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Pediatric central nervous system (CNS) tumors are the most common solid tumors
diagnosed in children and are the leading cause of pediatric cancer-related death. Those
who do survive are faced with the long-term adverse effects of the current standard of care
treatments of chemotherapy, radiation, and surgery. There is a pressing need for novel
therapeutic strategies to treat pediatric CNS tumors more effectively while reducing
toxicity – one of these novel modalities is chimeric antigen receptor (CAR) T-cell
therapy. Currently approved for use in several hematological malignancies, there are
promising pre-clinical and early clinical data that suggest CAR-T cells could transform the
treatment of pediatric CNS tumors. There are, however, several challenges that must be
overcome to develop safe and effective CAR T-cell therapies for CNS tumors. Herein, we
detail these challenges, focusing on those unique to pediatric patients including antigen
selection, tumor immunogenicity and toxicity. We also discuss our perspective on future
avenues for CAR T-cell therapies and potential combinatorial treatment approaches.

Keywords: chimeric antigen receptor T-cell, pediatric brain tumor, immunotherapy, CNS tumor,
combinatorial immunotherapy
INTRODUCTION

Pediatric central nervous system (CNS) tumors are the most common solid tumors diagnosed in
children (1). Despite advances in the molecular characterization of these tumors and the fine-tuning
of multimodal therapies, numerous patients experience high rates of tumor recurrence and
mortality (2, 3). In fact, CNS tumors are the leading cause of pediatric cancer-related death,
recently surpassing leukemia (1, 4). Those who survive face lifelong challenges associated with the
standard of care (SoC) treatment, which usually consists of surgery, chemotherapy and/or local or
craniospinal irradiation. Chemotherapy leaves patients with off-target organ damage and often
neurocognitive deficits (5), and radiation causes debilitating damage to the developing brain (6).
Given this persistent mortality and morbidity, there is an urgent need for novel therapies that
effectively eradicate CNS tumors in children, providing durable remissions while minimizing
treatment-related toxicity.

Recent developments in cancer immunotherapy have unveiled targeted treatment strategies
that can prevent tumor recurrence and negate long-term neurotoxic sequalae caused by
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cytotoxic therapies. Immune checkpoint inhibition with
antibodies targeting programmed cell death protein 1 (PD-1)
and CTLA4 demonstrates superior efficacy in comparison to the
SoC in several cancers (7, 8). In many children with relapsed and
treatment-refractory leukemia, treatment with Chimeric Antigen
Receptor (CAR) T-cells has led to durable remission (9, 10). CAR
T-cells are generated by engineering patient T-cells to express the
hybrid CAR protein, which contains an extracellular antibody-
like domain that recognizes a cancer-specific antigen and
intracellular signalling components that trigger an immune
response (11). Each new generation of CAR T-cell has
comprised more sophisticated co-stimulatory signalling
domains, including CD28 and 4-1BB, and other genetic
modifications, such as transgenes for cytokine secretion, to
optimize anti-tumor activity (12). Currently, CAR T-cells are
approved for use in hematological malignancies including
relapsed/refractory non-Hodgkin lymphoma, multiple
myeloma, and pediatric relapsed acute lymphoblastic leukemia
(13). Solid tumors have emerged as the next frontier for CAR T-
cell therapies.

Pre-clinical and early clinical trial data have suggested that
CAR T-cells could play an important role in the treatment of
pediatric CNS tumors, including medulloblastomas (MB),
atypical rhabdoid teratoid tumors (ATRT), high grade gliomas
(HGG) and ependymomas (14–16). Many obstacles remain,
however, to the successful development of CAR T-cell
therapies in pediatric CNS tumors. The paucity of targetable
antigens and the unfavourable immunological characteristics of
these tumors present unique challenges, and children have
unique and poorly understood vulnerabilities to treatment-
related toxicities. Herein, we review the major challenges
associated with developing CAR T-cell therapies specifically for
pediatric CNS tumors and present our perspective on possible
avenues for the future development of more effective CAR T-cell
and combinatorial immunotherapies.
CHALLENGES

Antigen Selection
Whereas adult CNS tumors display an abundance of neoantigens
that arise from high mutational burden, there is a marked paucity
of neoantigens on pediatric CNS tumors (17, 18). Children are
exposed to fewer environmental factors that contribute to DNA
damage and the resultant lack of neoantigens presents a unique
challenge for pediatric immunotherapy target selection. Target
antigens should have tumor-specific (little to no expression in
normal cells) or tumor-associated (overexpressed in tumor tissue)
expression to spare the developing brain from off-tumor toxicity
(19). One promising strategy to overcome the paucity of true
neoantigens is to target oncofetal antigens, a class of cell surface
markers normally expressed exclusively during prenatal tissue
development that can become re-expressed during neoplastic
transformation (20). For example, CAR T-cells have been
developed to target tumor-specific exons of the oncofetal antigen
cerebroglycan GPC2 (21, 22). Alternatively, they can be made to
target tumor-specific antigen epitopes. CAR T-cells targeting the
Frontiers in Oncology | www.frontiersin.org 2
epidermal growth factor receptor (EGFR) 806 epitope that is
uniquely expressed on the surface of tumor cells can effectively
eradicate glioblastoma (GBM) cells while sparing EGFR-
expressing human fetal astrocytes (23).

In addition to a reduced neoantigen abundance, there is
extensive intratumoral phenotypic heterogeneity among
pediatric CNS tumor cells (24). Brain tumor initiating cells
(BTICs) are an infrequent subpopulation of tumuor cells CAR
T-cell that share properties with normal stem cells, including the
capacity for limitless self-renewal and proliferation. BTICs are
resistant to chemotherapy (25) and radiation (26) and seed
pediatric CNS tumor recurrence and leptomeningeal metastasis
(27, 28). The identification of a target that selectively marks
BTICs may provide an effective means to eradicate
therapy refractory tumor cells, thus delaying or preventing
recurrence. Unfortunately, existing BTIC markers amenable to
immunotherapy in adult gliomas, such as prominin 1 (PROM1;
CD133), are also expressed by human neural stem and
progenitor cells (29).

Selection of tumor cells with reduced target antigen
expression throughout the course of treatment will also induce
temporal heterogeneity. This antigen escape is an impediment to
effective CAR T-cell treatment (24, 30). Multivalent CARs are a
potential way to improve targeting of tumors with heterogenous
antigen expression. Bielamowicz et al. demonstrated improved
anti-tumor efficacy in GBM models using trivalent CAR T-cells
targeting ephrin A receptor 2, human epidermal growth factor
receptor 2 (HER2) and interleukin-13 receptor alpha-2
(IL13Ra2) (30). With the same trivalent design, a significant
survival benefit was observed in patient-derived xenograft (PDX)
models of MB and ependymoma. Notably, modest expression of
HER2 and IL13Ra2 on patient samples in this study suggests
additional, more highly expressed targets are needed (15).

Currently, there are a limited number of CAR T-cell clinical
trials for children with CNS tumors, all at phase I. Targets
include HER2, B7 homolog 3 (B7H3), EGFR806, the
disialoganglioside GD2 and IL13Ra2 (Table 1).

Delivery
In comparison to hematological malignancies, solid tumors and
especially CNS tumors situated behind the blood brain barrier
(BBB) present unique physical challenges that hinder effective
delivery of CAR T-cells. While peripherally infused CAR T-cells
have been found to modestly cross the BBB (31–33), numerous
pre-clinical studies evaluating the comparative efficacy of
intravenous (IV), intratumoral (IT) and intraventricular (ICV)
delivery of CAR T-cells targeting CNS tumors have produced
compelling evidence favoring locoregional administration via
surgically-inserted catheter (IT or ICV). Locoregional delivery is
associated with more effective tumor infiltration, improved anti-
tumor efficacy, and reduced systemic toxicity (16, 34–36). For
example, Theruvath et al. tested B7H3 CAR T-cells against
ATRT patient-derived xenografts in mice and showed
dramatically more rapid tumor homing and expansion with
locoregional delivery, in comparison to the far higher doses of
CAR T-cells delivered via IV. Additionally, significantly higher
levels of systemic inflammatory cytokines were detected upon IV
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delivery (16). Notably, ICV delivery may be superior to IT in
cases of leptomeningeal spread, as CAR T-cells are able to more
freely traffic throughout the CNS (34). In current pediatric
clinical trials, locoregional delivery is the preferred
method (Table 1).

Homing and Persistence
Other important challenges impeding the development of
effective CAR T-cells for pediatric CNS tumors include CAR
T-cell homing and persistence. To improve homing to tumor
sites, CAR T-cells expressing chemokine receptors have been
developed (37, 38). Once CAR T-cells reach target sites, they
must be capable of exerting an antitumoral response prior to
exhaustion. Should exhaustion occur prior to tumor clearance,
CAR T-cell efficacy drops dramatically. A recent study found
that co-expression of AP1 transcription factor, c-Jun, in CAR T-
cells led to an increased capacity for expansion, and diminished
terminal differentiation. These exhaustion-resistant CAR T-cells
also exhibit a dramatic increase in antitumoral efficacy (39).

Additional strategies to improve CAR T-cell persistence and
reduce exhaustion include optimizing T-cell activation and co-
stimulation signalling and interfering with molecules that impair
T-cell activation (40). For example, CAR T-cells engineered to
express pro-inflammatory cytokines such as IL-12 and IL-18 and
those with constitutively active IL-15 and IL-7 have increased anti-
tumor efficacy and improved persistence in solid tumors (41–44).
Particularly in immunologically “cold” pediatric CNS tumors,
additional inflammatory cytokine secretion by CAR T-cells could
also augment local immune cell activation. This benefit must be
balanced with local and systemic toxicity associated with increased
cytokine production (40). Finally, issues of CAR-T cell persistence
can be addressed by optimizing the timing of their delivery. For
example, the use of small, frequent (usually weekly) dosing regimens
may help maximize the therapeutic window while minimizing
infusion-associated toxicity (37). It is unclear, however, whether
frequent CAR T-cell dosing translates to improved anti-tumor
efficacy in comparison to infrequent or one-time dosing.

Toxicity
Cytokine release syndrome (CRS), a systemic inflammatory
response following excess cytokine production by endogenous
immune cells and/or CAR T-cells, and the toxic encephalopathy
Frontiers in Oncology | www.frontiersin.org 3
known as immune effector cell-associated neurotoxicity syndrome
(ICANS) that often follows, are major systemic side effects of CAR
T-cell therapies targeting hematological malignancies (45).
Relatively little is known regarding these toxicities in the context
of CAR T-cells for CNS tumors, especially in pediatrics.
Nevertheless, the locoregional delivery strategies currently
employed with many CNS-targeting CAR T-cell therapies reduce
much of the concern for systemic toxicity, which is known to be a
dose-dependent (46) manifestation of the systemic administration
and peripheral activation of CAR T-cells (16, 45). This is in keeping
with the CRS reported by Goff et al. after IV infusion of only the
highest dose of EGFRvIII-targeting CAR T-cells in a GBM patient
(47), and that most trials with CAR T-cells targeting CNS tumors
have shown few adverse events (48). There is, however, reasonable
concern for excess cytokine production leading to local CNS toxicity
following locoregional delivery. Promisingly, 3 pediatric patients
recently treated with locally-infused CAR T-cells targeting HER2
experienced no dose limiting toxicity while still showing local CNS
immune activation (49). Interestingly, CRS and ICANS were not
predicted by pre-clinical studies of CD19-targeting CAR T-cells (45)
– perhaps similarly unexpected toxicities will emerge through the
development of CAR T-cells for CNS tumors.

Given that CAR T-cell dosing, antigen affinity and other
design factors remain largely empiric, off-target and particularly
on-target/off-tumor toxicity are major concerns. Illustrating this
concern, Richman et al. showed that high-affinity CAR T-cells
targeting GD2 caused fatal encephalitis after acting on normal
brain tissues expressing GD2 in a neuroblastoma mouse model
(50). It has also been observed that ICV-administered CAR T-
cells migrate effectively into the periphery (16), suggesting that
even with locoregional delivery strategies, off-tumor toxicity
within the periphery must be considered.

In creating CAR T-cells for the pediatric population, attention
must be drawn to the fact that the childhood brain and other
tissues are still developing and also have different antigen
expression in comparison to adults. This is particularly
relevant with CAR T-cells targeting known or potential stem
cell antigens. For example, CD133 is expressed on neural stem
cells (51) and hematopoietic stem cells (52). Hence, while
treatment with CD133-targeting CAR T-cells may be tolerated
in adults with GBM, this target may not be appropriate in
pediatric patients. Preclinical development of novel targets
TABLE 1 | Current clinical trials investigating CAR T-cells for pediatric CNS tumors.

NCT# Target Tumors Delivery Ages eligible
(years)

Trial location

04510051 IL13Ra2 IL13Ra2-positive recurrent/refractory CNS tumors ICV 4-25 City of Hope Medical Centre
04185038 B7H3 DIPG, DMG, recurrent/refractory CNS tumors IT, ICV 1-26 Seattle Children’s Hospital
03638167 EGFR806 EGFR-positive recurrent/refractory CNS tumors IT, ICV 1-26 Seattle Children’s Hospital
04099797 GD2 GD2-positive CNS tumors including HGG, DIPG, MB IV 1-18 Texas Children’s Hospital
04196413 GD2 H3K27M-mutated DIPG or spinal DMG IV 2-30 Stanford University
03500991 HER2 HER2-positive recurrent/refractory CNS tumors IT, ICV 1-26 Seattle Children’s Hospital
04903080 HER2 HER2-positive recurrent/refractory ependymoma IV 1-21 Texas Children’s Hospital
02442297 HER2 HER2-positive recurrent/refractory primary CNS tumors or HER2-positive tumors

metastatic to CNS
IT, ICV ≥3 Texas Children’s Hospital
January 2022
DIPG, Diffuse intrinsic pontine glioma; DMG, diffuse midline glioma; MB, medulloblastoma; ICV, intraventricular; IT, intratumoral; IV, intravenous.
All trials are in Phase 1.
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must ensure proper examination of appropriate control tissues,
such as human neural stem cells and fetal tissue arrays, to get
insights into potential toxicities. Building inducible control into
CAR T-cells provides clinicians with the ability to rapidly
regulate CAR T-cell activity during treatment and in case of
anticipated or unanticipated toxicities. These include suicide
genes such as inducible Caspase 9 and herpes simplex virus
tyrosine kinase, and cell surface elimination markers that allow
for antibody-mediated control (53).

Tumor Immune Microenvironment
Tumors comprise a distinct network of tumor cells, immune
cells, stromal cells, and extracellular matrix proteins, a
spec t rum co l l ec t i ve ly t e rmed the tumor immune
microenvironment (TIME). Immunologically “hot” tumors
comprise high numbers of tumor-infiltrating lymphocytes
(TILs) and increased PD-1 ligand expression, whereas
immunologically “cold” tumors have low numbers of TILs
and reduced PD-1 expression. Pediatric CNS tumors are
immunologically cold due to their low mutational burden and
a lack of neoantigen expression (54, 55). Cold tumors respond
poorly to immune checkpoint inhibition (56) and are associated
with poor clinical outcomes (18, 57). Colder tumors are also
less responsive to adoptive T-cell and CAR T-cell therapies (58,
59). In such cases, administered CAR T-cells must be capable of
activation and infiltration, where endogenous T-cells are unable
to do the same. To overcome the cold TIMEs of pediatric CNS
tumors, novel CAR T-cell engineering approaches can be
applied to optimize their function in these environments.
Potential tools include cytokine switch receptors, which
transform an inhibitory signal into a growth-inducing signal,
and optimization of CAR T-cell metabolism in the hypoxic and
reactive oxygen species-filled microenvironment (40).

In addition to being immunologically cold, there is
substantial heterogeneity in the TIME between and among
ped ia t r i c CNS tumor types . To deve lop eff ec t ive
immunotherapies, this heterogeneity must be understood and
exploited. Grabovska et al. analyzed genome-wide DNA
methylation data from >6,000 pediatric CNS tumors –
interestingly, the immune infiltrate subgroups that they
identified exist independent of molecular subgroup and are
predictive of outcomes in multiple pediatric tumor types. They
also showed that specific molecular drivers like H3.3G34
mutations in HGG are associated with characteristic immune
infiltrates independent of tumor subtype (18). In MB, several
studies have shown that Sonic Hedgehog tumors have an
increased proportion of T-cells in comparison to other
subgroups, rendering them promising candidates for
immunotherapy (18, 60). Notably, pediatric midline gliomas
are exceptionally immunologically cold and have very low
inflammatory cytokine expression (61). In comparison to
normal brain tissue, Diffuse Intrinsic Pontine Glioma (DIPG)
tumors do not display increased macrophage or T-cell
infiltration, or PD1L expression (62).

Looking forward, a deeper understanding of the heterogenous
and cold TIMEs of pediatric CNS tumors will allow for the
Frontiers in Oncology | www.frontiersin.org 4
development of novel treatment approaches that help overcome
these unfavorable environments. In addition to novel CAR T-cell
design, combining CAR T-cells with other immunotherapies or
small molecules may allow for the induction of a potent
inflammatory response and improve outcomes.
COMBINATORIAL THERAPIES

Agents , including smal l-molecule drugs and other
immunotherapies, that can prime CAR T-cells to overcome
immunosuppressive effects of tumor cells or those that can
convert a cold TIME into a hot TIME may act in combination
with CAR T-cell therapies to elicit a more powerful antitumoral
response in the pediatric CNS (63). Inhibition of the PD-1/PD-1
ligand immune checkpoint axis, which tumor cells exploit to
avoid detection from host immune cells, is a strategy that may
enhance the activity of CAR T-cells through increased target
engagement (63). The development of small molecules capable
of targeting PD-1 have been hindered, however, in part due to
the hydrophobic PD-1/PDL-1 interface. The use of cytotoxic/
cytolytic agents like cisplatin chemotherapy (64, 65), or
oncolytic viruses such as HSV-1 G207 (66), can also enhance
the effectiveness of immunotherapy by releasing tumor-
associated antigens and cytosolic DNA that promote the
conversion of a typically cold pediatric TIME into a hot
TIME. The latter presents a potential treatment window of
opportunity in pediatric CNS brain tumor patients that are
treated with chemoradiotherapy. Researchers have exploited a
metabolic vulnerability of immunosuppressive regulatory T-
cells (T-reg) to overcome their immunosuppressive nature.
Small molecule inhibitors of Indoleamine-pyrrole 2,3-
dioxygenase (IDO1) reduce T-reg activity in the TIME and
increase immunotherapy efficacy (67).

The capacity for small molecules to be administered
systemically, penetrate the BBB, and modulate intracellular
targets provides combinatorial immunotherapeutic opportunities
for small-molecule agents that monoclonal antibodies and other
larger molecules cannot fulfill. Cytotoxic and cytolytic agents also
have the potential to greatly enhance the efficacy of CAR T-cell
therapies. These combinatorial treatment approaches may be the
key to overcoming the challenges presented by solid pediatric
CNS tumors.
DISCUSSION

CAR T-cell therapies for hematological malignancies represent
major breakthroughs in cancer research and adapting CAR T-
cells to target solid tumors represents the next frontier. Here we
have reviewed the unique physical and biological challenges
associated with developing CAR T-cells for pediatric CNS
tumors, and highlighted promising avenues of current and
future research (Figure 1). The paucity of targetable antigens,
intratumoral heterogeneity, and the co-expression of many
January 2022 | Volume 12 | Article 815726
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potential antigens in normal and developing tissues are all
fundamental challenges. Potential solutions include using
appropriate preclinical controls, exploring BTIC-specific
antigens and novel CAR T-cell engineering strategies such as
multivalent CARs. In terms of CAR T-cell administration, IT and
ICV methods improve delivery and reduce systemic toxicity.
There are also many unknowns regarding the local and systemic
toxicity of CAR T-cell therapies for pediatric brain tumors and
therefore, a cautious approach guided by an awareness of the
potential unique susceptibilities of the pediatric brain is called
for. It is unclear how treatment of CNS tumors with CAR T-cells
may impact brain development. Other novel approaches are also
necessary to improve the homing and persistence of
administered cells. Finally, the cold and heterogeneous TIMEs
of some pediatric CNS tumors necessitate the development and
application of novel combinatorial therapies to support CAR T-
cells in generating an immune response sufficient to eradicate
tumor cells. With creative use of existing and novel therapies and
Frontiers in Oncology | www.frontiersin.org 5
continued innovation in CAR T-cell design, there is potential for
a new era of improved outcomes and reduced toxicity for
children with CNS tumors.
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FIGURE 1 | Challenges and potential solutions for development of effective CAR T-cell therapies for pediatric CNS tumors. Infographic depicting the challenges (red)
associated with immunotherapies for malignant pediatric CNS tumors, and the proposed solutions (green) that might mitigate them. TIME, tumor immune
microenvironment; BTIC, brain tumor initiating cell; NSC, neural stem cell; IT, intrathecal; ICV, intraventricular. Figured created with BioRender.com.
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