria of which the full text
of 57 potentially eligible articles were reviewed (Figure 2). Twenty-
one studies from September 2018 to January 2021 (including the
publication of “online first” articles prior to September 2018) were
included, 19 of which were retrospective. The total number of
patients in the training sets were 1335 and in the test set 384. The
characteristics of the 18 monitoring biomarker studies are presented
in Table 1 and the characteristics of the 3 studies that applied the
ML models to serve as prognostic biomarkers to predict future
treatment response using baseline images (or genomic alterations)
are presented in Table 2.

3.1.1 Treatment Response Target Conditions
The treatment response target conditions varied between studies
(Table 1). Around a quarter of studies (5/18, 28%) designated
only 0-12 weeks after radiotherapy as the time period when
pseudoprogression appears – as opposed to the entire 6-month
Frontiers in Oncology | www.frontiersin.org 5
time period when pseudoprogression might occur. A third of
studies (6/18, 33%) assigned PTRE as the target condition. No
study assigned radiation necrosis alone as the target condition.
Five studies in the systematic review (5/18, 28%) included grade
3 gliomas. Only two of these five studies employed test sets; the
test set in one study did not contain any grade 3 gliomas and the
number in the test set in the other study was unclear although
the number was small (14% grade 3 in combined training
and test datasets). Therefore, as a minimum, all but one test
set in the systematic review and meta-analysis contained
only glioblastoma, the previous equivalent of glioma grade
4 according to c-IMPACT classification (“glioblastomas, IDH-
wildtype” or “astrocytoma, IDH-mutant, grade 4”) (55).

3.1.2 Reference Standards: Clinicoradiological
Follow-Up and Histopathology Obtained
at Re-Operation
The majority of studies (13/18, 67%) employed a combination of
clinicoradiological follow up and histopathology at re-operation,
to distinguish true progression from a mimic. A few individual
studies employed one reference standard for one decision (true
progression) and another reference standard for the alternative
decision (mimic); this and other idiosyncratic rules led to a high
risk of bias in terms of the reference standard used, as well as how
patients were selected, in several studies.

3.1.3 Selected Features
Most studies only analyzed imaging features alone (15/18, 83%)
whereas the remainder incorporated additional non-imaging
features. A third of studies (6/18, 33%) used deep learning
methodology to derive features (specifically, convolutional
neural networks).

3.1.4 Test Sets
A third of studies did not have hold-out test sets (6/18, 33%) and
instead the performance accuracy was determined using training
data through cross-validation (Table 1). Therefore, there was a
high risk of bias for the index test used in these six studies. A third
of studies had external hold-out test sets (6/18, 33%). The ranges
of mean diagnostic accuracy measures in these six studies were:
recall (sensitivity) = 0.61-1.00; specificity = 0.47-0.90; precision
(positive predictive value) = 0.58-0.88; balanced accuracy = 0.54-
0.83; F1 score = 0.59-0.94; ROC-AUC = 0.65-0.85.

3.1.5 Bias Assessment and Concerns Regarding
Applicability Summary
The risk of bias evaluation for each study was summarized
(Supplementary Figure S1). All or most studies were assigned to
the highest class for risk of bias in terms of the reference standard
(18/18, 100%) and patient selection (15/18, 83%) QUADAS 2
categories respectively. A third or nearly a half of studies were
either in the highest class for risk of bias or the risk was unclear in
terms offlow and timing (6/18, 33%) and the index test (8/28, 44%)
QUADAS 2 categories respectively. The results from the “concerns
regarding applicability” evaluation largelymirrored the results of the
risk of bias evaluation.
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3.1.6 Prognostic Biomarkers Predicting Future
Treatment Response (Subgroup)
There were two studies which were prospective, both of which
had a small sample size (n = 10); the third study in this
subgroup was retrospective. One study applied genomic
alterations alone as features to predict future MRI treatment
response. All studies (3/3, 100%) were in the highest class for
risk of bias in terms of the reference standard, patient selection
Frontiers in Oncology | www.frontiersin.org 6
and index test QUADAS 2 categories (Supplementary Figure
S2). In terms of “concerns regarding applicability” evaluation,
the results mirrored the risk of bias evaluation exactly.
Diagnostic accuracy measures could not be calculated because
of study design. Design constraints included units of
assessment in one study being per-lesion whilst another was
per-voxel. One study also incorporated a prognostic metric of
1-year progression free survival for the predicted treatment
FIGURE 2 | Flow diagram of search strategy.
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TABLE 1 | Studies using machine learning in the development of glioblastoma monitoring biomarkers.

Author Target condition Reference
standard

Dataset(s) Available demographic
information

Methodology Features
selected

Test set
performance

aKim J.Y.
et al. (34)

Early true
progression or Early
pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 61
Testing = 34
T1 C, FLAIR, DWI,
DSC

Training =
age mean ± SD (range)
58 ± 11 (34–83)
male 38 (62%)
Testing =
age mean ± SD
62 ± 12 male 25 (74%)
Data from Korea

Retrospective
2 centers: 1
train & 1
external test set.
LASSO feature
selection with
10-fold CV
Linear
generalized
model

First-order,
volume/shape,
Second-order
(texture), wavelet.
ADC & CBV
parameters
included.

Recall 0.71
Specificity 0.90
Precision 0.83
BA 0.81
F1 0.77
AUC 0.85 (CI
0.71 – 0.99)

Kim J.Y.
et al. (35)

Early true
progression or Early
pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 59
Testing = 24
T1 C, FLAIR, DTI,
DSC

Training =
age mean ± SD
61 ± 11
male 37 (63%)
Testing =
age mean ± SD
59 ± 12
male 9 (38%)
Data from Korea

Retrospective
1 center
LASSO feature
selection with
10-fold CV
Linear
generalized
model

First-order,
Second-order
(texture), wavelet.
FA & CBV
parameters
included.

Recall 0.80
Specificity 0.63
Precision 0.36
BA 0.72
F1 0.50
AUC 0.67 (0.40
– 0.94)

Bacchi S.
et al. (36)

True progression or
PTRE (HGG)

Histopathology for
progression and
imaging follow up for
pseudoprogression

Training = 44
Testing = 11
T1 C, FLAIR, DWI

Combined =
age mean ± SD
56 ± 10
male 26 (47%)
Data from Australia

Retrospective
1 center
3D CNN & 5-
fold CV

CNN.
FLAIR & DWI
parameters

Recall 1.00
Specificity 0.60
Precision 0.75
BA 0.80
F1 0.86
AUC 0.80

Elshafeey
N. et al.
(37)

True progression or
bPTRE

Histopathology Training = 98
Testing = 7
DSC, DCE

Training =
age mean ± SD
50 ± 13
male 14 (58%)
No testing demographic
information
Data from USA

Retrospective
3 centers
mRMR feature
selection. 1 test.
1) decision tree
algorithm C5.0
2) SVM
including LOO
and 10-fold CV

Ktrans & CBV
parameters

Insufficient
published data
to determine
diagnostic
performance
(CV training
results available
recall 0.91;
specificity 0.88)

Verma G.
et al. (38)

True progression or
Pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 27
3D-EPSI

Training =
age mean ± SD
64 ± 10
male 14 (52%)
Data from USA

Retrospective
1 center
Multivariate
logistic
regression
LOOCV

Cho/NAA & Cho/
Cr

No test set
(CV training
results available
recall 0.94;
specificity 0.87)

Ismail M.
et al. (39)

True progression or
Pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 59
Testing = 46
T1 C, T2/
FLAIR

Training =
age mean(range) 61
(26–74)
male 39 (66%)
Testing =
age mean (range) 56
(25–76)
male 30 (65%)
Data from USA

Retrospective
2 centers: 1
train & 1
external test set.
SVM & 4-fold
CV

Global &
curvature shape

Recall 1.00
Specificity 0.67
Precision 0.88
BA 0.83
F1 0.94

aBani-Sadr
A. et al. (40)

True progression or
Pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 52
Testing = 24
T1 C, FLAIR
MGMT promoter
status

Combined =
age mean ± SD
58 ± 11
male 45 (59%)
Data from France

Retrospective
1 center
Random Forest.

Second-order
features
+/-
MGMT promoter
status

Recall 0.94
(0.71 - 1.00)
Specificity 0.38
(0.09 - 0.76)
Precision 0.36
BA 0.66
F1 0.84
AUC 0.77
& non-MRI:
Recall 0.80
(0.56 - 0.94)
Specificity 0.75
(0.19 - 0.99)
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TABLE 1 | Continued

Author Target condition Reference
standard

Dataset(s) Available demographic
information

Methodology Features
selected

Test set
performance

Precision 0.86
BA 0.74
F1 0.83
AUC 0.85

Gao X.Y.
et al. (41)

True progression or
PTRE (HGG)

Mixture of
histopathology and
imaging follow up

Training = 34
Testing = 15
(per lesion)
T1 C, FLAIR

Combined =
age mean ± SD
51 ± 11
male 14 (36%)
(per patient)
Data from China

Retrospective
2 centers
SVM & 5-fold
CV

T1 C, FLAIR
subtraction map
parameters

Recall 1.00
Specificity 0.90
Precision 0.83
BA 0.95
F1 0.91
AUC 0.94 (0.78
– 1.00)

Jang B-S.
et al. (42)

True progression or
Pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 59 Testing
= 19
T1 C & clinical
features & IDH/
MGMT
promoter status

Training =
age median (range)
56 (22–77)
male 41 (70%)
Testing =
age mean ± SD
53 (28–75)
male 10 (53%)
Data from Korea

Retrospective
2 centers
1 train & 1
external test set.
CNN LSTM &
10-fold CV
(compared to
Random Forest)

CNN T1 C
parameters
+/-
Age; Gender;
MGMT status;
IDH mutation;
radiotherapy dose
and fractions;
follow-up interval

Recall 0.64
Specificity 0.50
Precision 0.64
BA 0.57
F1 0.63
AUC 0.69

& non-MRI:
Recall 0.72
Specificity 0.75
Precision 0.80
BA 0.74
F1 0.76
AUC 0.83

Li M. et al.
(43)

True progression or
bPTRE

Imaging follow up Training = 84
DTI

No demographic
information
Data from USA

Retrospective.
1 center
DC-AL GAN
CNN
with SVM
including 5 and
10 and 20-fold
CV
(compared to
DCGAN, VGG,
ResNet, and
DenseNet)

CNN. DTI No test set
(CV training
results only
available: Recall
0.98
Specificity 0.88
AUC 0.95)

Akbari H.
et al. (44)

True progression or
Pseudoprogression

Histopathology Training = 40
Testing = 23
Testing = 20
T1 C, T2/FLAIR, DTI,
DSC, DCE

Combined
internal =
age mean (range)
57 (33–82)
male 38 (60%)
No external demographic
information
Data from USA

Retrospective
2 centers. 1
train & test. 1
external test set.
imagenet_vgg_f
CNN SVM &
LOOCV

First-order,
second-order
(texture).
CBV, PH, TR, T1
C, T2/FLAIR
parameters
included.

Recall 0.70
Specificity 0.80
Precision 0.78
BA 0.75
F1 0.74
AUC 0.80

Li X. et al.
(45)

Early True
progression or early
pseudoprogression
(HGG)

Mixture of
histopathology and
imaging follow up

Training = 362
T1 C, T2, multi-voxel
& single-voxel 1H-
MRS, ASL

Training = age mean
(range) 50 (19–70)
male 218 (60%)
Data from China

Retrospective
Gabor dictionary
and sparse
representation
classifier (SRC)

Sparse
representations

No test set
(CV training
results only
available:
Recall 0.97
Specificity 0.83)

Manning P
et al. (46)

True progression or
pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 32
DSC, ASL

Training = age mean ± SD
56 ± 13
male 22 (69%)
Data from USA

Retrospective
1 center
Linear
discriminant
analysis &
LOOCV

CBF and CBV
parameters
included.

No test set
(CV training
results only
available:
Recall 0.92
Specificity 0.86
AUC 0.95)

Park J.E.
et al., 2020
(47)

Early True
progression or early
pseudoprogression

Mixture of
histopathology and
imaging follow up

Training = 53
Testing = 33
T1 C

Training = age mean ± SD
56 ± 11
male 31 (59%)
Testing = age mean ± SD

Retrospective
2 centers. 1
train & test. 1
external test set.

First-order,
volume/shape,
Second-order
(texture), wavelet

Recall 0.61
Specificity 0.47
Precision 0.58
BA 0.54
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TABLE 1 | Continued

Author Target condition Reference
standard

Dataset(s) Available demographic
information

Methodology Features
selected

Test set
performance

62 ± 12
male 25 (76%)
Data from Korea

Random Forest
feature selection
with 10-fold CV
(Automated
segmentation)

parameters
included.

F1 0.59
AUC 0.65 (0.46
– 0.84)

Lee J. et al.
(48)

True progression or
bPTRE (HGG)

Histopathology Training = 43
T1, T1 C, T2, FLAIR,
(subtractions: T1 C -
T1, T2- FLAIR) ADC
parameters.

Training =age mean ± SD
(range)
52 ± 13 (16–74)
male 24 (56%)
Data from USA

Retrospective
1 center
CNN-LSTM.
3-fold CV

CNN-LSTM
parameters.

No test set
(CV training
results only
available:
AUC 0.81 (0.72
- 0.88))

Kebir S.
et al. (49)

True progression or
bPTRE

Imaging follow up Training = 30
Testing = 14
O-(2[18F]-fluoroethyl)-
L-tyrosine (FET)

Combined = age mean ±
SD (range)
57 ± 11 (34-79)
male 34 (77%)
Data from Germany

Retrospective
1 center
Linear
discriminant
analysis.
3-fold CV

TBRmean

TBRmax

TTPmin

parameters.

Recall 1.00
Specificity 0.80
Precision 0.90
BA 0.92
F1 0.95
AUC 0.93 (0.78
- 1.00)

Cluceru J.
et al. (50)

Early True
progression or early
pseudoprogression
(HGG)

Histopathology Training = 139
DSC, MRSI, DWI,
DTI

Training = age median
(range)
52 (21–84)
Male 83 (60%)
Data from USA
Ethnicity:
White 112 (80%)
American Indian 1 (1%)
Asian 6 (4%(
Pacific Islander 2 (1%)
Other 18 (13%)

Retrospective
1 center
Multivariate
logistic
regression.
5-fold CV

Cho, Cho/Cr,
Cho/NAA & CBV
parameters.

No test set
(CV training
results only
available:
Recall 0.65
(0.33 - 0.96);
Specificity 0.62
(0.21 - 1.00)
AUC 0.69 (0.51
- 0.87))

Jang B.S.
et al. (51)

True progression or
bPTRE

Mixture of
histopathology and
imaging follow up
(including PET)

(i) (trained model =
78)
testing = 104
(ii) all training = 182
T1 C & clinical,
molecular, timings,
radiotherapy data

Testing = age median
(range)
55 (25-76)
male 59 (67%)
Data from Korea

Retrospective
(i) 6 centers
1 external test
set.
CNN LSTM
(ii) 7 centers
1 training set
CNN LSTM &
10-fold CV

CNN T1 C
parameters and
Age; Gender;
MGMT status;
IDH mutation;
radiotherapy dose
and fractions;
follow-up interval

(i) Insufficient
published data
to determine
diagnostic
performance
(ii) No test set
(CV training
results available
AUPRC 0.87)
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aWithin publication some data appears mathematically discrepant.
bWithin publication discrepant or unclear information (e.g. interval after radiotherapy).
Unless otherwise stated, glioblastoma alone was analyzed.
PTRE, post-treatment related effects; HGG, high-grade glioma.
MRI sequences: T1 C, postcontrast T1-weighted; T2, T2-weighted; FLAIR, fluid-attenuated inversion recovery; DSC, dynamic susceptibility-weighted; DCE, dynamic contrast-enhanced;
DWI, diffusion-weighted imaging; DTI, diffusor tensor imaging; ASL, arterial spin labelling; MRI parameters: ADC, apparent diffusion coefficient; FA, fractional anisotropy; TR, trace (DTI);
CBV, cerebral blood volume; PH, peak height; Ktrans, volume transfer constant.
Magnetic resonance spectroscopy: 1H-MRS, 1H-magnetic resonance spectroscopy; 3D-EPSI, 3D echo planar spectroscopic imaging.
1H-MRS parameters: Cr, creatine; Cho, choline; NAA, N-acetyl aspartate.
Nuclear medicine: TBR, tumor-to-brain ratio; TTP, time-to-peak.
Molecular markers: MGMT, O6-methylguanine-DNA methyltransferase; IDH, isocitrate dehydrogenase.
Machine learning methodology: CV, cross validation; LOOCV, leave-one-out cross validation; SVM, support vector machine; CNN, convolutional neural network; LASSO, least absolute
shrinkage and selection operator; LSTM, long short-term memory; mRMR, minimum redundancy and maximum relevance; VGG, Visual Geometry Group (algorithm); DCGAN, deep
convolutional generative adversarial network; DC-AL GAN, DCGAN with AlexNet.
Statistical measures: CI, confidence intervals; BA, balanced accuracy; AUC, area under the receiver operator characteristic curve; AUPRC, area under the precision-recall curve.
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response target condition. Overall, the studies are best
considered as proof of concept. Overall, there was insufficient
data to perform a subgroup meta-analysis.

3.2 Results of Meta-Analysis
Eleven studies appeared eligible for inclusion in a meta-analysis
of monitoring biomarker studies as there was information
regarding internal or external hold-out test set data. However,
one test was ineligible (n < 10; 3 cells in the 2 x 2 contingency
table n = 0). Ten (10/18, 56%) remaining studies were subject to
further analyses. Forest plots of sensitivity and specificity
(Figure 3) graphically showed a high level of heterogeneity.
Also, chi-square tests were applied separately to both primary
measures. The p values resulting from these tests were 0.017 and
0.110 for sensitivities and specificities, respectively thus
indicating the significant heterogeneity. This supported the
choice of the bivariate random-effect model. The pooled true
positive rate (sensitivity) = 0.769 (0.649 - 0.858) and the pooled
false positive rate (1-specificity) = 0.352 (0.251 - 0.468).

A scatter plot of false positive rates (1-specificity) and true
positive rates (sensitivity) shown in Figure 4 demonstrates
individual ROC point estimates and a summary ROC (SROC)
curve giving summary ROC-AUC = 0.765.

The derived pooled measures of balanced accuracy = 0.706
(0.623-0.779); positive likelihood ratio = 2.220 (1.560-3.140);
negative likelihood ratio = 0.366 (0.213- 0.572); diagnostic odds
ratio = 6.670 (2.800-13.500).
Frontiers in Oncology | www.frontiersin.org 10
4 DISCUSSION

4.1 Summary of Findings
To date, available evidence is relatively low level (12) for
determining the diagnostic accuracy of ML-based glioblastoma
treatment response monitoring biomarkers in adults. The
available evidence is subject to a number of limitations because
recent studies are at a high risk of bias and there are concerns
about its applicability, especially when determining the status of
response to treatment using the reference standards of follow-up
imaging or pathology at re-operation. There are similar and
associated concerns regarding the selection of study patients. A
third of the studies did not include any type of hold-out test
set. Most of the studies employed classic ML approaches based
on radiomic features. A third of studies employed deep
learning methodologies.

4.2 Limitations
4.2.1 Studies Assessed
Limitations encompassed three main areas. First, the reference
standards used in all studies resulted in a high risk of bias and
concerns about applicability. With the exception of the prognostic
biomarker subgroup of studies, all the studies were retrospective,
which increased the risk of confounding. Confounding factors, in
relation to imaging follow-up and pathology at re-operation
reference standards, were second-line drug therapy and cessation
of temozolomide, all of which were rarely considered. Likewise, the
TABLE 2 | Studies applying machine learning models to baseline MRI images (or genomic signatures) to operate as glioblastoma prognostic biomarkers to predict
future treatment response.

Author Target condition Reference
standard

Dataset(s) Available
demographic
information

Methodology Features
selected

Test set performance

Wang S.
et al. (52)

True progression or
pseudoprogression
(immunotherapy for EGFRvIII
mutation)
Baseline prediction

Histopathology model testing
set = 10 DTI,
DSC and 3D-
EPSI

Testing = age
mean (range)
55 (45-77) ± 8
male 4 (40%)
Data from USA

Prospective.
1 center.
Multivariate
logistic
regression.

CL, CBV, FA
parameters

Insufficient data to determine
per patient diagnostic
performance (per lesion
results only available:
Recall = 0.86
Specificity = 0.60)

Yang K.
et al. (53)

True progression or not
(stable disease, partial &
complete response &
pseudoprogression)
Baseline prediction

Imaging follow
up

Training = 49
Genomic
alterations

Training =
age median
(range)
57 (22-82)
male 30 (61%)
Data from
Korea

Retrospective.
1 center.
Analysis including
Gene Set
Enrichment
Analysis (GSEA).

Genomic
alterations
including
CDKN2A and
EGFR mutations

No test set
(Insufficient data to determine
per patient diagnostic
performance. From training
dataset:
1-year PFS for responder
45%; non-responder 0%)

Lundemann
M. et al. (54)

Early recurrence or not (voxel-
wise)
Baseline prediction

Mixture of
histopathology
and imaging
follow up

Training = 10
18F-FET PET/
CT;
18F-FDG
PET/MRI; T1
C; T2/FLAIR;
DTI; DCE

Training =
age mean
(range)
54 (40-71)
male 7 (78%)
Data from
Denmark

Prospective.
1 center.
Multivariate
logistic regression
LOOCV.

FET; FDG; MD,
FA; F, Vb, Ve, Ki,
and MTT
parameters.

No test set
(Insufficient data to determine
per patient diagnostic
performance. From training
dataset:
Voxel-wise recurrence
probability AUC 0.77)
January 2022
EGFR, epidermal growth factor receptor; EGFRvIII, epidermal growth factor receptor variant III; CDKN2A, cyclin-dependent kinase Inhibitor 2A.
MRI sequences: T1 C, post-contrast T1-weighted; T2, T2-weighted; FLAIR, fluid-attenuated inversion recovery; DSC, dynamic susceptibility-weighted; DCE, dynamic contrast-enhanced;
DTI, diffusor tensor imaging.
Other imaging techniques: 3D-EPSI, 3D echo planar spectroscopic imaging; PET/CT, positron emission tomography and computed tomography; PET/MRI, positron emission
tomography and magnetic resonance imaging; 18F-FDG, [18F]-fluorodeoxyglucose; 18F-FET, [18F]-fluoroethyl-L-tyrosine.
MRI parameters: FA, fractional anisotropy; MD, mean diffusivity; CL, linear anisotropy; CBV, cerebral blood volume; MTT, mean transit time; F, blood flow; Ve, extra-vascular extra-cellular
blood volume; Vb, vascular blood volume; Ki, vascular permeability.
Statistical and machine learning methodology: LOOCV, leave-one-out cross validation; AUC, area under the receiver operator characteristic curve; PFS, progression free survival.
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use of corticosteroids was rarely considered despite being a
confounding factor in relation to the imaging follow-up reference
standard. If unaccounted for, an increase in corticosteroid dosemay
cause false negative treatment response. Some authors provided a
statement within their methodology that they followed RANO
guidelines (4) which if followed meticulously would surmount
some of these clinicoradiological limitations, such as the use of
Frontiers in Oncology | www.frontiersin.org 11
corticosteroids which is integrated with the imaging assessment.
One limitation in using the RANO guidelines, however, is that in
some scenarios the contrast-enhancing lesions due to PTRE
continue to enlarge over a short interval, confounding assessment
by falsely confirming true progression if continued enlargement is
seen at a second short interval scan; RANO guidelines do not
account for this upslope effect (26, 27).

Second, patient selectionwas problematic and is associated with
confounding. For example, patients receiving second-line drug
therapy should have been excluded as response assessment may
be altered. It is also noteworthy that astrocytoma, IDH-mutant,
grade 4 are biologically and prognostically distinct from
glioblastomas, IDH-wildtype (55). Variable proportions in
individual studies introduces between-study heterogeneity and
therefore this is a source of potential confounding when
comparing or pooling data. Nonetheless, it is acknowledged that
for grade 4 tumors, IDH-mutants have a prevalence an order of
magnitude less than IDH-wildtype, likely limiting the impact of
such confounding.

Third, hold-out test sets should be used for diagnostic
accuracy assessment in ML studies (22) as it is a simple
demonstration as to whether the trained model overfits data;
nonetheless more than a third of studies did not use either an
internal or external hold-out test set. Nonetheless, six studies did
use external hold-out tests which might be considered optimal
practice for determining generalizability.

4.2.2 Review Process
Imaging reference standards, especially RANO trial guidelines (4)
and later iterations (25), are rarely applied correctly and are
themselves confounded (56). Because tumors have a variety of
shapes, may have an outline that is difficult to delineate, andmay be
located only within the cavity rim, it can be challenging to perform
seemingly simple size measurements (11). For example, large, cyst-
FIGURE 3 | Forest plots showing sensitivity and specificity.
FIGURE 4 | Summary Receiver Operator Characteristic Curve (SROC) of
diagnostic performance accuracy. The summary point estimate and
surrounding 95% confidence region is shown.
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like glioblastomas may be “non-measurable” unless a solid nodular
component of the rim fulfils the “measurable” criteria.

As well as the scenario described above highlighting the
upslope effect of PTRE (26, 27), another limitation of RANO is
a failure to acknowledge that pseudoprogression appears over a
6-month period rather than a 3-month period (although it is
accepted that even a 6 month cut-off is arbitrary) (26). Follow-up
imaging of adequate duration is therefore required in study
design. This leads to a further limitation of this or other
systematic reviews – it is extremely difficult to design studies
with enough nuance to be at low risk of bias in regards to the
reference standard.

Another limitation of this systematic review is that pathology at
re-operation, where used as a reference standard, is typically not
an entirely reliable reference standard for two reasons (57). First,
there is the potential for biopsy sampling bias because the entire
enhancing tissue may represent an admixture of PTRE and tumor
(58). Second, there is a lack of pathological standardization
causing a variety of inter-observer diagnostic interpretations
given the background of extensive post-therapy related changes
(59). Nonetheless, in the absence of more reliable available
reference standards at re-operation, it was pragmatically
included as an acceptable reference standard. Additionally,
according to many authors, it is closer to being a more accurate
reference standard compared to follow-up imaging.

Publication bias may also have affected the range of diagnostic
accuracy of the monitoring biomarkers included in this
systematic review and meta-analysis. Related to this, the
exclusion of pre-prints and non-peer reviewed material may
exacerbate publication bias. In particular, given that some in the
data science community may not submit their work in peer-
reviewed journals as peer review is relatively slow compared to
the speed at which data science develops, it is plausible that
publication bias relates to the make-up of the researcher team.
For example, more clinically-orientated teams may be more
inclined to publish in a peer reviewed journal compared to
more data science-orientated teams.

4.3 Explanation of the Results in the
Context of Other Published Evidence
After treatment, “monitoring biomarkers” are measured serially to
detect change in the extent of tumor infiltration or to provide
evidence of response to treatment (2). In nearly all glioblastomas the
integrity of the blood brain barrier is disrupted and MRI is used to
take advantage of this. Following intravenous administration of
gadolinium-based contrast agents, the hydrophilic contrast
molecules diffuse from the vessel lumen and accumulate in the
extravascular extracellular space, manifesting on T1-weighted
sequences as contrast-enhancing hyperintense regions (60).
Subsequently, MRI has been incorporated into recommendations
for determining response to treatment in trials (4). In these
recommendations, treatment response assessment is based on
simple linear metrics of contrast-enhancing tumor, specifically,
the product of maximal perpendicular cross-sectional dimensions
in “measurable” lesions defined as > 10 mm in all perpendicular
dimensions. The recommendations are based on expert opinion
Frontiers in Oncology | www.frontiersin.org 12
informed by observational studies and derived from the biologically
plausible assumption that an increase in the size of a tumor
identifies disease progression, potentially resulting in a lead time
improvement for therapeutic intervention before the tumor
becomes clinically apparent (61). The rationale is that there may
be advantages in altering management early on before the onset of
irreversible disability or the tumor extent precludes intervention.
Justification for enhancement as a proxy for tumor has been
inferred from data showing that the size of the enhancing region
and extent of resection of the enhancing region are “prognostic
biomarkers” (2) at both initial presentation and confirmed
recurrence (62–64).

The trial assessment recommendations, incorporated in a less
stringent form during routine clinical assessment (65), allow for an
early change in treatment strategy (9). However, there are
important challenges using conventional structural MRI protocols.

First, treatment response assessment typically is made in a
retrospective manner as confirmatory imaging is required to
demonstrate a sustained increase or a sustained decrease in
enhancing volume. This leads to a delay in diagnosis.

Second, contrast enhancement is biologically non-specific, which
can result in false negative, false positive, and indeterminate
outcomes, especially in regards to the post-treatment related
pseudophenomena observed in glioblastoma patients (61).
Pseudoprogression is an early post-treatment related effect
characteristically appearing within 6 months of glioblastoma
patients completing radiotherapy and concomitant temozolomide,
whereas pseudoresponse (not examined in this systematic review)
appears after patients have been treated with anti-angiogenic agents
such as bevacizumab. False-negative treatment response and false-
positive progression appear as a decrease or an increase in the volume
of MRI contrast enhancement, respectively. Delayed post-treatment
related effects caused by radiation necrosis similarly appear as an
increase in volume of MRI contrast enhancement, again potentially
causing false-positive progression. A different scenario where
contrast enhancement is biologically non-specific includes post-
operative peritumoral parenchymal enhancement after operative
“tissue handling”; or after operative infarction.

Conventional structural MRI protocols are therefore limited
and contemporaneous, accurate and reliable monitoring
biomarkers are required for glioblastoma treatment response
assessment. Three potential solutions are highlighted here:

First, an emerging alternative approach is to harness the
potential value of circulating biomarkers (including circulating
tumor cells, exosomes, and microRNAs) to monitor disease
progression in glioma patients (66). However, as with any
potential monitoring blood or cerebral spinal fluid biomarker,
potential use requires further evaluation and validation in large
scale prospective studies before implementation into standard
clinical practice can be envisaged.

Second, another promising approach is to use advanced imaging
techniques (67). The last three decades have seen considerable
technical developments in MRI (for example, those related to
perfusion, permeability and diffusion), 1H-MR spectroscopic
imaging, and positron emission tomography (for example using
radiolabelled amino acids). A meta-analysis of 28 perfusion and
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permeability imaging studies showed that the pooled sensitivities
and specificities of each study’s best performing parameter were
90% and 88% (95% confidence interval (CI), 0.85 - 0.94; 0.83 - 0.92)
and 89% and 85% (95% CI, 0.78 - 0.96; 0.77 - 0.91) for dynamic
susceptibility-weighted (DSC) and dynamic contrast-enhanced
(DCE) MRI, respectively (68). Clinical translation is far from
ubiquitous (65) reflecting that further investigation and consensus
standardization is required before implementing any particular
widespread quantitative strategy (68). Indeed, advanced imaging
is not yet recommended for determining treatment response in
trials (4), and there is a lack of evidence that using advanced MRI
techniques leads to a reduction in morbidity or mortality (61).
However, compared to ML where accuracy-driven performance
metrics have resulted in increasingly opaque models, particularly
when using structural images, the underlying biological processes
relating to advanced imaging appear to be well understood whilst
also demonstrating high performance accuracy.

A third approach is to useML, whether applied to conventional
structural MRI, advanced imaging techniques or a combination of
both imaging and non-imaging features. Indeed, an advantage of
machine learning applied to MRI is that wide data can be handled
relatively easily (11) which might allow the wide spectrum of
signatures from multiparametric advanced MRI to be captured
together to improve performance accuracy. However, a
disadvantage when compared to a single modality approach is
that combinations of outputs from individual modalities that are
without frameworks for technical and clinical use, might
compound inter-center variability and reduce generalizability
considerably. The advantages and disadvantages of using ML-
based monitoring biomarkers for glioblastoma treatment response
assessment have been described recently (summarised in Table 3)
(61). However, a number of factors demonstrate that only limited
conclusions on performance can be drawn from recent studies in
our systematic review. These include the high risk of bias and
Frontiers in Oncology | www.frontiersin.org 13
concerns about applicability in study designs, the small number of
patients analysed in ML studies, and the low level of evidence of
the monitoring biomarker studies given their retrospective nature.

Nonetheless, overall there appears to be good diagnostic
performance of ML models using MRI features to differentiate
between progressive disease and mimics. For now, if ML models
are to be used they may be best confined to the centers where the
data was obtained from, badged as research tools and undergo
further improvement.

Concordant with a previous review of studies published up to
Sept 2018 (11), the diagnostic performance of ML using implicit
features did not appear to be superior to ML using explicit
features. However, the small number of studies precluded
meaningful quantitative comparison.

4.4 Implications for Clinical Practice
and Future Research
The results demonstrate that glioblastoma treatment response
monitoring biomarkers using ML are promising but are still at the
early development stage and are not yet ready to be integrated into
clinical practice. All studies would benefit from the improvements in
methodology described above. Methodological profiles or standards
might be developed through consortiums such as the European
Cooperation in Science and Technology (COST) Glioma MR
Imaging 2.0 (GliMR) (67) initiative or the ReSPOND Consortium
(76). Determining an accurate reference standard for treatment
response is challenging and performing prospective studies
capturing contemporaneous detailed information on steroids and
second line treatments is likely tomitigate the effects of confounding.
Additionally, multiple image-localized biopsies at recurrence may
lessen sampling bias due to PTRE and tumor admixture.

In future studies, it would be beneficial to perform analytical
validation using external hold-out tests as epitomized by several
studies in the current review. Using larger datasets which include a
TABLE 3 | Advantages and disadvantages of using ML-based monitoring biomarkers for glioblastoma treatment response assessment (61).

Advantages Disadvantages

Using ML requires less formal statistical training given the huge
developments in software (69), and the programming expertise for
researchers has now been transformatively reduced, enabled by
standardized implementations of open source software (70, 71).

The clinical context may not be represented with a decreased ability to perform
holistic evaluations of patients, with loss of valuable and irreducible aspects of the
human experience such as psychological, relational, social, and organizational
issues (72).

Wide data can be handled relatively easily (11) and ML can be applied to
conventional structural MRI, advanced imaging techniques or a combination
of both imaging and non-imaging features.

Linking the empirical data to a categorical analysis can neglect an intrinsic ambiguity
in the observed phenomena (72), which might adversely affect the intended
performance (69).

ML models have the ability to determine implicitly any complex nonlinear
relationship between independent and dependent variables (69), and have
the ability to determine all possible interactions between predictor
variables (73).

Overreliance on the capabilities of automation can lead to the related phenomenon of
radiologist deskilling (74).
Algorithms may be unreliable due to several technical constraints: domain adaptation is
currently limited, and more solutions are required to help algorithms extrapolate well to
new centers. Ultimately models may require calibration or retraining.
Robustness to unintended data, such as artifacts, is also a technical constraint that needs
to be overcome. Finally, the presence of more than one pathology (e.g., stroke or
abscess associated with a tumor following treatment) can also confound algorithms as
these cases are scarce and often unlabeled.
Accuracy-driven performance metrics have led to a trend towards increasingly opaque
models (73), although recent developments in interpretability and explainability may help
to mitigate this to some extent (75).
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wider range of tumors and mimics as well as parameters from
different sequences, manufacturers and coils, and thereby reduce
overfitting, would also improve future studies. Multidisciplinary
efforts and multicenter collaborations are therefore necessary (61).
However, datasets will always be relatively small in neuro-
oncological imaging even if distributed machine learning
approaches such as federated learning, where the model comes to
the data rather than the data comes to the model, overcome data
sharing regulatory bottlenecks (61). Therefore, strategies to improve
ML performance using small datasets, some of which are at the
research stage, should be exploited further. Strategies include data
augmentation (generate more varied image examples, within a single
classification task) and the related process of meta-augmentation
(generate more varied tasks, for a single example) (77) as well as
transfer learning and the overlapping process of one- or few-shot
learning (78). Transfer learning aims to learn representations from
one domain (does not need to consist of brain tumors) and transfer
the learned features to a closely related target domain (glioblastoma).
Few-shot learning allows classifiers to be built from very small
labelled training sets. Another research direction could be reducing
the demand for image labelling. This field is known as self-supervised
learning (79). Finally, an entirely different approach to counter the
challenges of small datasets is to use synthetic data, for example using
generative adversarial networks (80).

Predictions can also be made more informative through the
modelling of prediction uncertainty including the generation of
algorithms that would “know when they don’t know” what to
predict (11).

Further downstream challenges for clinical adoption will be the
completion of clinical validation (2) aswell as the deployment of the
clinical decision support (CDS) software to clinical settings. Clinical
validation consists of evaluating the CDS software containing the
lockedmachine learningmodel in a clinical trial thereby producing
high level evidence (12). TheCDS software deployment brings both
technical and non-technical challenges. In terms of technical
challenges, the CDS software must be easily integrated into the
radiologist’s workflow (electronic health record system and picture
archiving and communication system) andpreferably deliver a fully
automated process that analyzes images in real time and provides a
quantitative and probabilistic report. Currently there has been little
translation of CDS software into radiological departments however
there are open source deployment solutions (71, 81).

Non-technical challenges relate to patient data safety and
privacy issues; ethical, legal and financial barriers to developing
and distributing tools that may impact a patient’s treatment
course; medical device regulation; usability evaluation; clinical
acceptance and medical education around the implementation of
Frontiers in Oncology | www.frontiersin.org 14
CDS software (14, 82). Medical education includes articulating
the CDS software limitations to ensure there is judicious patient
and imaging selection reflecting the cohort used for validation of
the model (11).

5 CONCLUSION

A range of ML-based solutions primed as glioblastoma treatment
response monitoring biomarkers may soon be ready for clinical
adoption. To ensure clinical adoption, it would be beneficial
during the development and validation of ML models that
studies include large, well-annotated datasets where there has
been meticulous consideration of the potential for confounding.
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