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Cells respond to DNA damage by activating signaling and DNA repair systems, described
as the DNA damage response (DDR). Clarifying DDR pathways and their dysregulation in
cancer are important for understanding cancer etiology, how cancer cells exploit the DDR
to survive endogenous and treatment-related stress, and to identify DDR targets as
therapeutic targets. Cancer is often treated with genotoxic chemicals and/or ionizing
radiation. These agents are cytotoxic because they induce DNA double-strand breaks
(DSBs) directly, or indirectly by inducing replication stress which causes replication fork
collapse to DSBs. EEPD1 and Metnase are structure-specific nucleases, and Metnase is
also a protein methyl transferase that methylates histone H3 and itself. EEPD1 and
Metnase promote repair of frank, two-ended DSBs, and both promote the timely and
accurate restart of replication forks that have collapsed to single-ended DSBs. In addition
to its roles in HR, Metnase also promotes DSB repair by classical non-homologous
recombination, and chromosome decatenation mediated by TopoIIa. Although mutations
in Metnase and EEPD1 are not common in cancer, both proteins are frequently
overexpressed, which may help tumor cells manage oncogenic stress or confer
resistance to therapeutics. Here we focus on Metnase and EEPD1 DNA repair
pathways, and discuss opportunities for targeting these pathways to enhance
cancer therapy.

Keywords: DNA repair, DNA double-strand breaks, genome instability, homologous recombination, non-
homologous end-joining, chromosome decatenation, DNA damage
INTRODUCTION

DNA damage is a constant threat to genome integrity and numerous DNA damage sensing,
signaling, and repair systems help manage these threats, collectively called the DNA damage
response (DDR). DNA damage arises spontaneously due to DNA lability, reactive oxygen species
generated during oxidative metabolism, activity of various nucleases such as RAG1/2, AID/
APOBEC deaminases, and mis-incorporated ribonucleotides (1–7). Exogenous sources of DNA
damage comprise physical agents including non-ionizing and ionizing radiation (UV light, X-rays,
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g-rays, charged particles), and DNA-reactive chemicals such as
alkylating agents and others used as cancer chemotherapeutics
(8–11). DNA lesions include ring-opened bases, adducts, inter-
and intra-strand crosslinks, protein-DNA crosslinks, and single-
and double-strand breaks (DSBs). DSBs are among the most
dangerous lesions as they can lead to deleterious mutations
(including deletions and insertions), genome rearrangements,
and cell death if mis-repaired or unrepaired. The DDR is critical
for maintaining genome stability and preventing cancer. The
often-altered DDR in cancer cells can thwart the action of anti-
tumor chemo- and radiotherapeutics, thus DDR factors are
important therapeutic targets (12–14).

DSB sensors and signal transducers include three phosphatidyl
inositol 3’ kinase-related kinases (PIKKs), DNA-PKcs, ATM and
ATR, and other regulatory factors such as 53BP1, Ku70/Ku80,
MRE11-RAD50-NBS1 (MRN), BRCA1, and RIF1 (15). SIRT6, a
chromatin-associated protein of the SIRT family of NAD+-
dependent deacylases and ADP-ribosylases, was recently shown
to sense DSBs, promote recruitment of ATM and DSB repair
proteins, and promote phosphorylation of histone H2AX
(gH2AX) in megabase-pair chromatin domains flanking DSBs
(16). PIKK signals can arrest the cell cycle and promote repair, or
activate apoptosis of heavily damaged cells (17). Apoptotic
signaling by p53 or other checkpoint factors is often
dysregulated in cancer, and this promotes tumor cell survival
despite significant damage due to endogenous and exogenous
stress, i.e., oncogenic stress or genotoxic therapeutics, respectively
(18, 19).

Some DSBs, such as those induced directly by radiation,
described as ‘frank’ or ‘two-ended’ DSBs, are repaired by at least
four pathways. The two major DSB repair pathways in
mammalian cells are classical non-homologous end-joining
(cNHEJ) and homologous recombination (HR) (Figure 1A).
cNHEJ is an error-prone, template-free pathway mediated by
Ku70/Ku80, DNA-PKcs, Artemis, DNA polymerases (Pol) m and
l, XLF, XRCC4, and DNA ligase IV. cNHEJ typically results in
small (<20 bp) deletions or short (1-2 bp) insertions (20), but it
also mediates translocations if broken ends from different
chromosomes are joined (21). HR is generally accurate as it uses
a homologous sequence (usually the sister chromatid) as a repair
template. ‘Misuse’ of non-sister templates, such as homologous
chromosomes or repetitive elements, causes small- and large-scale
genome alterations including local loss of heterozygosity by gene
conversion, arm-level loss of heterozygosity by inter-homolog
crossovers, deletions, inversions, and translocations that are
cancer hallmarks (22–24). HR is mediated by RAD51, assisted
by BRCA1/2, RAD52, RAD54/B, five RAD51 paralogs (XRCC2,
XRCC3, RAD51B, RAD51C, and RAD51D), and the Fanconi
anemia proteins (25, 26). End resection is the key determinant of
cNHEJ vs. HR pathway choice, regulated by anti-resection factors
53BP1 and RIF1, pro-resection factors BRCA1 and CtIP, and
mediated by MRE11, EXO1, and DNA2-BLM (27–32). cNHEJ
and HR are backed up by error-prone, alternative NHEJ (aNHEJ)
and by single-strand annealing (SSA) (33–36) (Figure 1B). aNHEJ
requires limited end resection to expose 1-16 nt microhomologies
flanking the DSB, although aNHEJ can efficiently join ends with
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longer ssDNA tails (~50-75 nt) (37, 38). SSA requires more
extensive resection to expose long, homologous repeats that are
annealed by RAD52 (34); SSA resection tracts >25 kbp have been
observed in yeast (39).

A distinct type of DSB arises when replication forks are
remodeled or collapse to single-ended DSBs (seDSBs) through
fork encounters with single-strand breaks, fork regression to a
four-way junction (chicken foot), or when stressed forks are
cleaved by structure-specific endonucleases MUS81 or EEPD1
(40–43) (Figures 1C, D). An important distinction between frank,
two-ended DSBs and seDSBs is that the latter pose significant risk
of large deletions or translocations, if repaired by cNHEJ or
aNHEJ. Despite these risks, stressed forks are frequently
processed to seDSBs by fork regression or fork cleavage (40, 44,
45). Cells have seveal other options to complete DNA replication
in the face of replication stress, including rescue of stressed forks
by an adjacent fork, translesion synthesis, repriming, and template
switching, however, these pathways also pose risks to genome
integrity (46–48). Cells prevent genome rearrangements due to
misrepair of seDSBs by resecting seDSB ends, which blocks cNHEJ
and promotes accurate, HR-mediated fork restart (Figures 1C, D)
(47). Many of the same HR factors that mediate HR repair of frank
DSBs also mediate HR repair of seDSBs to accurately restart
collapsed forks. Of note, end resection is critical for HR repair in
both repair contexts (26, 47).

Several structure-specific nucleases have been implicated in
replication stress responses. The 3’ nuclease MUS81 (with EME1
and EME2 cofactors) cleaves Holiday junction intermediates
arising during DSB repair by HR, and stressed replication forks
(Figure 1D) (40, 41, 49–53). EEPD1 is a 5’ nuclease that cleaves
stressed replication forks, complementing the 3’ activity of MUS81
(Figure 1D) (42, 43). SLX1, with the SLX4 scaffold protein, cleaves
branched DNA structures such as replication forks in vitro, but
there is no direct evidence that SLX1 cleaves stalled forks in vivo
(54, 55). Metnase is structure-specific nuclease that promotes
restart of stressed replication forks, but Metnase doesn’t cleave
stressed replication forks in vivo, and may instead process flaps or
other branched structures that arise during HR-mediated fork
restart (43). Here, we focus on EEPD1 and Metnase roles in DSB
repair, replication stress checkpoint activation, restart of stressed
forks, and cellular resistance to DNA damaging agents. These
topics are discussed with respect to their potential roles in cancer
etiology and as therapeutic targets.
METNASE: A PROTEIN
METHYLTRANSFERASE AND
STRUCTURE-SPECIFIC ENDONUCLEASE
THAT PROMOTES DNA REPAIR IN ALL
CYCLE PHASES

Metnase was originally called SETMAR to reflect its SET and
Mariner lineage (56), but it was renamedMetnase to emphasize its
protein methylase and nuclease activities (57). Metnase arose ~50
Mya in monkeys when an Hsmar1 (Mariner) transposon
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integrated downstream of a SET (protein methylase) gene related
to human G9a and Drosophila Su(var)3-9 and trithorax genes
(58), followed by local sequence changes to create the Metnase
fusion protein (56) (Figure 2A). The crystal structure of the
Frontiers in Oncology | www.frontiersin.org 3
Metnase nuclease domain was solved (59) (Figure 2B). Unlike
the 200 divergent, non-functional Hsmar1 remnants in the human
genome, the Metnase nuclease domain is full length and highly
conserved based on an Hsmar1 consensus sequence. This suggests
A

B

C D

FIGURE 1 | Repair of frank DSBs and seDSBs at collapsed replication forks. (A) Nucleases and ionizing radiation create frank, two-ended DSBs processed mainly
by cNHEJ and HR regulated by factors that suppress resection (53BP1, RIF1) and those that promote resection (CtIP, MRN, DNA2, and EXO1), controlled by
BRCA1. EEPD1 promotes resection through interactions with EXO1. Metnase promotes cNHEJ by methylating histone H3 (red symbols) in nucleosomes (grey
ovals) near the DSB, and by promoting recruitment/retention of Ku and MRN. DNA-PKcs interacts with Ku and DNA ends to align ends and promote ligation by
DNA ligase IV and other factors. Resected ends are repaired by HR by RAD51 loaded onto resected DNA, mediated by many factors including RPA and BRCA2.
RAD51-ssDNA invades homologous duplex DNA and the end is extended (red, dashed arrows), and then released to pair with the second resected end. Gap filling
and ligation completes accurate HR repair. (B) aNHEJ and SSA are backup repair pathways. aNHEJ results in larger deletions as ends are aligned at 1-6 nt
microhomologies (red rectangles) flanking the DSB exposed by limited resection. 3’ flaps are trimmed by ERCC1-XPF and Ligase III-XRCC1 and Pol q complete
repair that results in loss of one microhomology and intervening sequences. SSA is analogous to aNHEJ but requires extensive resection to expose repeated
sequences that anneal in a RAD52-dependent reaction. SSA between linked repeats (shown) deletes one repeat and the intervening sequence; SSA between non-
linked repeats results in translocations (not shown). (C) Forks stalled at blocking lesions can regress to a 4-way branched (chicken foot) structure similar to a Holiday
junction (HJ). Extension of the leading nascent strand using the lagging nascent strand as template allows the leading strand to bypass the lesion in the leading
template strand. The regressed fork can be restored to a functional fork by reverse branch migration, or by RAD51-mediated strand invasion beyond the blocking
lesion. (D) Forks may collapse to seDSBs by encountering a single-strand nick, or blocked forks may be cleaved by MUS81 or EEPD1. Resection of the seDSB by
EXO1 is promoted by both EEPD1 and Metnase, allowing RAD51-mediated HR to reestablish the fork. Metnase nuclease doesn’t cleave forks, but it may promote
HR-mediated fork restart by processing late HR intermediates.
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the fusion protein had selective benefits, although the consensus
DDD/DDE nuclease active site residues shifted to D496D588N623 in
Metnase (58). Both WT (DDN) Metnase and a DDD
reconstruction stimulate Hsmar1 transposition in vitro, and
Metnase binds to Hsmar1 transposon terminal inverted repeat
(TIR) sequences (63). Metnase retains only one of two TIRs
required for transposition (56), so it cannot mobilize itself.

Initial analysis of Metnase functions demonstrated that it
promotes integration of transfected plasmid DNA, cNHEJ, and
resistance to ionizing radiation, and that it methylates histone H3
K4 and K36 residues in vitro, well-known marks of open
chromatin (57). The helix-turn-helix (HtH) motif within the
nuclease domain is required for specific binding to TIRs, yet
Metnase has non-sequence-specific endonuclease activity that is
HtH-independent, but eliminated by a D496A mutation (64)
[Note: here we use the aa sequence of the dominant variant,
which has 13 more aa than the variant in early publications; thus,
D496A is denoted D483A in Roman et al. and other early
reports]. Metnase interacts with PSO4 (also known as
PRPF19), which functions in transcription-coupled nucleotide
excision repair and pre-mRNA splicing (65). PSO4 recruits
Metnase to DSBs to promote plasmid DNA integration (65).
Metnase also stimulates lentiviral DNA integration (66),
consistent with roles in cNHEJ.

Both the Metnase SET and nuclease activities enhance
cNHEJ. WT Metnase added to cell extracts promotes cNHEJ,
Frontiers in Oncology | www.frontiersin.org 4
but this activity is eliminated by a nuclease-dead D496A
mutation (67), and strongly suppressed by DDD and DDE
(Hsmar1-like) versions (68); thus DDN623 plays a key role in
cNHEJ. Inactivation of the SET domain also abrogates
Metnase stimulation of cNHEJ (57). Metnase promotes the
efficiency and accuracy of cNHEJ through its interaction with
DNA ligase IV (69). Chromosome translocations are often
mediated by aNHEJ, and Metnase suppresses translocations by
promoting the competing cNHEJ pathway (70). Chromatin
immunoprecipitation revealed that Metnase promotes cNHEJ
by di-methylating histone H3 K36 in narrow (~2 nucleosome)
regions flanking DSBs (71). This contrasts with the far larger
gH2AX domains, which extend >1 Mbp from DSBs (~7000
nucleosomes) (72). Importantly, di-methyl H3 K36 near DSBs
promotes recruitment and/or retention of early cNHEJ factors
Ku70 and NBS1, components of the DNA-PK and MRN
complexes, respectively (71). H3 K36 di-methylation is also
enhanced at radiation-induced DSBs (71). In cells, DNA repair
operates within a chromatin environment, and by the mid-2000s
it had been established that chromatin remodeling involving
nucleosome eviction by the INO80 complex promotes DSB
repair in yeast (73–75); this is also true in mammalian cells
(76). The discovery that Metnase promotes cNHEJ by modifying
histone H3 adjacent to DSBs was the first suggestion of a histone
code for DNA repair (71), analogous to the prototypical histone
code for transcription regulation (77).
A B

C

E

D

FIGURE 2 | Structures and roles of replication stress nucleases. (A) Metnase is a fusion of SET and nuclease domains. Two S/TQ sites (potential PIKK targets) are
indicated, along with the DDN nuclease motif. S508 is phosphorylated by Chk1. (B) Crystal structure of Metnase nuclease domains shown as a dimer (separated by
dashed line), as solved by the Georgiadis lab (59); image from the Protein Data Bank Japan (60) using the Molmil molecular structure viewer (61). Positions of DDN
core nuclease residues are indicated in dimer chain B by red dots. (C) EEPD1 has two helix-hairpin-helix (HhH) domains related to prokaryotic RuvA2, a component
of RuvAB that mediates Holliday junction branch migration. Two potential PIKK target SQ sites are indicated. (D) Predicted EEPD1 structure showing HhH and
nuclease domains with intervening non-structured regions; image from AlphaFold (62). (E) Summary of known functions of three replication stress nucleases. ND, not
determined; +, promotes process; -, not involved in indicated process. See text for further details.
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Metnase also interacts with TopoIIa, which mediates
chromosome decatenation of replicated chromosomes before
segregation in mitosis. This interaction promotes TopoIIa activity
in vivo and this activity is suppressed by Metnase automethylation
of K495, suggesting that tumors may exploit Metnase to gain
resistance to chemotherapeutics that target TopoIIa (78). Indeed,
Metnase promotes resistance to the TopoIIa poisons etoposide,
doxorubicin, and ICRF-193 in acute myeloid leukemia and breast
cancer cells (79, 80). TopoIIa poisons block TopoIIa by binding
near its DNA binding site (81). Apparently, Metnase binds this
region as well, blocking access and thereby conferring resistance to
TopoIIa poisons. Neoamphimedine is a TopoIIa inhibitor derived
from a marine sponge that binds near the TopoIIa ATPase domain
and thus acts by a different mechanism than traditional TopoIIa
poisons. Importantly, Metnase and neoamphimedine bind to
distinct regions of TopoIIa, thus Metnase does not confer
resistance to neoamphimedine (82).

Metnase SET and nuclease domains play important roles in
replication stress responses. siRNA depletion of Metnase delays
restart of replication forks stalled by nucleotide depletion with
hydroxyurea (HU), and sensitizes cells to HU and several other
replication stress agents (83). Fork restart is accelerated by
overexpression of Metnase, but this effect is abrogated by defects
in the Metnase nuclease or SET domains (68, 84). As noted above,
MUS81 and EEPD1 cleave stalled replication forks to promote fork
restart viaHR. AlthoughMetnase accelerates replication fork restart
in vivo, and cleaves branched structures (including replication forks)
in vitro (68), Metnase does not cleave stalled forks in vivo (43). This
raises the possibility that Metnase nuclease promotes fork restart by
cleaving flap or other structures that arise during HR-mediated fork
restart. Metnase methylation targets during replication fork restart
are unknown, but Metnase may methylate histones near stalled
forks (43), as it does near DSBs (71). Metnase plays another
important role in replication fork restart by HR. Recall that
seDSBs at cleaved replication forks must be resected to allow RPA
and then RAD51 to bind to 3’ ssDNA tails, which invade sister
chromatids to reestablish a functional replication fork (Figure 1D).
Metnase interacts with EXO1 to promote resection, suppressing
cNHEJ of seDSBs and promoting HR-mediated fork restart (85).
Metnase is phosphorylated on S508 by Chk1 in response to
replication stress; unlike WT Metnase, an S508A mutant does not
stimulate cNHEJ, nor does it associate with chromatin in response
to replication stress (86). Interestingly, the S508Amutant accelerates
replication fork restart more thanWTMetnase, suggestingMetnase
and Chk1 function in a regulatory feedback loop to coordinate
DNA repair and replication stress responses (86). It is intriguing
that Metnase promotes cNHEJ of frank DSBs, but suppresses
cNHEJ at seDSBs by promoting EXO1 resection at collapsed
forks to facilitate HR-mediated fork restart. The lack of cNHEJ
activity at seDSBs is reminiscent of the lack of cNHEJ activity by
Ku/DNA-PKcs present at telomeres (87). Note that Metnase
promotes cNHEJ, a critical function in G1 cells that are largely
incapable of HR, it promotes HR-mediated fork restart in S phase, it
promotes chromosome decatenation in G2/M phases, and it
regulates DNA damage checkpoint signaling. Thus, Metnase
augments DNA repair and DDR signaling throughout the cell cycle.
Frontiers in Oncology | www.frontiersin.org 5
EEPD1: A STRUCTURE-SPECIFIC
NUCLEASE THAT PROMOTES HR
REPAIR OF DSBs AND STRESSED
REPLICATION FORKS

EEPD1 was first characterized in 2015. EEPD1 has DNA binding
domains with helix-hairpin-helix motifs related to RuvA2, and a
DNase I-like nuclease domain (Figure 2C). A crystal structure
for EEPD1 is not available; a predicted AlphaFold structure (62)
is shown in Figure 2D. Defects in EEPD1 confer sensitivity to
genotoxins, and cause cytogenetic aberrations and cell death by
mitotic catastrophe (42, 43). EEPD1 is recruited to and promotes
restart of stalled replication forks, and it enhances resection of
frank DSBs and seDSBs, thereby suppressing cNHEJ and
promoting accurate repair by HR (42). Like Metnase, EEPD1
promotes resection of broken ends through interactions with
EXO1, and the resection defects in EEPD1-defective cells prevent
ssDNA formation and subsequent activation of ATR and Chk1
(42, 88), indicating that EEPD1 is important for both DSB repair
and DNA damage checkpoint signaling. EEPD1 has critical roles
during rapid cell proliferation in vertebrate embryonic
development (89), highlighting the importance of HR in
maintaining genome stabi l i ty during this sensit ive
developmental phase. Unlike Metnase, EEPD1 directly cleaves
stalled replication forks, similar to MUS81 (42, 43). However,
EEPD1 is a 5’ nuclease and MUS81 is a 3’ nuclease. It appears
that MUS81, which evolved >1500 Mya in early eukaryotes, was
joined by the complementary EEPD1 nuclease in chordates/early
vertebrates ~450 Mya. EEPD1 may have been selected to ensure
accurate replication of expanding genomes (90) with the
consequent increase in replication stress. It is possible that 5’
cleavage of stalled forks by EEPD1 is superior to 3’ cleavage by
MUS81 because MUS81 cleaves the leading strand, forcing
strand invasion into the lagging (Okazaki) strand which may
be delayed until Okazaki fragments mature, and/or further
resection occurs to permit HR-mediated fork restart (43). Fork
restart timing is important because persistent stalled forks may
be restructured into toxic HR intermediates (47, 91), and even
short delays in fork restart correlate with increased sensitivity to
replication stress and increased genome instability (42, 68, 84, 89).
EEPD1 and Metnase both promote HR-mediated fork restart by
promoting EXO1 resection of seDSBs, and EEPD1 promotes repair
of frank DSBs by HR whereas Metnase promotes frank DSB repair
by cNHEJ; there is no evidence that Metnase influences frank DSB
repair by HR. The partially overlapping roles of Metnase, MUS81,
and EEPD1 in DSB repair and replication stress responses are
summarized in Figure 2E.
METNASE AND EEPD1 IN CANCER
ETIOLOGY AND AS POTENTIAL
THERAPEUTIC TARGETS

Given their roles in DNA repair, damage signaling, and genome
stabilization, it’s possible that defects in Metnase or EEPD1
January 2022 | Volume 12 | Article 808757
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might predispose to cancer, similar to other DDR factors like
BRCA1, BRCA2, and ATM (92). However, no gain or loss of
function mutations in Metnase or EEPD1 have yet been verified
in cancers; if they exist, they are likely to be rare. Because tumor
cells experience considerable stress, i.e., oncogenic stress and
DNA damage from therapeutics (93), DDR factors are often
overexpressed in cancer. Both Metnase and EEPD1 are
frequently overexpressed in breast, brain, cervix, colon, head
and neck, kidney, skin, lung, prostate, and uterine cancers;
Metnase is also overexpressed in some liver cancers (94).
Because these proteins promote tumor cell survival in response
to DNA damage by radiation and genotoxic chemotherapeutics,
direct inhibition of their nuclease activities, or the Metnase SET
activity, may augment traditional chemo- or radiotherapy.
Inhibiting Metnase or EEPD1 may be most beneficial for
patients whose tumors overexpress these proteins.

There are many cell-based and in vitro biochemical assays
available to monitor specific Metnase and EEPD1 activities.
Defects or inhibition of these proteins uniformly cause
sensitivity to genotoxins (42, 57, 83), hence drug screens can
be performed using rapid cell survival/proliferation assays (95).
If screening for specific nuclease inhibitors, in vitro assays with
model branched DNA substrates (64, 67), and traditional or
automated comet assays (42, 43, 96) are also attractive options.
Once a candidate drug is identified, mechanistic insights can be
obtained with more time-consuming approaches such as fork
restart, chromosome aberration, mitotic catastrophe, and DDR
signaling assays.

Current evidence suggests several promising therapeutic
approaches. The widely used antibiotic ciprofloxacin inhibits
Metnase nuclease and enhances cisplatin sensitivity of A549 lung
tumor cells and tumor xenografts in mice (97). TopoIIa poisons
are used to treat a variety of tumor types, and tumors that
overexpress Metnase may be better controlled with higher doses
of traditional TopoIIa poisons (79, 80), or by use of alternative
inhibitors (82). Because the Metnase SET activity is important
for both cNHEJ and replication fork restart, a specific Metnase
SET inhibitor may augment therapeutics that induce frank DSBs
and/or replication-associated seDSBs. Although no Metnase SET
Frontiers in Oncology | www.frontiersin.org 6
inhibitors are available, specific SET inhibitors are being
developed to treat cancer (98, 99).

Breast and other tumors with BRCA1 or BRCA2 defects are
HR-deficient and show synthetic lethality with PARP1
inhibitors, owing to increased replication stress and defective
HR-mediated fork restart (100). Inhibition or downregulation of
MUS81 also causes synthetic lethality in BRCA2-deficient cells
(101). BRCA1, BRCA2, and PALB2 defects are synthetically
lethal with RAD52 defects (102, 103), and we found that this
lethality depends on EEPD1 (104). Thus, targeting RAD52 may
enhance treatment of BRCA-deficient tumors, but co-inhibition
of RAD52 and EEPD1 would likely be self-defeating, enhancing
tumor cell survival and potentially enhancing tumor progression
by allowing severely damaged cells to survive.

Finally, because most cancer therapeutics cause replication
stress, combining these agents with inhibitors that target one or
more replication stress proteins may improve treatment efficacy.
DDR factors including ATR and ATM are being targeted to
augment radio- and chemotherapy (105–107). Novel
combination therapies targeting upstream PIKKs and/or
downstream replication stress nucleases MUS81, EEPD1 or
Metnase, may be effective anti-cancer treatments on their own,
or when combined with genotoxic chemo- and radiotherapeutics.
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