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Convolutional Neural Network
With DFP and CBAM for Brain
Tumor Segmentation
Jingjing Wang1, Zishu Yu1, Zhenye Luan1, Jinwen Ren1, Yanhua Zhao2* and Gang Yu1*

1 College of Physics and Electronics Science, Shandong Normal University, Jinan, China, 2 Obstetrics and Gynecology,
Tengzhou Xigang Central Health Center, Tengzhou, China

Due to the high heterogeneity of brain tumors, automatic segmentation of brain tumors
remains a challenging task. In this paper, we propose RDAU-Net by adding dilated feature
pyramid blocks with 3D CBAM blocks and inserting 3D CBAM blocks after skip-
connection layers. Moreover, a CBAM with channel attention and spatial attention
facilitates the combination of more expressive feature information, thereby leading to
more efficient extraction of contextual information from images of various scales. The
performance was evaluated on the Multimodal Brain Tumor Segmentation (BraTS)
challenge data. Experimental results show that RDAU-Net achieves state-of-the-art
performance. The Dice coefficient for WT on the BraTS 2019 dataset exceeded the
baseline value by 9.2%.

Keywords: brain tumor segmentation, U-Net, attention mechanism, dilation feature pyramid, deep learning
INTRODUCTION

Tumors that grow in the skull are commonly referred to as brain tumors and include primary brain
tumors, which occur in the brain parenchyma, and secondary brain tumors, which metastasize to
the skull from other parts of the body. According to the World Health Organization (WHO)
classification criteria, brain tumors are classified into four grades: grade I, astrocytoma; grade II,
oligodendroma gliomas; grade III, anaplastic glioma; and grade IV, glioblastoma multiforme (GBM)
(1). The lower the grade of the tumor, the less malignant it is, and the better the prognosis is. As a
result, early diagnosis of brain tumors is very important for treatment.

Magnetic resonance imaging (MRI) is considered a standard technique due to its satisfactory
soft-tissue contrast and wide availability (2). MRI is a noninvasive imaging technique that uses
magnetic resonance phenomena to obtain electromagnetic signals from the human body and
reconstruct information about the body as a type of tomography. MRI is available in a variety of
imaging sequences. These imaging sequences can produce MRI images with distinctive features that
can reflect the anatomical morphology of the human body.

In current clinical practice, brain tumors are labeled manually by physicians, which is time-
consuming. Moreover, brain tumors are similar to normal brain tissues in terms of morphology and
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intensity; hence, manual labeling by physicians suffers from
subjective variability and lacks reproducibility (3). Therefore,
accurate automatic segmentation of brain tumors in T1, T1-c,
T2, and FLAIR is essential for quantitative analysis and
evaluation of brain tumors (4).

Progress on Image Segmentation Methods
In recent years, deep neural network (DNN)-based methods
have achieved high performance for brain tumor segmentation
(5–8). Convolutional neural networks (CNNs) (9) have achieved
great success in many research areas, such as image recognition
(10–12), image segmentation (13–15), and natural language
processing (16, 17). In (18), a fully convolutional neural
network (FCN) for image pixel-level image classification was
proposed, which solves the problem of semantic-level image
segmentation with input data of arbitrary size. Ronneberger et al.
(19) proposed the U-Net framework with a skip connection
module connecting the encoder and decoder. In contrast to
FCNs, U-Net fuses shallow and deep features and has
produced impressive results in medical image segmentation.
Inspired by U-Net, Attention U-Net (20) and ResU-Net (21)
were proposed and used for medical image segmentation. In
Attention U-Net, an attention mechanism is added to the skip
connection part. This module generates gating information to
readjust the weight coefficients of features at various spatial
locations. In ResU-Net, each convolutional layer is replaced
with a residual convolutional layer, thereby avoiding gradient
disappearance in backpropagation in deep network structures.

Attention Mechanism
Attention mechanisms were first introduced in natural language
processing (22–25). Currently, attention mechanisms are also
widely used in deep learning to enhance feature extraction (26–
28). Hu et al. (29) proposed plug-and-play squeeze-and-excitation
(SE) attention, which learns feature relationships to obtain
contextual information on channel dimensions by global average
pooling. Wang et al. (30) proposed ECANet, which uses a local
cross-channel interaction strategy without downscaling and
adaptive selection of one-dimensional convolutional kernels. In
addition to these single-channel attention mechanisms, there are
several dual-attention mechanisms. For example, Fu et al. (31)
proposed the dual attention mechanism network (DANet) to
improve the accuracy of network segmentation by capturing
feature dependencies based on the spatial and channel
dimensions of the self-attention mechanism and summing the
outputs of the two modules. Woo et al. (32) proposed a
convolutional block attention module (CBAM) to enhance useful
information and suppress useless information by a tandem channel
attention mechanism and a spatial attention mechanism.

Although ResU-Net uses a residual module to mitigate the
problem of vanishing network gradients, it still suffers from the
following problems: (1) Multiscale features have an important
role, but ResU-Net does not extract features from images of
various sizes, and thus, a substantial amount of detailed
information is lost. (2) The skip connection cascades the
shallow features of the decoder part and the corresponding
depth features to achieve feature fusion, but the shallow
Frontiers in Oncology | www.frontiersin.org 2
features of the encoder contain considerable redundant
information, which, in turn, affects the segmentation results.

In this paper, we propose RADU-Net, which is an improved
version of ResU-Net that is inspired by the attention mechanism.
Our contributions are mainly as follows.

1. We insert the 3D CBAM dual attention mechanism in each
residual module to alleviate the problem of gradient
disappearance or explosion as the network structure
deepens and obtain the feature information of the image
more accurately.

2. We add the dilated feature pyramid module with the 3D
CBAM dual attention mechanism between the encoder and
the decoder as a solution to the problem that the traditional
U-Net network does not extract multi-scale features of
images to obtain feature maps of different sizes.

3. We insert a 3D CBAM block after the skip connection in each
layer to improve the extraction of channel information and
spatial information to reduce the redundant information of
low-level features.

Via these modifications, RADU-Net solves the above
problems and improves the overall segmentation accuracy of
brain tumors.
METHODS

RDAU-Net
This paper proposes a 3D convolutional neural network, namely,
RDAU-Net, for the brain tumor segmentation task. The 3D
CNN considers more comprehensive spatial context information
and achieves more accurate performance than the 2D CNN in
image segmentation. Figure 1 illustrates the complete structure
of RDAU-Net. RDAU-Net includes an encoder part and a
decoder part. The input of the encoder part includes 2 purple
3D convolutional layers with a convolutional kernel size of 3 ×
3 × 3, 5 3D RA blocks of various sizes and 4 3D convolutional
layers with a step size of 2 as the downsampling layer. The RA
block is that the orange CBAM block is added after each
convolutional layer of the residual block for feature extraction.
Between the encoder and the decoder is the DA block, which is
the CBAM block that is added after each dilated convolution
layer. The decoder part is symmetric to the encoder and contains
4 deconvolution layers. The purple arrow between the encoder
and decoder is the skip connection, and a CBAM block is
inserted after each skip connection layer. The pink block is the
concatenation layer. The network ends with a 3D convolutional
layer and a gray block of sigmoid function layers. (3,3,3,4,32) in
the first layer indicates that the convolution kernel size of this
layer is 3 × 3 × 3, the number of input features is 4 and the
number of output features is 32.

3D CBAM Block
To extract more accurate image feature information, we use
CBAM (32) as the attention module of the network. We
transform the 2D CBAM attention module into a 3D CBAM
March 2022 | Volume 12 | Article 805263
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attention module. CBAM ties together channel attention and
spatial attention to increase the weights of useful features in the
channel and useful features in the space, as illustrated in
Figure 2A. First, the deep blue module in Figure 2A, which is
denoted as F ∈ RW×H×D×C, is input into the channel attention
module. The channel attention module as shown in Figure 2B
consists of a 3D global max pooling module (the pink module in
Figure 2B), a 3D global average pooling module (the yellow
module in Figure 2B), and a shared MLP (multilayer
perception) that consists of a 3D neural network. The input
feature map F is subjected to 3D global max pooling and 3D
global average pooling operations and to MLP. The two outputs of
MLP are added elementwise. Then, after the sigmoid activation
function, we obtain the weight Mc(F) after the channel attention
module.
Frontiers in Oncology | www.frontiersin.org 3
MC(F) = s (MLP(AvgPool3D(F) +MLP(MaxPool3D(F))

= s (W1(W0(F
C
avg) +W1(W0(F

C
max)) (1)

where W0∈ RC/r×C, W1∈ RC/C×r, and s is the sigmoid activation
function. r takes a value of 16, namely, the channel C is changed
to C/16 during max-pooling and average pooling to reduce the
number of parameters.

Then, Mc(F) is multiplied with the input feature map F to
obtain the output feature map F′ of the channel attention
module, and the formula is as follows:

F 0 = MC(F)⊗ F (2)

whereMc(F) denotes the output weight after the channel attention
module and⊗ denotes element-by-element multiplication.
FIGURE 1 | Architecture of the proposed RDAU-Net.
A

B C

FIGURE 2 | Structure of a 3D CBAM block. (A) The overview of 3D CBAM; (B) Structure of the Channel Attention Module; (C) Structure of the Spatial Attention Module.
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F′ is used as the input feature map for the spatial attention
model as shown in Figure 2C, and the channels are compressed
by 3D global max pooling and 3D global average pooling in the
channel dimension. The two extracted feature maps FS

avg and
FS
max are subjected to a channel-based merging operation to

obtain a 2-channel feature map, which is subsequently
downscaled into a single channel (the shallow blue module in
Figure 2C) by a 7×7 convolution operation before application of
the sigmoid function to generate the output weightMS (F′) in the
blue part of the spatial attention module.

MS(F ” ) = s (f 7�7(½AvgPool3D(F ” );MaxPool3D(F ” )�))

= s (f 7�7(½FS
avg ; F

S
max�)) (3)

Finally, MS (F′) is multiplied by F′ to obtain the final output
feature map F′′ of the yellowmodule, as expressed in Equation (3).

F ” = MS(F ” )⊗ F ” (4)

where MS (F′) denotes the output weight after spatial attention
and ⊗ denotes element-by-element multiplication.

RA Block
We propose a residual block with a 3D CBAM, namely, an RA
block that is composed of two 3×3×3 convolutional layers for the
pink module, two normalization layers for the purple module,
two activation layers for the yellow module, and an attention
layer for the green module, as illustrated in Figure 3. Batch
normalization (BN) is sensitive to the batch size because the
mean and variance are calculated on a single batch. The instance
normalization (IN) operation is performed within a single
sample and does not depend on the batch. The leaky rectified
linear unit (LR) is a variant of ReLU with a variation in response
to input fractions of less than 0, thereby mitigating the sparsity of
ReLU and alleviating some of the problems of neuronal death
that are caused by ReLU. Therefore, we substitute the instance
normalization (IN) and leaky rectified linear unit (LR) functions
for the popular batch normalization (BN) and rectified linear
unit (ReLU) functions, respectively. The RA block effectively
improves the extraction of image feature information by adding a
Frontiers in Oncology | www.frontiersin.org 4
CBAM after the final convolution layer of the residual block,
thereby improving the segmentation accuracy of the network.

DA Block
Our proposed DA block is shown as a deep blue block in Figure 1,
which is composed of multiple green blocks of parallel 3×3×3
dilated convolution layers with various expansion rates and the
orange CBAM blocks, and the multiple parallel feature maps are
finally summed to obtain the output feature map of the purple
block, as illustrated in Figure 4. Multiscale features are important
for the segmentationofbrain tumors.Therefore,wepropose theDA
block for efficiently obtaining featuremaps of various sizes through
levels of dilated convolutional layers in the spatial pyramid model.
Dice Loss Function
The BraTS dataset is extremely unbalanced, and convolutional
neural networks are very sensitive to unbalanced datasets.
Therefore, we use the dice loss function to solve the problem.
The dice function is expressed as follows:

L = 1 −

2 ∗o
N

n=1
ppred ∗ ptrue

o
N

n=1
p2pred + p2true + ϵ

(5)

where Ppred is the decoder output, Pture is the segmentation mask.
where summation is voxel-wise, and ϵ is a small constant to avoid
zero division.The process of RDAU-Net implementation is as
follows. The 3D brain tumor data of four modalities are
convolved twice by two 3×3×3 layers to increase the number of
features in the initial filters. Then, the extracted feature maps are
input into theRAblock for feature extraction. TheCBAM is used to
exploit useful information of the input features. The feature maps
that are extracted by the first RA block are downsampled by a
convolutional layer with a step size of 2. After four rounds of
convolution and downsampling, the extracted feature maps are
input into the DA block for feature extraction with various feature
sizes. TheDAblock combinesmultiple dilated convolutional layers
in parallel and incorporates a CBAM dual attention mechanism
FIGURE 3 | Structure of an RA block.
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behind each convolutional layer. This attention pyramid pooling
module effectively obtains feature maps of various sizes through
levels of expanded convolutional layers in the spatial pyramid
model while extracting useful information on channels and
spaces to increase the tumor segmentation accuracy. Then, the
featuremaps that are extracted fromtheDAblockareupsampledby
deconvolution. The upsampled feature maps are connected by a
skip connection with the feature maps that have undergone feature
weighting by the CBAM block in the corresponding layer in the
encoder. Our proposed method inserts a CBAM block after each
skip connection layer to improve the extraction of channel
information and spatial information through tandem channel
attention and spatial attention as a way to reduce the redundant
information of low-level features. Attention is produced when the
skip connection connects the featuremaps that are extracted by the
encoder directly to the corresponding layers of the decoder. After
upsampling, the final prediction result of the network is output
through the sigmoid function. Finally, an image of the same size as
the input image is generated.

EXPERIMENTS

Evaluation Indicators
We use the Dice coefficient, Hausdorff distance, sensitivity, and
specificity evaluation metrics to evaluate our experimental results.

The Dice coefficient (Dice) is defined as:

DSC =
2� TP

FP + FN + 2� TP
(6)

Sensitivity and specificity are defined as:

Sensitivity =
TP

TP + FN
(7)

Specificity =
TP

TP + FP
(8)
Frontiers in Oncology | www.frontiersin.org 5
where TP, FP, and FN indicate the true positive, false positive,
and false negative values, respectively.

The Hausdorff distance indicates the maximum mismatch
between the predicted edge of the tumor segmentation result and
the ground-truth boundary.

HD(T , S) = max supx∈X inf y∈Y d(x, y), supy∈Y inf x∈X d(x, y)
� �

(9)

where sup and inf denote the upper and lower boundaries,
respectively, of the brain tumor region; x and y are points on the
tumor surface,wherex∈T and y∈P; andd() is thedistance function.

Experimental Details
The experiments are carried out on aworkstation that is configured
with an Intel® Xeon(R) CPU E5-2620 v4 @ 2.10 GHz × 32 and
equippedwith two 12GBTITANXp graphics cards. The proposed
network is tested under the environment of TensorFlow-
gpu==1.10.0

1

and Keras==2.2.0
2

. For training, the input
preprocessed image has an image block size of 4 × 128 × 128 ×
128. Since the computational complexity of the 3D image block is
too high, we set the batch size to 2. The experiments are performed
using theAdamoptimizationmethod, and the initial learning rate is
set to Lrinit = 1˙10–4. The learning rate is reduced by 50% after 15
epochs if the validation loss isnot improving, andwe regularizewith
an 12 weight decay of 10–5. The size of the output prediction
segmentation result is also 128×128×128. Finally, we reshape the
data to a size of 240 × 240 × 155 by using the Nilearn package3.

Dataset
Ourproposedmethod is validatedon theBraTS2018 and2019 (33–
36) datasets. The BraTS 2018 dataset contains 285 glioma cases,
which correspond to 210 HGG patients and 75 LGG patients. The
FIGURE 4 | Structure of a DA block.
March 2022 | Volume 12 | Article 805263
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validation set contains 66 MRs of patients with unknown tumor
grade without real labels. The BraTS 2019 dataset contains 335
glioma cases, which correspond to 259 HGG patients and 76 LGG
patients. The validation set contains 125 MRs of patients with
unknown tumorgradewithout real labels.Thedataset containsdata
offourmodalities, namely,T1,T2,TIC, andFLAIR, andeachMRI is
a 3D image of size 240×240×155. The task of the segmentation
challenge was to segment three tumor subregions: 1) the whole
tumor (WT), 2) the tumor core (TC), and 3) the enhancing tumor
(ET). Figure 5 shows the modalities for a case in the BraTS 2018
training dataset and the ground truth.

Data Preprocessing
MRI scans will often show intensity heterogeneity due to variations in
the magnetic field. The variations in these mappings are called bias
fields,andbiasfieldscancauseproblemsforclassifiers.WeusedN4ITK
forbiasfieldcorrectionof the images, andN4ITK(36) is amodification
of theN3biasfield correctionmethod (37).Moreover, the imagesdiffer
in terms of contrast among these fourmodes. Therefore, we normalize
using the z-score method, namely, we subtract the intensity of each
pixel from the average intensity of all pixels in eachmultimodal image
and divide by the standard deviation, while GT is not normalized.
Finally, we change the size from 240 × 240× 155 to 128 × 128 × 128 to
reduce the number of parameters of the network.

Ablation Study
To determine whether the CBAM dual attention module is
effective in enhancing the segmentation performance of the
network, we perform ablation experiments.

These experiments are conducted with and without the use of
the attentionmodule. The scores for the four evaluationmetrics on
Frontiers in Oncology | www.frontiersin.org 6
the datasets of the BraTS 2018 and 2019 challenges are obtained
separately. As presented in Table 1, the Dice coefficient and
Hausdorff distance of the network in which the dual attention
mechanism is utilized improved across the boardonboth theBraTS
2018 and 2019 challenge datasets, especially the Dice score of WT,
which improvedby1%onbothdatasets, and theHausdorff distance
of ET, which decreased by 0.2 mm and 0.11 mm, respectively. In
addition, the sensitivity of the model in which the attention
mechanism is utilized improved by 0.5% and 0.2%, respectively,
on ET. In general, adding CBAMs to the network can effectively
improve the performance of the network.

Histograms of various evaluation metrics on the datasets of
the BraTS 2018 and 2019 challenges are presented in Figure 6.
According to these results, inclusion of the CBAM in the network
can effectively improve the segmentation accuracy of the model.

Figure 7 shows the visual segmentation results of our proposed
approach on the BraTS 2018 challenge data training set. From
Figure 7, we find that our network model can segment various
regions of the tumor, especially the ET parts of the tumor, but there
are segmentation errors in small places compared with the ground
truth. In summary, by comparing our segmentation results with
those ofRDU-Net (without attention) and the ground truth,wefind
that our proposed model obtains satisfactory segmentation results
with the RA block and the DA block.

Results on the BraTS Challenge
Training Data
We compare the segmentation performance of our approach with
those of other typical deep networkmethods, as shown inFigure 8,
on the BraTS 2018 challenge training dataset. The original data in
Figure 8 from top to bottom are T1-c; the segmentation results of
A B DC

FIGURE 5 | Schematic diagram of the BRATS 2018 training dataset. From left to right are (A) FLAIR, (B) T1, (C) T1-c, and (D) ground truth, where the colors of the
ground truth represent categories of tumor segmentation: orange represents edematous regions, red represents enhancing tumors, and white represents necrotic
and nonenhancing tumors.
TABLE 1 | Segmentation results of our proposed network with and without attention mechanism on BraTS 2019 validation set using Dice, Hausdorff distance,
specificity, and sensitivity metrics.

Models Hausdorff (mm) ↓ Dice ↑ Specificity ↑ Sensitivity ↑

WT TC ET WT TC ET WT TC ET WT TC ET

RDU-Net
(without CBAM)

6.9705 6.1778 3.0002 0.8895 0.9018 0.8222 0.9894 0.9969 0.9958 0.9169 0.9031 0.8714

RDAU-Net 6.8692 6.0015 2.9980 0.9001 0.9061 0.8311 0.9892 0.9975 0.9966 0.9172 0.9028 0.8730
March 202
2 | Volume
 12 | Article
Results are specified for WT, whole tumor; ET, enhancing tumor; and TC, tumor core.
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the S3DU-Net (38) model, the AGResU-Net (39) model, and our
RDAU-Net method; and the ground truths. By comparing these
methods in Figure 8, we observe that the segmentation results of
our proposed method, namely, RDAU-Net, are the closest to the
ground truth onWT, TC, and ET and that the segmentation results
are significantly better than those of the remaining two methods.

Comparison With State-of-the-Art Methods
Performance Comparison on the BraTS 2018
Challenge Dataset
The first-place winner of the Multimodal Brain Tumor
Segmentation Challenge (BraTS) 2018 was Myronenko et al.,
Frontiers in Oncology | www.frontiersin.org 7
who trained their model using large image blocks with a size of
160×192×128. As presented in Table 2, the Myronenko et al. (40)
method has a higher overall Dice score than other mainstream
methods, but our method outperforms Myronenko’s method in
terms of Dice score by 0.26%, 4.7%, and 3% for WT, TC, and ET,
respectively. Our method also outperformsMyronenko’s method
in terms of Hausdorff distance, which is reduced by 0.7 mm and
1.7 mm for TC and ET, respectively. The No New-Net (41)
method won second place with only a few minor changes to U-
Net. As presented in Table 2, our method outperforms their
method overall in segmentation. The Dice scores on TC and ET
are 5% and 3.5% higher than theirs, respectively; the Hausdorff
A1

B1

D1

C1

A2

B2

D2

C2

FIGURE 6 | Histograms of the considered evaluation metrics on the datasets of the BraTS 2018 and 2019 challenges. (A–D): Dice, Hausdorff (mm), specificity, and
sensitivity. Blue indicates the BraTS 2018 challenge dataset and orange indicates the BraTS 2019 challenge dataset.
March 2022 | Volume 12 | Article 805263
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A

B

D

C

FIGURE 7 | Segmentation results of the proposed method and RDU-Net (without attention) on the BRATS 2018 datasets, the Grad-CAM result and the ground
truths. Rows (A–D): Brats18_TCIA01_387_1_93, Brats18_TCIA01_231_1_83, Brats18_CBICA_APR_1_105, Brats18_CBICA_AUN_1_81, where 105, 101, 78, and
73 represent the 105th, 101st, 78th, 73rd slices, respectively, of the MRI data. The colors represent the following categories: edema, necrosis, and □
enhancing core.
A B D EC

FIGURE 8 | Results of brain tumor segmentation in MRI images using the proposed approach and the ground truths. Columns (A–E) correspond to cases in the Brats
2018 challenge dataset: Brats18_2013_12_1_89, Brats18_CBICA_AQV_1_87, Brats18_TCIA02_117_1_69, Brats18_TCIA04_361_1_90, and Brats18_TCIA05_444_1_84,
where 89, 87, 69, 90, and 84 represent the 89th, 87th, 69th, 90th, and 84th slices, respectively, of the MRI data. The colors represent the following categories: edema,

necrosis, and □ enhancing core.
Frontiers in Oncology | www.frontiersin.org March 2022 | Volume 12 | Article 8052638

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Wang et al. Method for Brain Tumor Segmentation
distances on TC and ET are 0.9 mm and 0.4 mm shorter than
theirs, respectively; and the sensitivity scores on TC and ET are
3% and 5% better than theirs, respectively. C-A-Net (42) is a
single-channel multitask network that combines multiple CNN
structures. According to Table 2, our network outperforms the
Frontiers in Oncology | www.frontiersin.org 9
C-A-Net method on all metrics except the Hausdorff distance
score on WT, and the Dice scores on TC, and ET are improved
by 5%, and 3.5%, respectively. Our sensitivity score on ET is
nearly 5% higher than that of the C-A-Net method. The
AGResU-Net method (39) integrates the residual module and
TABLE 2 | Comparison of performance between our approach and the state-of-the-art methods on BraTS 2018 validation set using Dice, Hausdorff distance,
specificity, and sensitivity metrics.

Models Hausdorff (mm) ↓ Dice ↑ Specificity ↑ Sensitivity ↑

WT TC ET WT TC ET WT TC ET WT TC ET

Myronenko (40) 4.41 6.84 3.82 0.9068 0.8602 0.8173 – – – – – –

No New-Net (41) 4.97 7.04 2.54 0.9083 0.8544 0.8101 0.9955 0.9986 0.9979 0.9187 0.8444 0.8312
C-A-Net (42) 4.1724 6.5445 2.7162 0.9095 0.8651 0.8136 0.9951 0.9968 0.9983 0.9142 0.8683 0.8135
AGResU-Net (39) 5.62 8.36 3.57 0.872 0.808 0.772 – – – – – –

S3DU-Net (38) 4.7165 7.7478 4.4321 0.8935 0.8309 0.7493 0.9927 0.9981 0.9976 0.9290 0.8161 0.7849
Our 5.0206 6.1829 2.1260 0.9094 0.9071 0.8446 0.9922 0.9987 0.9975 0.9161 0.8699 0.8805
March 202
2 | Volume
 12 | Article
Results are specified for WT, whole tumor; ET, enhancing tumor; and TC, tumor core. The results are marked in bold.
A B

DC

FIGURE 9 | Comparative histograms of evaluation indicators for four methods on the BraTS 2018 validation set. (A–D) Dice, Hausdorff (mm), specificity, and
sensitivity. The colors correspond to the methods.
TABLE 3 | Comparison of performance between our approach and the state-of-the-art methods on BraTS 2019 validation set using Dice, Hausdorff distance,
specificity, and sensitivity metrics.

Models Hausdorff (mm) ↓ Dice ↑ Specificity ↑ Sensitivity ↑

WT TC ET WT TC ET WT TC ET WT TC ET

Two-stage cascaded U-Net (43) 4.4438 5.8620 3.2055 0.9082 0.8632 0.8020 0.9943 0.9974 0.9984 0.9237 0.8622 0.8038
Hamhanghala et al. (44) 6.9 8.4 4.6 0.8965 0.7901 0.7665 0.9939 0.9976 0.9985 0.9132 0.7771 0.7688
DDU-Nets46] 4.874 8.013 3.376 0.898 0.793 0.780 0.994 0.996 0.998 0.903 0.808 0.791
Myronenko et al. (46) 5.89 6.562 3.921 0.8900 0.8340 0.8000 – – – – – –

3D U-Net (47) 7.357 5.667 5.994 0.807 0.894 0.737 0.996 0.995 0.998 0.826 0.897 0.766
Our 6.8692 6.0015 2.9980 0.9001 0.9061 0.8311 0.9892 0.9975 0.9966 0.9172 0.9028 0.8730
Results are specified for WT, whole tumor; ET, enhancing tumor; and TC, tumor core. The results are marked in bold.
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attention gates in the original U-Net. As presented in Table 2,
our method outperforms the network on all metrics, especially
the Hausdorff distance on TC: our method obtains a Hausdorff
distance that is 2.1 mm shorter than that obtained by the
AGResU-Net method, and our method obtains Dice scores
that are improved by 9% and 7% on TC and ET, respectively.
The S3DU-Netmethod (38) is amodule inwhich the convolutional
block in U-Net is changed to a 3D convolution with three parallel
branches. It scores well on the sensitivity metric on WT, but our
network outperforms that network overall. Compared with the
S3DU-Netmethod, ourmethod improves theDice score by 7% and
9% on TC and ET, respectively; reduces the Hausdorff distance by
1.5 mm and 2.3 mm on TC and ET, respectively; and improves the
sensitivity by 5% and 9% on TC and ET, respectively. The
histograms in Figure 9 compare several methods in terms of
various metrics. According to the comparison in Figure 9, our
method is highly competitive.

Performance Comparison on the BraTS 2019
Challenge Dataset
For the BraTS 2019 challenge dataset, RDAU-Net still achieved
the best results in terms of the Hausdorff distance metric in the
tumor core region and the Dice coefficients of TC and ET and
performed very competitively in terms of other metrics. The two-
stage cascaded U-Net (43) won first place in the BraTS 2019
challenge. Compared with the champion team, the Dice scores
and the sensitivity scores on ET and TC of our method are
almost 3% and 4.3% higher and 7% and 4% higher, respectively.
The Hausdorff distance of the ET subregion that was obtained
using our method is approximately 0.2 mm shorter.
Frontiers in Oncology | www.frontiersin.org 10
Hamhanghala et al. (44) used generative adversarial networks
to expand the data. Although the training sample was expanded
with synthetic data, this approach did not yield more prominent
results. DDU-Nets (45) contain three models of distributed
dense connectivity. DDU-Nets are not particularly effective
overall, although they slightly outperform our method in terms
of Hausdorff distance scores on WT and ET. Myronenko et al.
(46) further improved the loss function based on 2018 by
introducing the focal loss and using eight 32 G video cards for
training. As presented in Table 3, our network still outperforms
Myronenko et al.’s method on all other metrics, except for a
slightly lower Hausdorff distance score on WT than their
method. The 3D U-Net (47) is designed mainly to handle
block diagrams. From Table 3, our method outperforms the
3D U-Net method on all metrics except for the Dice score on TC
and the specificity scores onWT and ET, which are slightly lower
than those of the 3D U-Net method. The histograms in
Figure 10 clearly compare the considered methods in terms of
various metrics. According to the comparison, our method is still
very competitive, even on the newer dataset.
CONCLUSIONS

We propose a new method, namely, RDAU-Net that is based on
an improved ResU-Net for brain tumor segmentation in MRI.
We add DA blocks to expand the receptive field and obtain
image information of various sizes and insert a CBAM block
after each skip connection layer to improve the extraction of
channel information and spatial information to reduce the
A B

DC

FIGURE 10 | Comparative histograms of evaluation indicators for four methods on the BraTS 2019 validation set. (A–D) Dice, Hausdorff (mm), specificity, and
sensitivity. The colors correspond to the methods.
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redundant information of low-level features. By conducting
experiments on the BraTS 2018 and BraTS 2019 datasets, we
find that the use of an RA block instead of a convolutional layer,
the inclusion of a DA block in the network, and the insertion of
3D CBAM blocks can effectively improve the performance of the
network. RDAU-Net has more obvious advantages than the
SOTA method. However, the performance of the method in
the WT region still has substantial room for improvement, and
we hope to solve this problem through postprocessing of the
network. In conclusion, the method has greater advantages in
segmenting subregions of brain tumors and can be effectively
applied to clinical research.
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