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Chimeric antigen receptor T cell (CAR-T cell) therapy has shown impressive success in the
treatment of hematological malignancies, but the systemic toxicity and complex
manufacturing process of current autologous CAR-T cell therapy hinder its broader
applications. Universal CAR-T cells have been developed to simplify the production
process through isolation and editing of allogeneic T cells from healthy persons, but the
allogeneic CAR-T cells have recently encountered safety concerns, and clinical trials have
been halted by the FDA. Thus, there is an urgent need to seek new ways to overcome the
barriers of current CAR-T cell therapy. In-vivo CAR-T cells induced by nanocarriers loaded
with CAR-genes and gene-editing tools have shown efficiency for regressing leukemia
and reducing systemic toxicity in a mouse model. The in-situ programming of autologous
T-cells avoids the safety concerns of allogeneic T cells, and the manufacture of
nanocarriers can be easily standardized. Therefore, the in-vivo induced CAR-T cells can
potentially overcome the abovementioned limitations of current CAR-T cell therapy. Here,
we provide a review on CAR structures, gene-editing tools, and gene delivery techniques
applied in immunotherapy to help design and develop new in-vivo induced CAR-T cells.

Keywords: CAR-T cells, barriers, in-situ editing, gene-editing tool, nano-delivery
INTRODUCTION

Chimeric antigen receptor T cell (CAR-T cell) therapy is a new cell immunotherapy technique that
incorporates synthetic receptors into T cells that recognize and kill tumor cells with a cognate
targeting ligand (1, 2). CAR-T cell therapy has demonstrated unprecedented response rates in
patients with B cell lymphoma since the first approval of CD19-targeted CAR-T cells in the USA
(1, 3–5). However, along with the remarkable achievements of CAR-T cell therapy, many systemic
toxicities, such as cytokine release syndrome (CRS) and neurotoxicity, have also been frequently
reported (2, 6–8). Additionally, the complex manufacturing process of CAR-T cells limits the
broader applications of this therapeutic method as a standard clinical treatment (2, 9–11).
Therefore, there is an exigent need to develop a new paradigm of CAR-T cells to overcome these
barriers and allow this therapeutic method to benefit more patients. To simplify the complex
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manufacturing process of CAR-T cells, universal allogeneic
CAR-T cells from healthy persons have been tested in clinical
trials (12–15). Universal CAR-T cells can be off-the-shelf and
then infused into patients like usual medicines, without needing
to wait for the isolation of autologous T cells from patients (12,
16); however, last year’s death case during the clinical trial of
UCARTCS1A from Cellectis raised safety concerns about
allogeneic CAR-T cells. The FDA also recently halted all
clinical trials on universal CAR-T cells from Allogene due to
safety concerns (17). Thus, we need new strategies to overcome
the associated toxicity and simplify the manufacturing process of
current CAR-T cell therapy. In-vivo CAR-T cells induced by
nanocarriers loaded with CAR genes and gene-editing tools have
shown promising effects for regressing leukemia (18–20). The in-
situ programming of autologous CAR-T cells can enhance the
targeted killing of tumor cells and reduce systemic toxicity such
as CRS and neurotoxicity. Additionally, the nanocarriers can be
easily manufactured in a standardized method (21) In-vivo
induced CAR-T cells provide a potential solution to overcome
the barriers of current CAR-T cell therapy. Thus, here, we review
CAR structure design, gene-editing tools, and gene delivery
systems and the future trend of immune cell therapy.
CAR STRUCTURE AND EVOLUTION

The structure of the chimeric antigen receptor (CAR) has a
modular design consisting of an antigen-binding domain, a
hinge, a transmembrane domain, and an intracellular signaling
domain (Figure 1A). The antigen-binding domain is usually a
single-chain variable fragment (scFv) molecule derived from a
monoclonal antibody that can bind to antigens on the surface of
malignant cancer cells (4, 22–24). The transmembrane domain is
responsible for anchoring the CAR onto the T cell membrane. The
intracellular signaling domain generally contains a T cell
activation domain derived from the CD3z chain of the T cell
receptor as well as co-stimulatory domains often comprised of an
Frontiers in Oncology | www.frontiersin.org 2
immunoreceptor tyrosine-based activation motif containing
regions of CD28 or 4-1BB (also known as CD137 and
TNFRSF9) (25–29). Variations in each component of the CAR
structure enable fine-tuning of the functionality and antitumor
activity of the resultant CAR-T cell product. Various CAR
structures have been designed to improve the safety and efficacy
of CAR-T cell therapy. Once the designed CAR genes are
integrated into T cells, the scFv on the surface of T cells
specifically recognizes tumor-associated antigens and binds
CAR-T cells with tumor cells. After that, the intracellular signal
domains of CAR-T cells are activated and cause CAR-T cells to
proliferate and secrete cytokines that kill tumor cells (30–32).

There have been five generations of CAR structures since the
first clinical application of CAR-T cells by Carl June at the
University of Pennsylvania and hematologist David Porter at
the Children’s Hospital in Philadelphia in 2011 (33–35). The
first-generation CAR contained an intracellular stimulation
region and an extracellular scFv. This generation of CAR-T cells
could not continuously proliferate due to the lack of costimulatory
molecules (Figure 1B) (34). The second-generation CAR added a
costimulatory molecule, such as CD28, or 4-1BB (CD137) to
enhance the proliferation and reduce the toxicity of CAR-T cells
(36). Yescarta™ (Tisagenlecleucel) and Kymriah™ (axicabtagene
ciloleucel) are second-generation CAR-T cells that contain CD28
and 4-1BB, respectively (36). The third-generation CAR includes
two costimulatory molecules, such as CD27, CD28, tumor necrosis
factor superfamily 4 (OX40, also known as CD134), CD137 (4-
1BB), or CD244 (37, 38). The fourth-generation CAR is called
TRUCKs (T cells redirected for antigen-unrestricted cytokine-
initiated killing), which combines the direct antitumor capacities
of CAR-T cells with the immune modulating function of the
delivered cytokine (34, 39). TRUCKs have entered early-phase
clinical trials using a panel of cytokines, including IL-7, IL-12, IL-
15, IL-18, IL-23, and their combinations. The fifth generation
integrates an additional membrane receptor that controls the
activation of CAR-T cells in an antigen-dependent manner
(38, 40).
A B

FIGURE 1 | (A) The basic structure of a CAR: extracellular domain, transmembrane domain, and intracellular domain. (B) The development of the five generations of
CARs. The first generation only contained the CD3z chain functional energy domain9; the second generation contained CD3z+ a costimulatory molecular domain
(CD28, 4-1BB, etc.); the third generation contained CD3z and two costimulatory molecular domains; the fourth generation included suicide gene editing, immune
factor modification, and other integrated and refined regulatory tools; the fifth generation included simultaneous activation of TCR, costimulatory domain, and
cytokine triple signaling.
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In addition to adding new functional molecules into the CAR
structure, many studies have chosen alternative tumor-targeted
sites for new CAR structures. CD30 shows very strong expression
on malignant cells in Hodgkin’s lymphoma, rather than on
healthy lymphocytes and hematopoietic stem/progenitor cells
(HSPCs). CD30 CAR-T cell therapy has shown superior results
in the treatment of CD30+ malignant tumors, while healthy
activated lymphocytes and HSPC were unaffected (41). CD20 is a
33–37-kDa non-glycosylated transmembrane phosphoprotein
that helps develop and differentiate B cells (42). CD20 is highly
expressed in late pre-B cells and mature B cells, but it is not
expressed on the surface of HSPCs (43). CD20 CAR T-cell
therapy which has shown promise in the treatment of B-cell
non-Hodgkin lymphoma is now being considered for patients
with relapsed or refractory CD20-positive chronic lymphocytic
leukemia. Lym-1 targets the conformational epitopes of human
leukocyte antigen D-associated antigens (HLA-DRs) on the
surface of human B-cell lymphoma. The binding affinity of
Lym-1 with malignant B cells is higher than that of normal B
cells (44). Lym-1 CAR-T cells have exhibited potent antitumor
effects against B-cell lymphoma. Some alternative targeting sites
combine with CD19 to form dual-target CAR T cells. For
example, CD37 combined with CD19 was incorporated into
one CAR to generate a dual-specific CAR T cell capable of
recognizing CD19 and CD37 alone or together (45). CD79b is
also a complementary targeting site for CD19. CD19 and CD79
dual-specific CAR-T cells prevented the escape of B-cell
lymphoma from a single CD19 CAR-T cell (46, 47). Some
alternative targeting sites have co-targeting functions that act
on tumor cells and tumor microenvironments. For instance,
CD123 was expressed in both Hodgkin lymphoma cells and
tumor-associated macrophages so that anti-CD123 CAR-T cells
could co-target these two kinds of cells and kill them
simultaneously (48). The CAR structure is continually evolving
to improve the efficacy of current CAR-T cell therapy (32, 49).
BARRIERS TO CURRENT CAR-T
CELL THERAPY

Five CAR-T cell products have been approved by the FDA from
2017 to 2021, as listed in Table 1. KYMRIAH™ (Tisagenlecleucel)
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is the first approved CAR-T cell therapy for adult patients with
certain types of B-cell lymphoma (50). Three approved CAR-T cell
products, YESCARTA™ (Axicabtagene ciloleucel), TECARTUS™

(brexucabtagene autoleucel), and BREYANZI® (lisocabtagene
maraleucel), are also approved for the treatment of B cell
lymphoma (51–53). The fifth CAR-T cell product, ABECMA®

(idecabtagene vicleucel), is used for multiple myeloma therapy
(54). Beyond the five approved CAR-T cell products, a large
pipeline of CAR-T cells is being studied in clinical trials (55–57),
but current CAR-T therapy has several barriers, such as associated
toxicity, immunosuppressive tumor microenvironments, and
complex manufacturing processes, which hamper the more
widespread implementation of CAR-T therapy (58–60).

The major toxicities associated with current CAR-T therapy
include cytokine release syndrome (CRS), immune effector cell-
associated neurotoxicity syndrome (ICANS), and on-target/off-
tumor toxicity (61–63). CRS is caused by the generation of
massive inflammatory cytokines, such as IL-6, IL-10, IL-2, and
TNFa, after CAR-T cell treatment. CRS often causes fever,
hypotension, hypoxia, organ dysfunction, and even life-
threatening adverse reactions (8, 64, 65). The occurrence of
severe or life-threatening CRS can reach 25%. ICANS is
another common toxicity associated with CAR-T cell therapy
and is characterized by neurological abnormalities with
aftereffects, usually within 1 week of CAT-cell treatment. The
frequent adverse effects caused by ICANS include toxic
encephalopathy with aphasia, confusion, and word-finding
difficulty (66–68). On-target/off-tumor toxicity is due to the
non-special expression of targeting proteins on both normal
and malignant cells (69, 70). For instance, when administrating
CD19 CAR-T cell in patients with malignant B cells, the on-
target/off-tumor effect will lead to B cell aplasia and result in
hypogammaglobulinemia due to the eradication of CD19+ B cell
progenitors by CD19 CAR T cells (71, 72).

The immunosuppressive tumor microenvironment (MVT)
inhibits the activation of CAR-T cells and accelerates the
exhaustion of T cells (70, 73). Unfavorable factors in
immunosuppressive MVT include hypoxia , various
immunosuppressive cells, and the sustained expression of co-
inhibitory receptors (74, 75). Hypoxia is defined as a shortage of
oxygen in the tumor MVT. Immunosuppressive cells in the
tumor MVT contain regulatory T cells (Tregs), tumor-
TABLE 1 | An overview of currently approved CAR-T products.

Category Approval Target Indication

Tisagenlecleucel, tisa-cel Aug.
2017

CD19 B-cell acute lymphoblastic leukemia (ALL) that is refractory or has relapsed after receiving at least second-line
regimens; relapsed or refractory large B-cell lymphoma (second indication approved in 2018)

Axicabtagene Oct.
2017

CD19 Treatment in adult patients with relapsed or refractory large B-cell lymphoma (LBCL)
Adult patients with relapsed/refractory mantle cell lymphoma (MCL) and B-cell acute lymphoblastic leukemia (ALL)

Ciloleucel, Axi-Cel
Brexucabtagene
autoleucel, KTE-X19

Jul. 2020 CD19

Lisocabtagenemaraleticel,
L iso-cel

Feb.
2021

CD19 Relapsed/refractory diffuse large B-cell lymphoma (DLBCL)

Idecabtagene Vicleucel,
ide-cel

Mar.
2021

BCMA Patients with relapsed/refractory multiple myeloma who have received four or more previous therapies, including
immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies
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associated macrophages (TAMs), and myeloid-derived
suppressor cells (MDSCs) (74, 76).

The current manufacturing process of CAR-T cells is a highly
complex endeavor, including T cell collection, genetic
modification and expansion, and infusion back into patients
(77, 78). These multistep technologies and logistics are rife with
risks (10). Additionally, the long-term and individualized
manufacturing processes pose great challenges for building up
standard operating procedures (79). The costly and technology-
intensive manufacturing processes of current CAR-T cells make
them out of reach for many cancer patients in need of this
novel therapy.
GENE-EDITING TOOLS IN CAR-T
CELL THERAPY

The gene-editing tools frequently applied to CAR-T cell therapy
include zinc-finger nucleases (ZFN), transcription activator-like
effector nucleases (TALEN), and clustered regularly interspaced
short palindromic repeats-associated 9 (CRISPR-Cas9)
technology (80–82). ZFN is the first broadly applied gene-
editing tool that includes zinc fingers, a large multimeric
protein, wherein each individual finger targets three to four
base-pair sequences within genomic DNA (83, 84). Multimeric
zinc finger proteins are able to link with the FokI endonuclease to
create a ZFN that can cleave site-specific double-stranded DNA
and lead to homologous recombination (HR) or non-
homologous end-joining (NHEJ) (85). ZFN can achieve
effective and specific gene-editing, but it is time-consuming to
optimize the targeting protein molecules. TALEN are composed
of several TAL units that can recognize base pairs of DNA and
link to an endonuclease to generate the site-specific cleavage of
DNAs (86, 87). TALEN are more economical than ZFN but still
require a long time to optimize the system. CRISPR-Cas9
technology is the most popular gene-editing tool due to its
simplicity and efficiency. The CRISPR-Cas9 complex was
initially identified as an immune system for cleaving foreign
viral DNA in Streptococcus pyogenes (88). These CRISPR
complexes are first transcribed into RNAs (crRNAs), including
bacterial CRISPR sequences, viral sequences (protospacers), and
intervening sequences (PAMs) (89). These crRNAs are then
complexed with the Cas endonuclease. Once the Cas–crRNA
complex recognizes a homologous protospacer and PAM
sequence, the Cas endonuclease cleaves the double-stranded
DNA, followed by an automatic DNA repair process (88). A
short-guide RNA (sgRNA) was introduced into the CRISPR-
Cas9 system as the crRNA, making CRISPR-Cas9 an efficient,
specific, and simple gene-editing tool (90). The development of
gene-editing technology has allowed the precise surgical gene-
editing of CAR-T cells to generate exhaustion-resistant T cells
via removing the PD1 of T cells (91). CRISPR-Cas9 was also used
to deplete endogenous antigens, such as CD33 and CD7, in
normal cells to reduce the on-target off/tumor toxicity of
redirected T cells (92, 93). The CRISPR-Cas9 system has been
used in many CAR-T clinical trials involving more than twenty-
Frontiers in Oncology | www.frontiersin.org 4
one target antigens (Figure 2) (94–97). CD19 and BCMA
account for nearly one-half of the CAR-T clinical trials on
these target antigens. To use the CRISPR-Cas9 system more
widely to edit CAR-T cells, efficient delivery methods must
be developed.
GENE DELIVERY SYSTEMS

Plenty of delivery systems have been used to deliver gene therapy
products including the gene-editing tools and CAR genes
(Figure 3). Viral vectors have the highest transfection efficiency
and have been widely used to deliver genes in various applications
(96), but they suffer from the immunogenicity and cellular toxicity.
Adenovirus-associated viruses (AVV) have a lower risk of toxicity
than other viral vectors such as lentivirus, and adenovirus due to
insertional mutagenesis (98). However, the AAV vector has a
smaller packaging size (~5.0 kb) than other viral vectors (99).
Non-viral delivery systems for gene delivery can be classified into
either physical or chemical techniques. Physical techniques
include electroporation, needle injection, laser irradiation, and
gene guns. Electroporation is one of the most widespread
application methods, which induces pore formation on cell
membranes and the transient permeability of genes using
electric pulses (100–102). Physical techniques have attractive
effects on gene delivery due to their low immunogenicity, but
they cannot target internal organs. Chemical techniques that
mainly use nano-delivery systems include cationic lipids or
polymer-based nanoparticles, golden nanoparticles, silica
nanoparticles and quantum dots, carbon nanotubes, exosomes,
ferritin, and cell membranes. Lipid-based nanoparticles are one of
the most attractive non-viral vectors for gene delivery as several
formulations of these carriers have been approved to use in the
clinic (103–105). Especially, lipid-based nanoparticles have
recently been successfully used to deliver SARS-CoV-2 mRNA
vaccines (106). Lipid nanoparticles have also been used to deliver
the CRISPR/Cas9 system to achieve in-vivo genome editing at
clinically relevant levels (107, 108). Polymer-based nanoparticles
are another system suitable for gene delivery applications.
Positively charged polymers can form stable polyplexes with
genes that disrupt cell membranes and enable endosomal escape
(109, 110). The limitation of polymer-based nanoparticles is their
toxicity and immunogenicity caused by the interaction of their
positively charged surfaces with negatively charged cell
membranes and proteins in blood circulation (111, 112).
Exosomes are naturally secreted extracellular vesicles with
nanometer sizes that are being extensively investigated as gene
delivery vectors due to their natural biocompatibility and minimal
immune clearance (113, 114); however, more efforts are required
to overcome the difficulties in production, isolation, and
purification (115). Cell membranes derived from platelets and
red blood cells are biomimetic vectors used for gene delivery that
have natural biocompatibility and targeting, but their transfection
efficiencies need to be improved (116–118). Each of the other
chemical nano-vectors has unique characteristics that determine
their effects on gene delivery. Some have shown potential efficiency
February 2022 | Volume 12 | Article 809754
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for the treatment of many diseases, but optimal delivery systems
are still unrealized for clinical use.
IN-VIVO CAR-T CELL INDUCTION

The current manufacturing process of CAR-T cells requires
dedicated equipment and significant technical expertise and is
also labor-intensive and time-consuming. (10, 119, 120). It limits
the broader worldwide applications of this technology and drives
up the price of CAR-therapy, making it out of reach of many
patients (121). To simplify the production process, universal
CAR-T cells from allogeneic healthy persons were tested in
clinical trials, but, the FDA recently halted all clinical trials on
the universal CAR-T cells from Allogene due to safety concerns
of allogeneic CAR-T cells. There is an urgent need to develop a
safe and simple production process for CAR-T cells. In-vivo
programming of CAR-T cells by nanoparticles is an elegant and
novel approach to simplify and standardize the complex
manufacturing process of ex-vivo CAR-T cells (122).
Additionally, the in-situ induction of CAR-T cells effectively
reduces the systemic toxicity of CRS and ICANS. Recently, in-
vivo induced CAR-T cells were accomplished through the nano-
delivery of CAR structures or gene-editing tools by the team of
Frontiers in Oncology | www.frontiersin.org 5
Matthias Stephan from the Fred Hutchinson Cancer Research
Center (Seattle, USA) (18, 20). They accomplished the stable and
transient expression of targeting CAR protein in T cells via the
infusion of nanoparticles loaded with CAR-DNA and CAR-
mRNA, respectively. In these two works, the core of the nano-
delivery systems was composed of a cationic polymer, poly(b-
amino ester), assembled with a second-generation CAR structure
targeted to CD19. The exterior of the nano-delivery system was
composed of polyglutamic acid (PGA) conjugated with an anti-
CD3 antibody. The polymer nanoparticles carrying CD19-
specific CAR genes quickly and specifically edited T-cells in
vivo and brought about comparable antitumor efficacies to
conventional laboratory-manufactured CAR T-cells without
inducing systemic toxicity. In addition to the polymer
nanoparticles, viral vectors such as lentiviruses and AAV have
also been tested for the in-vivo generation of CAR-T cells.
Christian J. Buchholz and his colleagues first reported that
lentiviruses encapsulated with a second-generation anti-CD19
CAR gene induced in-situ CAR T cells in immunodeficient
NOD-scid-IL2Rcnull (NSG) mice and showed antitumor
activity (123, 124). They also exhibited cytokine release
syndrome that is notorious in clinical practice. In their study,
CAR-positive NK and NKT cells were unexpectedly detected,
which were likely caused by the non-specificity of the lentiviral
FIGURE 2 | Target antigens of CAR-T cell therapy using CRISPR-Cas9 gene-editing technology registered in ClinicalTrials.gov until June 2021. The data only
include clinical trials that are registered in USA.
February 2022 | Volume 12 | Article 809754
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vector. To overcome the non-specificity of the viral vector,
Samuel K Lai et al. developed a bispecific binder to redirect the
lentiviral vector to T cells for the in-vivo specific engineering of
CAR-T cells (125). They observed the antitumor activity from
the in-vivo CAR-T cells engineered by lentivirus, but a relatively
low number of CAR-expressing T cells. They considered this to
be proof of a valuable and unverified theory of the superior
performance and self-renewal capacity of in-vivo CAR-T cells
compared with that of ex-vivo CAR-T cells. However, the toxicity
of the in-vivo CAR-T cells engineered by the bispecific binder-
redirected lentivirus was not included in this work. Among the
viral vectors, AVV has a lower risk of toxicity. Xilin Wu et al.
recently reported that AAV encoding a third-generation CAR
gene could sufficiently reprogram immune effector cells to
generate in-vivo CAR T cells (126). In this work, they showed
a strong proof of concept of AAV-induced in-vivo CAR-T cells,
but the authors were concerned about the non-specificity of the
AAV carrying the CAR gene. Except for the non-specificity of
the viral vector, a universal safety concern of viral vectors is the
random insertion of genes in the chromosol. Precise and rapid
gene editor tools such as CRISPR have been widely used to
generate ex-vivo CAR-T cells. There are many studies on in-vivo
gene-editing using CRISPR, but there are still no reports on the
application of CRISPR to generate in-vivo CAR-T cells. The
Frontiers in Oncology | www.frontiersin.org 6
future applications of combing gene-editing tools and CAR genes
will accelerate the clinical adoption of in-vivo CAR-T cells.

The nano-delivery of designed CAR-structures and gene-
editing tools can induce the in-vivo formation of CAR-T cells
with multiple functions to overcome the barriers of current
CAR-T cells, such as associated CRS and ICANS toxicities,
immunosuppressive microenvironment, and complex
manufacturing processes (Figure 4). Systemic toxicities can be
reduced through tumor in-situ editing and the expansion of T
cells (18, 62). The incorporation of special cytokine genes into a
CAR structure enables CAR-T cells to secrete cytokines, flushing
the immunosuppressive microenvironment and making it
suitable for the survival and proliferation of T cells (127–129).
Loading gene-editing tools with CAR structures into
nanoparticles can knock out the genes of immune checkpoint
blockades to reverse T-cell exhaustion (130–132). More
importantly, this approach resolves the difficulty of process
standardization and scale-up of the manufacture of ex-vivo
CAR-T cells (133). The final gene-editor nanoparticles can be
conveniently produced, stored, and delivered as usual medicines
(Figure 5). These studies are just the beginning of the period of
in-vivo induced CAR-T cells. Their clinical applications still
require more efforts to monitor the in-vivo editing and
expansion status of T-cells.
FIGURE 3 | Representation of viral and non-viral nano-delivery systems classified as viral vectors, non-viral (physical and chemical). AAV, adeno-associated virus.
The total number of papers is 18,968 obtained from PubMed, and Microsoft Excel was used to obtain the pie graph. The keywords are the name of vectors and
gene delivery or CAR gene.
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FIGURE 4 | Overcoming the barriers of cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), tumor microenvironment
(MVT), and complex process through in-vivo CAR-T cell induced by nanomedicines composed of nano-carrier loaded with the CAR structure or a gene-editing tool.
FIGURE 5 | Comparison of generating CAR-T in-vitro and generating CAR-T-in-vivo by nano-delivery systems: In-vitro CAR T cells are first isolated from the patient,
proliferated in-vitro, and then genetically engineered to screen the successfully edited CAR T cells, which are amplified to a certain number of infusions into the
patient. In-vivo induced CAR T cells use nanotechnology to encapsulate CAR-expressing plasmids into nano-delivery systems including polymer nanoparticles and
viral vectors such as lentivirus and AAV, which are then targeted to tumor regions in-vivo to edit T cells in-situ at tumor sites to kill tumors.
Frontiers in Oncology | www.frontiersin.org February 2022 | Volume 12 | Article 8097547
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CONCLUSION AND FUTURE PROSPECTS

Enormous achievements have been made in CAR-T cell therapy
in the last decade, and five CAR-T cell products are available in
the clinic. However, current CAR-T cell therapy also has some
barriers that need to be overcome such as CRS and ICANS
toxicity and expensive and complex manufacturing procedures.
The in-vivo induced CAR-T cells by nanoparticles loaded with
CAR genes and gene-editing tools have shown potential
breakthroughs to overcome the abovementioned barriers of
current CAR-T cell therapy. Although very few studies have
reported nanoparticle-induced in-vivo CAR-T cells, robust
preclinical data have predicted the future of cellular therapy
through nano-delivery approaches. The field of in-vivo induced
CAR-T cell therapy is still in its infancy with many challenges for
the translation of this approach into clinical practice. A
systematic summary of the nano-delivery systems for inducing
in-vivo CAR-T cells can guide the design of the nanoparticles and
Frontiers in Oncology | www.frontiersin.org 8
their cargo to optimize their efficacy (134–136). In summary, in-
vivo induced CAR-T cells are expected to replace current CAR-T
cell therapy and become the standard immune-cell therapy
for cancers.
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