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Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers due to
low therapeutic response rates and poor prognoses. Majority of patients present with
symptoms post metastatic spread, which contributes to its overall lethality as the 4th
leading cause of cancer-related deaths. Therapeutic approaches thus far target only one
or two of the cancer specific hallmarks, such as high proliferation rate, apoptotic evasion,
or immune evasion. Recent genomic discoveries reveal that genetic heterogeneity, early
micrometastases, and an immunosuppressive tumor microenvironment contribute to the
inefficacy of current standard treatments and specific molecular-targeted therapies. To
effectively combat cancers like PDAC, we need an innovative approach that can
simultaneously impact the multiple hallmarks driving cancer progression. Here, we
present the mechanical properties generated by the cell’s cortical cytoskeleton, with a
spotlight on PDAC, as an ideal therapeutic target that can concurrently attack multiple
systems driving cancer. We start with an introduction to cancer cell mechanics and PDAC
followed by a compilation of studies connecting the cortical cytoskeleton and mechanical
properties to proliferation, metastasis, immune cell interactions, cancer cell stemness,
and/or metabolism. We further elaborate on the implications of these findings in disease
progression, therapeutic resistance, and clinical relapse. Manipulation of the cancer cell’s
mechanical system has already been shown to prevent metastasis in preclinical models,
but it has greater potential for target exploration since it is a foundational property of the
cell that regulates various oncogenic behaviors.

Keywords: PDAC, cytoskeleton, cortical mechanics, cell shape, clinical implications
INTRODUCTION

Cell Mechanics and Cancer
Cell mechanics refers to the cell’s physical properties and the mechanisms of force detection, force
production, and load bearing to generate cell shape and behavior. More broadly, cell mechanics can
encompass the application of solid and fluid concepts from physics and engineering to cells and the
larger structures they compose (1, 2). To perform essential functions, such as tissue development,
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cell division, apoptosis, and migration, cells use internal and
external stimuli to drive cell shape change and other highly
mechanical processes. Morphogenesis results from the
rearrangement of the cell’s underlying cytoskeleton, which
changes the physical properties of the cell. Cytoskeletal
rearrangement and the resulting cell shape change require
active force generation initiated by the integration of chemical
and mechanical (mechanochemical) signals. Understanding
processes involving cell shape modification will lend new
insights for the treatment of pathological states resulting from
dysfunctions in cell division, apoptosis, and migration, i.e. cancer
transformation and metastasis (3, 4).

The cortical cytoskeleton is responsible for cell shape change
and is primarily composed of actin filaments, crosslinking
proteins, and nonmuscle myosin II (NMII) filaments. The
various regulators of these proteins are also vital contributors
to morphogenesis since they control the spatiotemporal
assembly and disassembly of cytoskeletal filaments. Actin
filaments’ semi-flexible property, in addition to actin
crosslinkers, allow for the interconnected network of filaments
to form the cortical cytoskeleton and propagate mechanical
stresses around the entire cell. The molecular properties and
resulting function of the three components culminate into the
mechanical properties of cell behavior. For example, cooperative
interactions between NMII and crosslinking proteins allow these
proteins to accumulate at sites of stress along the cell cortex.
Overall cell shape change is managed through the integration of
actin filament turnover, actin crosslinking, and NMII
contractility and cooperativity (5–9).

The molecular binding affinities of the structural proteins with
each other allow the cytoskeleton to maintain a fixed structure and
resist deformation on short time scales, behaving elastically like a
solid material. Likewise, these same binding affinities and
regulatory mechanisms allow for protein disassociation and
cytoskeletal rearrangement lending the cells viscous behavior,
like a liquid, on longer timescales. Therefore, the cell is defined
mechanically as a viscoelastic material often represented by both
elastic spring and viscous damper components in mathematical
models. Modeling can help predict cell behaviors, which is an
invaluable tool for understanding cell processes such as cytokinesis
and motility (8, 10, 11).

A major focus of the field has been to characterize mechanical
properties that regulate cell and tissue function, especially in
disease states. The ultimate goal is to use mechanical properties
to generate new perspectives for various diseases and
corresponding prognoses and treatments. Researchers have
proposed a structure-property-function-disease paradigm in
investigating the mechanics of cancer transformation and
progression. For example, investigating the signaling effectors
leading to physical properties of cells, how these physical
properties lend function, and how the dysfunction at any part
(signaling molecules, physical properties, resulting function) leads
to diseased states. But cell mechanics is a complex and multiscale
field: properties at the molecular, cellular, and tissue levels must
each be characterized as well as integrated with the dynamic
feedback systems. In the specific case of tumor tissue, the actin
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cytoskeleton at the molecular level generates the mechanical
properties of individual cells, and the tissue level mechanical
properties (i.e., stiffness) of the tumor feedback into individual
cell’s mechanics resulting in altered function (differentiation,
proliferation, invasion). Although complex, an understanding of
tumor cell mechanics and the metastatic process opens an entirely
new field for prognoses and therapeutic targeting (1, 2, 7, 8, 12).

Moreover, mechanical microenvironments in tumors are
transformed along with the individual tumor cells. For
example, the extracellular matrix (ECM) of the tumor is often
stiffer than the surrounding healthy tissue. Tumor cells have been
shown to have more invasive phenotype on stiffer substrates and
this phenotype can be reversed with substrate tension relaxation.
There is evidence that tumor cells soften in response to this
stiffening ECM. Additionally, tumor tissues experience increased
fluid pressures due to angiogenesis and tissue restructuring. The
altered mechanical states of the tumor tissue initiate
mechanosensing in individual tumor cells. Mechanosensing
pathways have been shown to drive proliferation, survival,
invasion, stemness, and therapy resistance. Therefore,
mechanical stimuli and their effects are multiscale: tissue-level,
cell-to-cell interaction, cell-to-matrix interactions, and
biochemical reactions (13).

In addition to the ECM altering tumor cell function through
mechanosensing, tumor cells have the ability to remodel the
ECM and the polarity of cancer-associated fibroblasts and
different immune cells. For example, another focus of cancer
cell mechanics has been traction forces and polarity generated by
tumor cell contractility during adhesion and migration.
Understanding cell-generated traction forces is necessary
because these stresses help restructure the ECM and push cells
forward during migration. A correlation exists between traction
forces, contractility, and metastatic potential. For example,
metastatic cells across three cancer types exerted greater
traction forces in response to matrix stiffness compared to
their non-metastatic counterparts (14–16). These highly
metastatic cells with larger traction forces lead the way for
collective migration by restructuring collagen fiber alignment
into tracks that others cells could more easily follow. Cell polarity
also plays a role in mesenchymal modes of cell migration where
the direction and persistence of migration is dictated by the
alignment of cell and matrix-remodeling polarity (17, 18).
Additionally, cytoskeletal forces are physically transmitted to
the nucleus through the Linker of Nucleoskeleton and
Cytoskeleton (LINC) complex. For example, substrate stiffness
can lead to alterations in nuclear stress and shape, resulting in
changes of gene expression, nuclear stiffness, and the cell’s
differentiation state (19–21).

Furthermore, the metastatic cascade is a physical and
mechanically-driven process. Metastasis is both the process
and result of cancer cells migrating and colonizing in a
location other than the primary tumor site. First, tumor cells
must break adhesion complexes with their surrounding cells and
migrate through tumor stroma. This migration involves
deformation to squeeze through ECM pores, push and pull
ECM fibers, and degrade fibers. Second, the tumor cell must
January 2022 | Volume 12 | Article 809179
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invade through a basement membrane and vasculature wall for
intravasation, which requires continued matrix degradation and
shape deformation. Third, tumor cells in circulation must resist
shear forces inflicted by blood flow and adhere to the vessel wall
for extravasation. Extravasation involves another deformation
process followed by migration/invasion into the new tissue site.
Finally, tumor cells must initiate proliferation to colonize the
metastatic tumor (22).

Cell deformability is essential for the metastatic cascade and is
dependent on the cell’s viscoelasticity. Another major focus within
cancer cell mechanics is on the viscoelastic differences between
normal, transformed, and metastatic cells. The aim is to
characterize the relationship between deformability and
metastatic potential. Using optical stretching and atomic force
microscopy, several studies across different cancer types revealed
that cell deformability increases with metastatic potential.
Interestingly, cells can actively resist externally-imposed
deformation by polymerizing actin and recruiting specific
cytoskeletal proteins to increase tension. It is the dynamic ability
of being able to deform and simultaneously resist deformation that
allows tumor cells to undergo the metastatic cascade. Therefore, a
method to prevent metastasis for solid tumors would be to stiffen
and decrease the cell shape change ability (8, 13, 23–27).

Cell and tissue deformation mechanics during cancer
transformation and progression is a relatively young field in
cancer biology and is working on uncovering a different system
of therapeutic targets to address metastasis and patient mortality.
Cell deformability and morphogenesis are foundational
components of signaling networks, division, adhesion,
migration, invasion, and metastatic potential. The shape and
rigidity of a cell is due to the cytoskeleton and its molecular
components. Previous reports have shown altered cytoskeletal
structure, regulation pathways, and extracellular matrix
structures in various cancer types and stages. Additionally,
metrics of mechanical properties correlate with disease state and
metastatic potential. Targeting the cytoskeleton has already been
shown to alter mechanical properties and metastasis in preclinical
models and is being investigated as an indicator for disease stage
and prognoses (26–32). The major challenge in deformation
mechanics is that the cell cannot be fully characterized by the
static mechanical properties of solids and fluids. Cells are dynamic
systems that react and respond to internal and external stimuli.
Therefore, their subcellular and physical properties are constantly
changing (33). We have already seen the potential of altering the
cell’s physical properties to prevent cancer progression. Therefore,
a critical need exists to fully integrate the field of cell mechanics in
cancer therapeutic and prognostic development.
PDAC AND PDAC-SPECIFIC CORTICAL
MECHANICS

Pancreatic ductal adenocarcinoma (PDAC) is the most common
type of pancreatic cancer. Pancreatic cancer incidence continues
to increase across the country in conjunction with it having one
of the lowest 5-year relative survival rates around 10%. Patients
Frontiers in Oncology | www.frontiersin.org 3
typically present with symptoms post metastatic spread, which
contributes to its overall lethality as the 4th leading cause of
cancer-related deaths (34, 35). Advancements in therapy and
precision medicine have helped to increase the low 5-year
survival rate, but recent discoveries have also uncovered how
little we understand PDAC transformation and progression. Our
lack of knowledge for the PDAC-specific pathogenesis of
transformation and metastasis limits our ability to innovate
more effective treatments.

PDAC forms from precursor lesions and has historically
presented as a genetic disease, gradually progressing through a
sequence of acquired mutations. Four driver genes have been
linked to each stage of transformation (KRAS, TP53, SMAD4,
and CDKN2A), but recurrent somatic mutations (SNV, indel,
scNA) and germline mutations (in DNA damage repair genes)
have also been found. PDAC is characterized by desmoplastic
reaction due to interactions between cancer, vasculature,
pancreatic stellate, and inflammatory cells. Over half of all
cases are diagnosed post-metastatic spread, and the most
common sites for metastasis are stomach, lung, colorectum,
esophagus, gall bladder, liver, and common bile duct (2, 36, 37).

The standard treatment is surgical resection and/or two
chemotherapeutic agents, gemcitabine and FOLFIRINOX (the
combination of oxaliplatin, irinotecan, fluorouracil, and
leucovorin) depending on disease severity and stage, but these
treatments are least effective post metastatic spread (38, 39).
Novel whole genome sequencing and bioinformatic techniques
on primary and metastatic tumor clonal populations have
revealed that not all PDAC tumors progress through the
gradual sequence of transformation steps. Additionally, some
PDAC tumors result from a more prolonged precursor lesion
stage and show micrometastasis early in the tumor formation
process (5, 40–44). Altogether, recent genomic discoveries reveal
that genetic heterogeneity and early micrometastases within
PDAC progression result in the inefficacy of current standard
treatments and specific molecular targeted therapies.

The PDAC tumor microenvironment (TME) is a major
contributor to inefficacious treatments, especially for
immunotherapies. The PDAC TME is characterized by dense
stroma and a small cell content composed of tumor cells, cancer-
associated fibroblasts, muscle fibroblasts, pancreatic stellate
cells, and infiltrated immune cells. Tumors are typically
70-90% stroma, mostly deposited by fibroblasts and stellate
cells, which causes increased intratumoral pressure, poor
vascularization, and hypoxia. Therefore, drugs (chemotherapy,
immunotherapy, molecular targeted therapies) delivered
systemically cannot penetrate throughout the tumor (45–48).
Additionally, the infiltrated immune cells generate a tumor
promoting and immunosuppressive environment. For example,
the immune cells of the TME are predominately regulatory T
cells (Tregs), macrophages, and myeloid-derived suppressor cells,
which all work together and impede cytotoxic T cells from
infiltrating, identifying, and killing tumor cells (49–53).
Preclinical and clinical studies targeting the stroma and
immunosuppressive pathways have had contradictory results
and revealed the complexity and labyrinth-like network of
January 2022 | Volume 12 | Article 809179
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interactions and pathways of the PDAC TME (54). Though
progress has been made, it is essential to continue exploring and
uncovering new avenues for therapeutic approaches because our
current methods generate low clinical response rates. Since
cancer transformation and progression are intensive
mechanical processes, the molecular machinery and system
responsible for cortical mechanics has the potential to be the
next avenue of therapeutic approaches for PDAC.

Mechanical states of cells are defined by their underlying
cytoskeletal structural and contractile machinery, which governs
morphology and morphogenesis. Morphogenesis is an essential
part of tumor formation and progression (i.e. proliferation,
differentiation, polarization, migration, invasion), Figure 1. In
general, tumor cells alter their cytoskeletal machinery to be more
deformable and responsive to their changing environment. In
fact, deformability has been correlated to metastatic potential
and aggressiveness in many different cancer types (33, 55–57).
Therefore, it is no surprise that the mechanical landscape of
PDAC cells is significantly altered, which makes cortical
mechanics an opportune field to explore for PDAC prognostic
and therapeutic purposes (26).

Specifically, the four cytoskeletal proteins non-muscle myosin
IIA (NMIIA), NMIIC, a-actinin 4, and filamin B have increased
expression in PDAC patient tissues as compared to normal
pancreatic ductal epithelium. The NMII paralogs are
Frontiers in Oncology | www.frontiersin.org 4
responsible for contractile forces in the cytoskeleton, and a-
actinin 4 and filamin B are actin crosslinkers. In response to
external stresses, each of these proteins accumulates to the site of
stress to generate forces and maintain membrane-cortex
integrity. We have defined this accumulation in response to
physical stress as a mechanoresponse. Additionally, NMIIC is
responsible for the formation of traverse actin arcs in single cells
and for cortical actin belts in PDAC spheroids. Traverse actin
arcs are actin bundles generated by NMII contractility and
propagate toward the rear end of migrating cells as a necessary
structural element driving migration. Cortical actin belts
between epithelial cells generate the epithelial boundary that
forms apical sides of tissues. Activating NMIIC assembly into the
cytoskeleton using the small molecule 4-Hydroxyacetophenone
(4-HAP) decreased in vitro dissemination from PDAC spheroids
and in vivometastasis. Specifically, 4-HAP induced cortical actin
belt formation and slowed down retrograde flow of transverse
actin arcs. Furthermore, 4-HAP increased cell cortical tension by
activating the assembly of NMIIB and NMIIC, which also
decreased migration and invasion in vitro. Therefore, inducing
NMIIB and NMIIC assembly is a therapeutic strategy to reduce
cell mobility and metastasis overall (26, 58).

Research from UCLA indicated stiffness and invasion are
differentially regulated by actin and NMII proteins in accordance
with disease stage in PDAC (59). The study used MIA PaCa-2
and PANC-1 cell lines derived from primary tumors and Hs766T
cells derived from a metastatic site in the lymph node. Hs766T
cells had higher stiffness than Panc-1 cells and were slower to
round up. Furthermore, the Hs766T cells did not require NMII
for invasion. Interestingly, Hs766T cells required actin filament
nucleators, Arp2/3 and formin, to maintain cell stiffness and
invasion. The dependence on actin filament nucleation suggests
that actin polymerization is a major driving force for invasion
and mechanotype (stiffness) in this metastasis-derived cell line.
Invasion was not dependent on expression or activity levels in
any of the cell lines. A characteristic hallmark of Arp2/3-
dependent invasion is longer protrusions at the leading edge of
the invading cell, which the Hs766T cell line exhibited more than
the Panc-1 cells (59). This work further elucidates the altered
mechanical landscape in PDAC progression and identifies
potential targets specifically for metastatic PDAC cells.

Another interesting finding from an immunotherapy clinical
trial implicated the NMII regulator, myosin phosphatase
targeting subunit 1 (MYPT1), in PDAC. MYPT1 was originally
identified through its being targeted by the immune system in a
clinical trial for a cytokine-secreting whole tumor cell vaccine.
An antibody response against MYPT1 in patients treated with
the tumor cell vaccine correlated to a positive treatment outcome
of greater than 3-years of disease-free survival. In addition to
MYPT1’s elicited antibody response, its expression is highly
upregulated in PDAC patient samples and in established
PDAC cell lines. The function of MYPT1 overexpression and
its implication in cortical mechanics has yet to be characterized
in PDAC tumor cells, but its discovery through this
immunotherapy clinical trial is a harbinger for the
interconnectedness of the individual tumor cell cytoskeleton,
FIGURE 1 | Cytoskeletal dynamics control cortical mechanics,
morphogenesis, and cell behavior. The cytoskeletal components of
filamentous actin (F-actin), actin crosslinking proteins, and non-muscle myosin
II bipolar thick filaments (NMII BTF) dynamically assemble, polymerize, and
depolymerize to generate whole cell mechanical properties and cell shape.
Mechanical properties and cell shape change underlie the cell behaviors that
we observe and measure. Therefore, we can manipulate cell behaviors by
altering cortical mechanics and cytoskeletal dynamics, which lends great
therapeutic potential.
January 2022 | Volume 12 | Article 809179
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immune cells of the tumor microenvironment, and therapeutic
responses (60–62).

In summary, PDAC’s mechanical landscape comprising
various cytoskeletal and regulatory proteins is significantly
altered during transformation and the metastatic cascade. The
targetability of this altered mechanical landscape using the small
molecule 4-HAP demonstrated our ability to prevent metastasis,
but there is much more that needs to be explored to uncover
other potential therapeutics. Moreover, cortical mechanics can
be used to target more than proliferation, invasion, and
metastasis. While the number of studies in PDAC are still
limited, when combined with research in other cancer types
(12, 27), the implications and potential of targeting cell
mechanics are becoming increasingly apparent via connections
to cell stemness, differentiation, immune cell modulation, and
metabolic reprogramming. The following section will provide
evidence in other cancer types for such connections and
illuminate cortical mechanics as a foundational property of the
cell that can tie the various drivers of cancer together for more
efficacious therapeutic targeting. In combination, the studies
presented in this section on PDAC and the studies presented
in the following section further highlight the potential of PDAC's
altered mechanical landscape as being a revolutionary field for
PDAC-specific therapeutic development.
IMPLICATIONS FOR DISEASE SEVERITY
AND CLINICAL OUTCOME

Proliferation, Metastatic Potential, Disease
Progression
Numerous reports have centered the molecular determinants of
cortical mechanics in cell proliferation, migration, invasion,
metastasis, and overall disease prognoses. For example, the
cytoskeletal scaffolding protein anillin is extensively implicated
in cancer progression and patient survival of several cancer types
(e.g., breast, pancreatic, colorectal, lung, gastric, liver). Generally,
anillin is upregulated during cancer transformation and invasion
and is associated with both positive and poor prognoses clinically
depending on cell localization (63). Anillin binds to both actin
filaments and NMII in the cytoskeleton and facilitates NMII
localization and actomyosin contractility at the cortex of dividing
cells (64, 65). Regarding migration, anillin depletion in breast
cancer cells decreased in vitro migration and in vivo metastasis
(66). Additionally, anillin regulates assembly of adherens and
tight junctions in epithelial cells to establish the epithelial barrier.
The apical actomyosin cytoskeleton physically interacts with the
adhesion complexes and transfers tensile forces between cells of
the epithelial barrier. Therefore, anillin being implicated in
various adenocarcinoma’s disease severity and its impact on
the metastatic cascade is intuitive (67–70). Additionally, the
actin cross-linker and mechanoresponsive protein, filamin B,
has increased expression in pancreatic cancer primary tumors
and has been correlated with reduced patient survival through
the analysis of publicly available data on the Oncomine and
UALCAN databases (71, 72). Furthermore, filamin B is positively
Frontiers in Oncology | www.frontiersin.org 5
regulated by the pancreatic cancer-associated transcription
factor MYB, which is suggested to be a potential biomarker of
PDAC aggression (73, 74).

The NMII contractile protein paralogs have extensively been
implicated in cancer cell behaviors and disease progression.
Singh et al. found that NMIIA suppressed tumor formation,
metastasis, and regulated immune cell infiltration in in vitro and
in vivo melanoma models. NMIIA knockdown in B16F10 cells
enhanced migration and invasion in transwell-based assays.
Furthermore, subcutaneous and intravenous xenograft mouse
models showed enhanced tumor cell proliferation, metastasis,
and inflammatory cell infiltration in response to NMIIA
knockdown (75). Specifically, they saw an increase in several
oncogenes, ERK signaling, and endothelial cells in tumor
sections, which suggests NMIIA is a tumor suppressor in
melanoma cells. Picariello etal. (76) found that NMIIA
regulates glioblastoma proliferation and invasion depending on
the mechanical environment. Glioblastoma commonly invades
into the surrounding brain tissue, which results in its overall
aggressiveness and lethality. NMII activity was suspected to be a
potential target for glioblastoma since the invasive ability of the
tumor cells is dependent on NMII function (76).

Interestingly, this study discovered complete NMIIA
knockout regulated cell proliferation and motility differentially
depending on the stiffness of the substrate in the cells’
environment. On softer substrates, NMIIA depletion led to
ERK1/2 activation, resulting in higher proliferation rates. On
stiffer substrates, NMIIA depletion led to NFkB activation
impacting cell survival and cell stemness. NFkB activation in
response to NMIIA depletion was also observed in triple negative
breast cancer cells and keratinocytes. Overall, in vivo
experiments revealed NMIIA depletion in a mouse model led
to reduced invasion, but larger tumors which hastened the
overall lethality of the disease. The significant findings from
this study show that NMIIA is a downstream effector that can be
targeted to prevent invasion, but is also an up/mid-stream
signaling component that responds to the mechanical
environment and impacts disease progression. This is further
complicated by the fact that each of the NMII paralogs can serve
different functions within the cell (76).

The Nguyen-Ngoc et al. study found that NMIIA and NMIIB
suppress breast epithelial proliferation. Using transgenic mice,
they developed mammary organoids where 50-75% of the cells
were NMIIA and NMIIB null, resulting in a mosaic tissue of IIA
and IIB expression. Additionally, they used organoids from
transgenic mice that had ubiquitous deletion of NMIIA and
NMIIB expression and found that the mosaic NMIIA/IIB
organoids had increased proliferation compared to the
ubiquitously deleted NMIIA/IIB organoids. Furthermore,
simple stimulation via fibroblast growth factor signaling
induced hyperplasia. These results were also confirmed in an
in vivo model. Overall, this study demonstrated NMIIA and
NMIIB’s suppressive regulation of proliferation in breast
epithelium (77).

The Kapoor et al. study elucidated the RhoA-ROCK-NMII
pathway regulation of two distinct modes of invasion. The first
January 2022 | Volume 12 | Article 809179
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being mesenchymal invasion where single cells have a spindle-like
morphology and use adhesion- and matrix metalloproteinase
(MMP)- dependent migration to move though tissue. The
second mode uses amoeboid migration where single cells have a
rounded morphology and use adhesion- and MMP-independent
motility to squeeze through ECM pores. They demonstrated
ovarian cancer cell lines with resistance to cisplatin used
mesenchymal invasion, whereas cells resistant to paclitaxel or
both drugs used amoeboid invasion. In both modes, signaling
through the RhoA-ROCK2-NMII regulated invasion and, more
specifically, NMIIA and NMIIB function mediated both nuclear
squeezing and MMP-9 activity. Conclusively, NMIIA and NMIIB
regulated both modes of invasion in ovarian cancer cells,
demonstrating NMII’s role in invasion and the metastatic
cascade (78).

Phosphorylation of the NMIIA heavy chain regulates breast
cancer cell ability to degrade ECM and invade. NMIIA heavy
chain phosphorylation regulates the myosin heavy chain’s ability
to assemble into the bipolar myosin II filaments that are
functional in the cytoskeleton. Phosphorylation of the heavy
chain on the Ser-1943 residue promotes myosin disassembly and
increased EGF-stimulated lamellipodia formation of breast
cancer cells. Additionally, Ser-1943 phosphorylation is required
for in vitro matrix degradation and increased invadopodia
function, as well as increased in vivo metastasis. Therefore,
NMIIA function regulates breast cancer cell invasion and
metastasis (79). NMIIA-mediated cortical mechanics has also
been implicated in colorectal cancer. Using tissue microarrays of
patient tumor samples, NMIIA heavy chain overexpression
positively correlated with disease progression and poor survival
of patients. Overexpression of NMIIA heavy chain increased
proliferation, invasion, and metastasis in both in vitro and in vivo
models. At the molecular level, NMIIA heavy chain
overexpression increased phosphorylation levels of both ERK
and AKT, which subsequently reversed with NMIIA heavy chain
knockdown (80). Altogether, the studies of the NMII paralogs in
various cancer types realize NMII-modulated cortical mechanics
as a foundational property of cancer cell shape control
and function.

Various reports have implicated MYPT1, the NMII assembly
regulator found overexpressed in PDAC (62), in the formation
and prognoses of different cancers. For example, MYPT1
knockdown in HeLa cells resulted in nuclear fragmentation,
nuclear compartment breakdown and genome instability (81).
MYPT1 knockdown also increased histone methylation levels via
the methyl transferase PRMT5, which is associated with
trans format ion in hepatoce l lu lar carc inoma (82) .
Overexpression of the micro-RNA molecule microRNA-30d
that targets MYPT1 knockdown predicted aggressive disease in
prostate cancer (83). Finally, low copy number of the MYPT1
gene in colorectal cancer predicted poor clinical outcome for
oxaliplatin treatment (84).

In gastric cancer, overexpression of MYPT1 presents as a
tumor suppressor. MYPT1 expression in normal tissue was
compared to patients’ cancer tissue and overall patient
survival. MYPT1 is decreased in gastric tumors, which also
Frontiers in Oncology | www.frontiersin.org 6
correlated with poor patient survival. In vitro, MYPT1
overexpression inhibited proliferation, migration, and invasion.
MYPT1 functions to negatively regulate NMII activity in the
cytoskeleton. Therefore, gastric tumor cells decreased a myosin
inhibitor to promote disease progression, ultimately increasing
NMII activity and yielding NMII activity as oncogenic (85).
MYPT1 was also discovered in prostate cancer as a biomarker of
disease progression. Gene expression profiles of tumor cells had
not adequately predicted patient outcome. Therefore, researchers
investigated the TME to identify potential prognostic biomarkers
using tumor microarrays of patient tumor samples paired with
Aperio Imagescope software analysis. They then evaluated
biomarker association to biochemical recurrence and time to
biochemical recurrence. Overall, MYPT1 positively correlated
with disease progression (86).

The reports mentioned thus far have focused on individual
cytoskeletal elements and regulators, but there are also many
reports characterizing general mechanical properties. For
example, mechanical properties of human ovarian and breast
cancer cell lines predicted the invasive ability of these cells.
Microfluidic devices were developed to perform quantitative
deformability cytometry and allowed measurement of physical
phenotypes such as the cell’s elastic modulus, cell fluidity, entry
time, maximum strain, and cell size. Using prediction models
paired with the known phenotypes of individual cell lines,
analysis indicated that the elastic modulus correlated the most
with invasive ability, but the additional parameters of fluidity,
entry time, and size improved the model’s predictive accuracy.
Altogether, this study demonstrated the value of mechanical
characteristics as biomarkers of invasion and potential targets for
therapeutic intervention (87).

An in vitro study using osteosarcoma cells investigated the
relationship between mechanical properties and metastatic
potential. Researchers used a low metastatic parental line and a
corresponding high metastatic line. Overall, highly metastatic
cells spread less and exerted weaker forces than the line with low
metastatic ability. The weaker forces of the highly metastatic cells
contradict the increased traction forces of metastatic cells in
other cancer types (14–16), but osteosarcoma differs in that it has
mesenchymal origin and does not undergo epithelial-to-
mesenchymal transition (EMT). Therefore, osteosarcoma cells
do not experience similar polarity and differentiation trends as
other adenocarcinomas, which exemplifies differences in
mechanical properties according to differentiation and the
need to characterize mechanics specific to each cancer type
(88). Finally, cell and tissue stiffness are determinants in
metastatic organotropism (89–92). For example, breast cancer
cells subcategorized by their cytoskeletal and biophysical
properties had specific metastatic preferences due to
cytoskeletal adaptation ability and their corresponding gene
expression patterns (93).

In summary, mechanical properties of individual cells and
tissues dictate cell behaviors and overall disease outcomes, but we
see a contradiction of effect for specific cytoskeletal proteins like
the NMII paralogs (76–83). The contradiction of NMII function
in different cancer types reveals the complexity of the cytoskeletal
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system and our lack of understanding of the cortical cytoskeletal
role in cell function, further revealing the need for investigation
and integration of cortical mechanics in the different cancer
types. Yet, each of these studies points toward the cell’s
mechanical landscape as a foundational system that can tie the
various drivers of cancer together for more efficacious
therapeutic targeting, further highlighting the role of PDAC’s
altered mechanical landscape.

Immune Cell Interaction and
Immunotherapy Resistance
Cytoskeletal forces of both the TME immune cells and tumor
cells regulate immune cell infiltration into tumors, immune cell
polarity, the molecular interactions between cells, and the
resulting anti- or pro-tumor immune response. Traction force
microscopy has been used to measure Jurkat T cell force exertion
during T cell receptor (TCR) activation. TCR activation is central
to any adaptive immune response and mediates both antigen-
specificity and cytotoxic activity against targeted cells. For the
anti-tumor response, TCR activation in CD4+ T cells enables
identification of neoantigens on tumor cells vs. normal cells and
the fatal interaction of CD8+ T cells recognizing the tumor cells.
Previous work had indicated that primary CD4+ T cells exerted
traction forces in response to CD3 or CD28 stimulation, which is
required for TCR activation and a T cell response. The
cytoskeletal forces generated in the T cell are mediated by actin
polymerization and NMII contractility (94–104).

A study of Jurkat T cells demonstrated that T cells spread
more uniformly and exhibited larger and longer TCR signaling
responses on stiffer substrates as compared to softer substrates.
The differential responses of T cells based on substrate stiffness
have major implications for the interactions between tumor cells
and T cells and the regulation of cell stiffness and cortical tension
of the individual tumor cells (105). The exact molecular
mechanisms of T cell response to substrate stiffness are already
being elucidated. For example, cytotoxic CD8+ T cells were able
to kill the bulk of tumor cells, but not the undifferentiated cells
with self-renewal capabilities. The undifferentiated cells are
referred to as tumor repopulating cells, a subset of cancer stem
cells that can be dormancy competent, and were immediately
characterized as inducing PD-1 expression in CD8+ T cells and
as being softer than the differentiated tumor cells (106–110).

Further investigation revealed cell softness prevented
formation of the perforin pore in the targeted tumor cell.
Perforin is released from activated CD8+ T cells to form a pore
on the tumor cells and allow granzymes from the T cell to enter
the targeted cell for apoptotic induction. NMIIA heavy chain is
required for perforin pore formation because tumor cells with
NMIIA heavy chain knocked down were unable to generate the
actomyosin-mediated forces at the cell membrane and failed to
form perforin pores. Pharmacologically increasing the stiffness of
tumor repopulating cells allowed perforin pore formation and T
cell-induced apoptosis in tumor cells using both in vitro and in
vivo models (111). Cell softness also prevented immune synapse
formation and target-induced apoptosis of natural killer cells, in
addition to cytotoxic T cells. Human NK cells more effectively
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secreted granzymes A and B, FasL, granulysin, and IFNg on
stiffer substrates than softer substrates (112), a trend that was
similarly observed in the cytotoxic T cells. Moreover, a study in
cervical and colorectal cancer cell lines revealed NMII paralog-
specific activity and localization induced MHCI and CD59
uptake via clathrin-mediated endocytosis (113).

The previous studies focused on T cell and natural killer cell
interactions with tumor cells. Work has shown that the
mechanical properties of tumor cells also impact the immune
cells’ ability to enter and incorporate with the tumor. Specifically,
knockdown of the NMIIA heavy chain in melanoma cells
regulated immune cell infiltration of the TME. Using
subcutaneous tumor formation and intravenous lung
metastasis models, melanoma tumors with NMIIA heavy chain
knocked down had increased recruitment of leukocytes (CD45+)
and macrophages (F4/80+). The exact polarity and function of
these cells was not further investigated, but we know immune
cells in general greatly impact tumor growth, metastatic ability,
and therapeutic response (75).

In summary, cortical mechanics of both tumor cells and the
cells of the tumor microenvironment coordinate to facilitate
immune evasion, detection, and therapeutic responses. The
studies presented here indicate that targeting cell softness
could enhance the tumor response to immunotherapies that
induce cytotoxic T cell killing. This is pertinent to PDAC as it has
repeatedly shown low response rates to anti-PD-1/PD-L1
immunotherapy. Cancer cell stemness adds to the story since
mechanisms of T cell evasion have been elucidated in the tumor
repopulating cells. These findings imply that we can target
cortical mechanics to induce cancer cell differentiation and
simultaneously prevent immune evasion. The next section will
further elucidate the connection between the mechanical
properties of cancer cell stemness, differentiation state, and
their impact on immune cell interactions.

Cancer Cell Stemness, Differentiation, and
Disease Relapse
The case for cancer stem cells (CSC) has faced criticism due to
the complexity of differentiation states and cell plasticity/
adaptability, which hinder our ability to fully understand these
cell populations. CSCs are characterized by self-renewal,
resistance to stress, dormancy, and evading cell death (114).
Clinical data from cancer patients with disease recurrence or
relapse revealed the metastatic tumor cells and circulating tumor
cells within these patients came from cancer cells that persisted
after treatment of the primary tumor. Therefore, CSCs are
suspected of being the therapy-resistant cells that are
responsible for disease recurrence (115).

Molecular and genetic characterization of CSCs have further
revealed subcategories such as dormancy-competent CSCs,
dormancy-incompetent CSCs, and cancer-repopulating cells.
Dormant cells are simply defined as cells that exit a highly
proliferative state. Dormant cells are able to evade standard
chemotherapies that kill highly proliferative cells due to the
quiescent-like state (116, 117). Additionally, CSCs can
maintain short- and long-term dormant states, which helps to
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explain clinical relapse after just months or years of remission
(118–120). Moreover, dormancy-competent cells are able to
resist immunological targeting directly and indirectly through
immunosuppression. The less proliferative dormant cells are not
capable of generating neoantigens like highly proliferative tumor
cells, which ultimately leads to immune evasion. Dormant cells
have also displayed immunosuppressive mechanisms of
inhibition for T cell activation via overexpression of B7
homolog 1, cytotoxic T cell-induced apoptosis via methylation
of suppressor of cytokine signaling 1, and antigen inhibition via
decreased human leukocyte antigen expression (121–124).

We are emphasizing cancer stem cells, and the subsequent
dormant and differentiated cells, in this review because
interesting mechanical data has revealed a new avenue of
characterization and targetability for these therapy-resistant
cells. For example, research with breast, ovarian, lung, bladder,
and prostate cancer cell lines revealed that dormancy competent
cells entered states of dormancy and survival in response to high
matrix stiffness, whereas dormancy-incompetent cells rapidly
died. Both proliferative and metabolic activity were inhibited,
and chemoresistance was increased in these dormant cells (125–
132, 145). Ongoing research is developing ways to induce cancer
cells to exit dormancy by using biomaterials. Using an agarose-
silica gel-based method, breast cancer cells were able to enter
dormant states and then exit by immediately regaining
proliferative and migratory capabilities that were lost in the
dormant state (134). Uncovering the mechanism of matrix
stiffness regulating dormancy will provide new insight on how
to effectively target dormant cancer cells and prevent clinical
relapse. Additionally, research has focused on uncovering ways
to identify cancer stem cells from the bulk tumor cells.
Interestingly, cell stiffness or cell softness is a unique marker of
cancer stem cells. Specifically, CSCs are significantly softer across
various cancer types, and this property is mediated through stem
cell factor signaling pathways (135–137).

Interestingly, NMII activity regulates the self-renewal
capability in human pluripotent stem cells and mouse
embryonic stem cells. For example, NMII inhibition via
blebbistatin and RNA knockdown increased cell viability and
the expression of self-renewal regulators Oct3/4 and Nanog
(138). Additionally, NMIIA expression in mouse embryonic
stem cells maintained E-cadherin-mediated cell adhesions.
Fu r th e rmor e , NMI I a s s emb l y r e gu l a t i on v i a i t s
phosphorylation sites is intertwined with EMT and migration.
When EMT is induced via TGF-b stimulation in mouse
epithelial cells, there was a stark increase in NMIIA Ser-1916
phosphorylation, which increased the invasive behavior of these
cells. In mesenchymal stem cells, phosphorylation of NMIIA at
Ser-1943 resulted in random migration on soft substrates, but
dephosphorylation and subsequent assembly of NMIIA at Ser-
1943 resulted when these same cells were placed on stiff
substrates (139). Altogether, these results reveal the molecular
determinants of cortical mechanics to actively regulate stemness.

Focusing on differentiation state, the Singh et al. study in
melanoma revealed NMIIA knockdown regulated EMT.
Specifically, NMIIA heavy chain knockdown increased the
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mesenchymal markers slug and twist and the epithelial marker
E-cadherin. The final effect of the altered EMT markers is
inconclusive, but demonstrates the clear connection between
myosin II expression and differentiation (75). The Wang et al.
study revealed NMIIA heavy chain overexpression induced EMT
through upregulation of mesenchymal markers fibronectin, N-
cadherin, and MMP9, and downregulation of epithelial markers
ZO-1 and b-catenin. NMIIA heavy chain-mediated EMT was
required for the observed aggressive phenotype (80).

Returning to the case of anillin (63, 66), this scaffolding
protein impacts differentiation and stemness in addition to
proliferation, migration, and invasion. Depletion of anillin in
two mesenchymal-type breast cancer cell lines decreased stem
cell properties. Similarly, increased anillin expression in an
epithelial cell line increased stemness properties (66, 67).
Interestingly, pluripotent cells of mouse embryos, Drosophila
testes, and zebrafish retina all have higher anillin expression,
while senescent human fibroblasts and cervical cancer cells have
decreased anillin expression (133, 140–144). This correlation in
stem-like properties is interconnected with differentiation state.
For example, a decrease of anillin in lung and breast cancer cells
resulted in mesenchymal-to-epithelial transition. The exact
mechanisms and transcription factors responsible for
connecting anillin to stemness and plasticity are currently
being elucidated (63, 66).

Collectively, the studies of this section reveal the intertwined
relationship between cell stemness, differentiation, and
mechanical state. Additional reports exemplify the axis of
regulat ion between matrix st i ffness , cel l s temness/
differentiation, and NMII expression/function (146–150). Most
importantly, cancer stem cells evade T cell-induced apoptosis by
reducing cell stiffness and subsequently preventing perforin pore
formation. Overall, these studies elucidate how we can use
cytoskeletal components to identify and target cancer cell
stemness and differentiation, which contribute to cancer
progression, therapeutic resistance, and clinical relapse. This is
relevant to PDAC because we do not have a clear consensus for
cancer stem cell identification. Using PDAC cortical mechanics,
we can potentially identify and target stem cells to eradicate
therapeutic resistance and disease relapse caused by CSCs.

Targeting Cytoskeletal and Metabolic
Connections
One of the hallmarks of cancer cells is the metabolic
reprogramming undergone to allow the cancer cells to survive
in densely populated tissues with limited nutrients. TheWarburg
effect is a well-characterized metabolic shift in which cancer cells
increase glucose uptake and glycolytic rates to increase energy
production. More recent discoveries uncovered the heterogeneity
of metabolic reprogramming in cancer cells to also include
increases in oxidative phosphorylation and the use of
alternative carbon sources (i.e., glutamine, fatty acids, and
serine). Various studies have revealed a metabolic regulation
system between cancer cells, immune cells, and stroma and have
demonstrated the targetability of these metabolic shifts in
preventing disease progression (151–158). Surprisingly, studies
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have also revealed regulation and correlation between metabolic
shifts and cytoskeletal proteins in cancer.

For example, proteomic analysis of breast cancer cells treated
with doxorubicin, a chemotherapeutic agent, identified
connections between the transcription of several metabolic
enzymes, actin, and a-actinin. Ongoing work aims to use these
proteins as treatment targets for breast cancer cells (159). Breast
epithelial cells’ EMT via TGF-b induction can be mitigated
through inhibition of phosphocholine anabolism, which
subsequently changed the increased actin stress fiber formation
that is associated with EMT (160). Another breast cancer study
demonstrated the association of actin binding proteins with
proteasome activity (161). Ezrin, a scaffolding protein that links
the cytoskeleton to the plasma membrane, regulates osteosarcoma
tumor progression and metastasis through alterations in lactate
production and ATP-dependent oxygen consumption (162). A
limitation of the aforementioned studies is the lack of a clear
mechanistic pathway, but there are reports which implicate
various mechanisms of regulation between metabolism and
cytoskeletal components. For example, the pro-metastatic actin-
binding protein Fascin that is overexpressed in lung cancer
directly increases the transcription and activity of glycolytic
enzymes phosphofructokinase 1 and 2 through the YAP1
transcription factor (163). Fructose-bisphosphate aldolase A
(ALDOA), a glycolytic enzyme, directly interacts with actin and
regulates the polymerization of actin filaments, which is crucial for
migration and invasion. Furthermore, ALDOA has increased
expression in renal, liver, and lung cancer cells and correlated
with disease aggression and prognoses (164–167). Targeting
ALDOA to prevent its interaction with actin reduced actin stress
fiber content, proliferation, migration, ATP synthesis and survival
in cancer cells (168, 169).

In conclusion, cytoskeletal composition and assembly level
directly and indirectly regulate different metabolic pathways and
can be used to reveal mechanisms and potential targets in cancer
progression. Research has revealed upregulated cytoskeletal
components in PDAC (26, 62). Work investigating the
connection between these proteins and metabolism has yet to
be published, but PDAC’s metabolic reprogramming is well
documented and known to drive disease progression (Li et al.,
2019). Therefore, there is a need for investigations of altered
PDAC-associated metabolic pathways in connection with the
upregulated cytoskeletal components.
FUTURE OUTLOOK AND CLINICAL
PERSPECTIVES

The latest technology and research have revealed cancer to not
only be a disease of genetics, but also a disease of epigenetics,
immunology, and metabolism. Yet, therapeutic approaches thus
far have targeted only one or two of the cancer-specific
hallmarks, such as high proliferation rate, apoptotic evasion,
immune evasion, etc. Unfortunately, current therapies and
molecular targeting have not been a huge success for all
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cancers due to various reasons, including pathway
redundancies and circumvention, low levels of immune cell
invasion, cell plasticity, and metabolic reprogramming. For
these reasons, cancers such as PDAC continue to have low
clinical response rates and poor prognoses. To effectively
combat cancers like PDAC, we need an innovative approach
that can simultaneously impact the multiple systems driving
cancer progression. Traditional combination therapies are an
option, but may be limited due to only targeting a couple systems
at a time, the overall drug toxicity, and the tendency of cancer
cells to forget their initial disease drivers. Therefore, an ideal
therapeutic approach may be to target multiple systems
concurrently. The cancer cell’s mechanical system is a
prospective field for target exploration, seeing as it is a
foundational property of the cells and has already been tied to
various systems driving the disease.

Cortical mechanics refers to the physical properties and
capabilities of a cell given by the underlying cytoskeleton and
the molecular properties of its various components. For example,
actin polymerization and NMII contraction are largely
responsible for force generation, but actin crosslinkers and
mechanoresponsiveness of these proteins contribute to the
load-bearing capability of cells. Ultimately, these properties of
force generation and load-bearing drive cell morphogenesis and
culminates into cell behaviors such as proliferation, migration,
polarity, differentiation, and invasion. Therefore, these proteins
are a major focus within the realm of cortical mechanics and
have been implicated throughout various cancer types and
studies. Thus far, cytoskeletal components and their regulation
are heavily involved in invasive and metastatic potential, disease
prognoses, cell fate and polarity, immune cell interactions of the
tumor microenvironment, and metabolic regulation.
Additionally, preclinical targeting of the cytoskeleton,
specifically NMIIC assembly, has already been shown to
prevent metastasis in PDAC and colorectal cancer in vivo
models (26, 27).

Major challenges in the field of cancer cortical mechanics
would need to be addressed to use this knowledge to its full
potential. The first is the full elucidation of the mechanoresponse
system regulating cell morphogenesis and the subsequent cell
behaviors. Work thus far has focused on specific proteins in
various cancer types at various stages with no indication of
changes in the remaining cytoskeletal components. Therefore,
there is confusing and contradicting conclusions regarding these
specific proteins. For example, NMII has been characterized as
both a tumor suppressor and promotor, depending on the
specific paralog, cancer type, and methods used. Additionally,
studies focus on expression levels of proteins with simplified
binary descriptions of high vs. low. Unfortunately, many of the
cytoskeletal components are filamentous and/or need to be
assembled to be functional, but also must maintain a free pool
of subunits in order to facilitate rapid remodeling in response to
various mechanical and signaling inputs. Therefore, expression
levels do not inform us of the assembled or functional fractions
of these components in the cytoskeleton vs. the cytoplasm.
Moreover, a concept of an optimal setpoint for the function of
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these proteins is becoming increasingly fundamental, which is
exemplified through NMII being able to drive cancer
progression, while at the same time, being tumor suppressive
in other cancer types. Collectively, simply targeting these systems
using inhibitors is not the correct strategy. As we see in PDAC
and colorectal cancer models, the strategy of pushing the system
towards over-assembly, i.e., beyond the “optimal setpoint”, may
block cancer progression, including metastasis, without
inhibiting the protein’s tumor suppressive functions (26, 58).

Another major challenge is the siloed nature of many studies.
The studies presented here have focused on cortical mechanics
and just a few aspects of a cancer cell phenotypes, such as
proliferation/migration, metabolism, and/or immune cell
infiltration. For example, the melanoma study characterized
proliferation, metastasis, and immune cell infiltration, but did
not characterize the functionality or role of the immune cells in
the tumor (75). We will need to understand the full integration of
these concepts in order to draw conclusions on the impacts of
any manipulation on the system. Finally, we need better
characterization and identification of cancer stem cells within
each cancer type. Undifferentiated cancer cells will remain a
clinical problem due to their ability to resist various therapies,
maintain migratory and proliferative capabilities, and further
differentiate into tumor repopulating cells. Majority of cancer
patient deaths are due to metastases, and we know metastasis
results from persistent cancer cells that are able to micro- and
macro-metastasize prior, during, and after therapies. Therefore,
we need to develop methods to target the population of cancer
stem cells in addition to the bulk tumor cells to fully address the
disease long-term. Some cancers, such as PDAC, lack consensus
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on how to best identify these populations, creating yet another
gap in our understanding. Without this understanding, we will
not be able to treat clinical relapse.

In summary, aggressive cancers require innovative
therapeutic approaches that can concurrently target the
multiple systems driving disease progression to be effective. We
propose that the field of cancer cortical mechanics is a
prospective area for targetability since it encompasses
foundational properties of cells that interact with multiple
systems (proliferation, migration, invasion, differentiation,
metabolism, immune evasion) driving disease progression,
Figure 2. Work has already uncovered PDAC’s altered
mechanical landscape at the molecular level and revealed
targeting NMIIC assembly can prevent metastasis, but we need
further integration of this work with other fields such as
metabolism, cancer stem cells, and immune cell infiltration/
interaction. The integration of these systems will provide an
understanding for therapeutic development that will be
applicable to numerous cancer types in addition to PDAC.
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