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Purpose: The purpose is to accurately identify women at high risk of developing cervical
cancer so as to optimize cervical screening strategies and make better use of medical
resources. However, the predictive models currently in use require clinical physiological
and biochemical indicators, resulting in a smaller scope of application. Stacking-
integrated machine learning (SIML) is an advanced machine learning technique that
combined multiple learning algorithms to improve predictive performance. This study
aimed to develop a stacking-integrated model that can be used to identify women at high
risk of developing cervical cancer based on their demographic, behavioral, and historical
clinical factors.

Methods: The data of 858 women screened for cervical cancer at a Venezuelan Hospital
were used to develop the SIML algorithm. The screening data were randomly split into
training data (80%) that were used to develop the algorithm and testing data (20%) that
were used to validate the accuracy of the algorithms. The random forest (RF) model and
univariate logistic regression were used to identify predictive features for developing
cervical cancer. Twelve well-known ML algorithms were selected, and their performances
in predicting cervical cancer were compared. A correlation coefficient matrix was used to
cluster the models based on their performance. The SIML was then developed using the
best-performing techniques. The sensitivity, specificity, and area under the curve (AUC) of
all models were calculated.

Results: The RFmodel identified 18 features predictive of developing cervical cancer. The
use of hormonal contraceptives was considered as the most important risk factor,
followed by the number of pregnancies, years of smoking, and the number of sexual
partners. The SIML algorithm had the best overall performance when compared with
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other methods and reached an AUC, sensitivity, and specificity of 0.877, 81.8%, and
81.9%, respectively.

Conclusion: This study shows that SIML can be used to accurately identify women at
high risk of developing cervical cancer. This model could be used to personalize the
screening program by optimizing the screening interval and care plan in high- and low-risk
patients based on their demographics, behavioral patterns, and clinical data.
Keywords: machine learning, cervical cancer, risk, artificial intelligence, personalized screening
INTRODUCTION

Cervical cancer is one of the most common malignant tumors in
women worldwide (1). The 5-year survival rate for early-stage
cervical cancer is high, ranging from 80% to 90% (2). However,
the cure rate goes down to 10% for stage 4 disease (3). Cervical
screening has, therefore, an important role in identifying the disease
at an early stage and hence reduces the morbidity and mortality
from the disease. The incidence and mortality from cervical cancer
vary across different countries and tend to be lower in highly
developed countries due to well-established screening and
vaccination programs (4). However, underdeveloped regions often
do not have sufficient medical resources allocated to screening. This
implies that there is an increased need to identify women at a high
risk of developing cervical cancer to optimize the screening interval
and hence make better use of medical resources (5, 6).

Parametric prediction models can be used to better identify the
early risk warning signs of cervical cancer (7–9). However, to our
knowledge, there is currently no comprehensive risk prediction
model based on demographic information, behavioral habits, and
medical history for cervical cancer. Predictionmodels need to be able
tomakeuse of individual information to accurately predict the risk of
developing the disease. Artificial intelligence (AI) and machine
learning (ML) can be used to analyze large volumes of data to
make accurate predictions and to identify hidden interactions (10,
11).Therefore, theuseofAIandMLin themedicalfieldhas increased
exponentially during the past few years. However, current risk
prediction models for cervical cancer are based on former-
generation algorithms, such as the decision tree model and random
forest (RF) (12).Until recently,more powerful algorithms such as the
stacking-integration machine learning (SIML) have yet to be fully
explored. SIML’s automatic large-scale integration strategy can
effectively combat overfitting by adding regular items and
transferring the integrated knowledge to a simple classifier, which
is the best way to improve the effectiveness of machine learning.

This study aimed to develop an SIML that could be used to
identify women at a high risk of developing cervical cancer based
on their demographic, behavioral, and medical history and hence
personalize the screening program according to their risk factors.
MATERIALS AND METHODS

Study Populations
These data were obtained from the public dataset provided by
Kelvin Fernandes in the UCI database. The data were based on
2

early screening data for cervical cancer collected at the Hospital
Universitario de Caracas, Venezuela, from March 2012 to
September 2013 (13). The majority of patients were of low
socioeconomic status, low income, and low educational level.
The patients were aged 13–84 years, with an average age of 27
years, and 88.6% of them had at least one pregnancy. The data
collected included demographics, behavioral patterns, and
medical histories of 858 patients. A total of 18 different
potential risk variables were identified and coded, as shown in
Supplementary Table S1. Due to missing variables for privacy
concerns, not all patient variables were available for analysis.
Feature datasets excluded variables with more than half loss rate
or those that have all identical values. The original general data
parameter index code is available in Supplementary Table S1,
and the main content of the modeling is shown in Figure 1.

Dataset Preprocessing
The premise of an efficient and reliable disease risk prediction
model was the accuracy of the data. Visualization of the data was
first performed using the public packages related to ML in R,
version 3.6.0 (The R Foundation for Statistical Computing,
Vienna, Austria), while the PRISM software version 7.0 for
Windows (GraphPad Software Inc., San Diego, CA, USA) was
used to plot the data (Supplementary Figure S1).

Following visualization of the data, 18 high-risk prediction
features (Supplementary Table S1) of a positive biopsy were
identified. Continuous variables were categorized as follows. The
ages of the patients were grouped into four categories: below 20
years, 20–29 years, 30–44 years, and 45–60 years, while the age of
first sexual intercourse was grouped into five groups: below 13
years, 13–15 years, 16–17 years, 18–19 years, and above 20 years.
Other classification variables were input according to the
original characteristics.

Not all the data for each predictive feature were available.
About 20%–30% of the clinical predictive data and about 0%–
15% of the behavioral data were missing. The missing part of the
data had to be estimated by using the information available in the
existing data to replace the missing data with values (14).
However, due to a large number of missing data, conventional
mean and median filling methods could not be used in this case,
since these techniques cannot guarantee data authenticity
because the filling values are mostly unreal values, which will
affect the accuracy of model construction. Therefore,
nonparametric missing value imputation using RF (MissForest)
was used to process missing data as suggested by Stekhoven et al.
February 2022 | Volume 12 | Article 821453

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Optimization of Cervical Cancer Screening
(15). The parameters of the model were set as follows: the
maximum iterations were set to 10. The number of trees was
chosen to be 100.

Feature Selection
The model was designed to rely on a limited and effective set of
features that do not require excessive input from patients. Using
the RF model, a total of 18 predictors for developing cervical
cancer were identified. The univariate logistic regression and
feature selection model were then used to quantify the odds ratio
(OR) and the contributing risk of each predictive value for
developing cervical cancer. The analysis of feature selection
was based on the RF classifier, whereby the importance of each
predictive feature was sorted by using the error rate
measurement. Specifically, for each tree in the RF, the error
rate for classification of the out-of-bag portion of the data was
recorded. The feature importance score was calculated by
estimating improvement in the classification error rate of each
feature. Finally, the importance scores of all trees in RF were
averaged to get the final score of each feature (16). Nine
important predictive features were finally identified.

Treatment of Imbalanced Data
Imbalanced data refer to the uneven distribution of data among
different categories, whereby the main categories have a much
larger representation (17). The imbalance ratio (IR) is expressed
as the ratio of the number of large sample categories to the
number of small sample categories. A large IR generally has a
negative impact on the classification effect of the model and can
lead to an inaccurate classification.
Frontiers in Oncology | www.frontiersin.org 3
Two techniques were used to deal with imbalanced data in
our study. The first method involved the use of resampling based
on samples (oversampling, undersampling, and hybrids). The
other method combines the use of resampling methods via the
random oversampling example (ROSE) (18) and synthetic
minority oversampling technique (SMOTE) (19) algorithms. In
this study, five different resampling methods and RF were
combined to build the models, and ultimately the best method
was selected and integrated into the final SIML.

Model Development
Following class imbalance treatment, the cervical cancer
screening data were randomly assigned to the training dataset
(80% of data) and testing dataset (20% of the data). The training
dataset was used to develop the algorithm, while the testing
dataset was used to evaluate the performance of the algorithm.
We then selected 12 widely used ML algorithms including RF,
Stochastic Gradient Boosting (SGB), Bagged Classification and
Regression Tree (TreeBag), eXtreme Gradient Boosting
(XGBoost), Monotone Multi-Layer Perceptron Neural Network
(MonMLP), Support Vector Machines with Radial Basis
Function Kernel (SVMRadial), K-Nearest Neighbors (KNN),
Gaussian Process with Radial Basis Function Kernel
(GaussPrRadial), Regularized Logistic Regression (RgeLogistic),
Stabilized Linear Discriminant (SLDA), AdaBoost Classification
Trees (AdaBoost), and Logistic Model Trees (LMT). All of these
supervised algorithms were implemented using the free and
open-source library caret in R3.6.0. To adjust the optimal
tuning parameters of each ML algorithm, we used 10-fold
cross-validation and repeated three times on the training set.
FIGURE 1 | Flowchart illustrating the development and validation of ML models. ML, machine learning.
February 2022 | Volume 12 | Article 821453

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Optimization of Cervical Cancer Screening
This method involved dividing the training set into 10 sets and
using nine sets for training and the remaining set was used for
verification. This was performed 10 times, and the results of the
different test sets were averaged, ensuring an independent result
from the actual dataset subdivision (20).

RF, TreeBag, SGB, AdaBoost, and XGBoost are integrated
algorithms that combine multiple simple tree models (21, 22)
and are considered to be the most accurate for making
predictions using various datasets for several applications.
MonMLP is a feed-forward Artificial Neural Network (ANN)
model, which maps multiple input datasets to a single output.
As a popular ML algorithm, MonMLP has incomparable
advantages in prediction accuracy. However, it requires
tuning of many parameters and a large number of data for
training (23). SVMRadial is an SVM model with Radial Basis
Function, which constructs a decision curve in high-
dimensional feature space to perform binary classification
(24). KNN, GaussPrRadial, RegLogistic, and SLDA are
relatively efficient and effective simple classification
algorithms in data mining. Although these algorithms are
relatively simple, they still perform very well and result in a
model that is easier to interpret (21, 25). LMT is an algorithm
generated by the combination of linear logistic regression and
decision tree induction. It has been proven to be an accurate
and simple classifier, which is also competitive with other
advanced classifiers (such as RF) and easier to explain (26).

The performances of the algorithms were compared to select
the optimal stacking algorithm. Stacking is a common integrated
learning framework in the Kaggle competition, integrating many
models to improve the result prediction accuracy. It is generally
used to train a two-layer learning structure. The first layer
(known as the learning layer) trains n different classifiers, and
their predicted results are combined into a new feature set, which
is then used as the input of the next layer classifier (27)
(Figure 2). Stacking has the characteristics of distributing
multiple classifiers while ensuring excellent performance. In
summary, the stacking-integrated learning framework has two
requirements for base classifiers: large differences between
classifiers and high accuracy of classifiers. However, it is prone
to overfitting (28). The features of the second layer come from
learning the results of the first one. Thus, the original features
should not be included in the features of the data of the second
layer to reduce the risk of overfitting. The best choice of the
second layer classifier is a relatively simple classifier. RegLogistic
is a better method in Stacking (29), but LMT is more robust in
overfitting (26), and can therefore be used instead.

Model Comparisons
The optimal tuning parameters of each ML algorithm were
determined by cross-validation on the training samples after
imbalance data processing. The models’ internal verification
scores were obtained from the training dataset, while the
external validation scores were obtained from the test sets.
External validation scores could be used to test the
generalization power of the model. The performance
evaluation of binary data (positive vs. negative) was mainly
based on the sensitivity ( TP

TP+FN ) and specificity ( TN
TN+FP ), where
Frontiers in Oncology | www.frontiersin.org 4
TP, FP, TN, and FN represent the number of true positives, false
positives, true negatives, and false negatives, respectively. The
area under the curve (AUC) was used to reflect the relationship
between two performance variables. F1 scores and F2 scores were
also used to measure the model’s accuracy.

F1 = 2 ∗ precision ∗ recall
precision+recall , F2 = (1+22) ∗ precision ∗ recall

22 ∗ precision+recall , in which
 precision = TP

TP+FP   and recall = TP
TP+FN

Alternatively, the F1 score and F2 score were a kind of
harmonic mean of model accuracy and recall (30), comparing
different model performances in identifying true disease
predictions when compared to false positives. The weight of
the F2 score was more inclined to the recall value of the model
and focuses on the sensitivity index of the model.

The entropy weight method was an objective weighting
method that can be used to reduce the influence of human
factors. After averaging the seven performance metrics of the 12
models, we calculated the weights of each metric using the
entropy weight method (Supplementary Table S2).

The base models in the stacking structure were selected to be
independent and weakly correlated. The correlation coefficients
between the 12 models were calculated, and the correlation
coefficient matrix was used to cluster the model by hierarchical
clustering. Each cluster selected a classifier with the best
performance as the base model.
RESULTS

Study Participants
The baseline characteristics of the participants are summarized
in Table 1. Among the 858 screened patients, 4 (0.46%) were
excluded, as they were over 60 years old. The majority of the
included cases (46.14%) were aged between 20 and 29 years,
31.38% had their first sexual intercourse between 13 and 15 years
old, 15.69% of the patients were smokers, 68.97% of patients took
hormonal contraceptives, and 9.25% of the patients had sexually
transmitted disease. However, only 6.44% of the performed
biopsies were positive.

Predictors for a Positive Biopsy
The result of the univariate logistic regression analysis evaluating
the relationship between behavioral habits, medical history, and
positive biopsy is summarized in Table 1. The p values of age
(p = 0.045), first sexual intercourse (age) (p = 0.061), number of
pregnancies (p = 0.071), and use of hormonal contraceptives
(years) (p = 0.007) were less than 0.1, suggesting a relationship to
the occurrence of cervical cancer. Among them, the risk of
cervical cancer was significantly higher in the 45–60 age group
when compared with those under 20 years old (OR = 7.689, 95%
CI: 1.952–30.281). Compared with those less than 13 years old
for the first intercourse, the risk of cervical cancer was
significantly lower in people who had sex for the first time
after the age of 20 (OR = 0.132, 95% CI: 0.020–0.898). The longer
use of hormonal contraceptives and a larger number of
pregnancies were also features associated with an increased
risk of developing cervical cancer, with ORs of 1.092 (95% CI:
1.024–1.165) and 1.180 (95% CI: 0.986–1.413) respectively.
February 2022 | Volume 12 | Article 821453
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The feature selection method using RF was applied. Figure 3
demonstrated the relative importance of 18 variables in cervical
cancer risk prediction. Based on this analysis, nine predictors had
relative importance greater than one. The use of hormonal
contraceptives (years) was identified as the most important risk
factor, followed by the number of pregnancies, smoking (years),
Frontiers in Oncology | www.frontiersin.org 5
number of cigarette packets smoked annually, number of
sexual partners, the use of an intrauterine device (IUD) (years),
number of sexually transmitted diseases (STDs), human
immunodeficiency virus (HIV), and age. These nine features
were incorporated into the model and cross-validated. In
contrast, in the univariate logistic regression, the number of
TABLE 1 | Sociodemographic factors associated with cervical cancer: univariate logistic regression analysis.

Total (n = 854) Biopsy negative (n = 799) Biopsy positive (n = 55) p Odds ratio (95% CI)

Age, years 0.045
<20 179 (20.96) 173 (21.65) 6 (10.91) Referent
20–29 394 (46.14) 366 (45.81) 28 (50.91) 0.085 2.206 (0.897–5.426)
30–44 262 (30.68) 245 (30.66) 17 (30.91) 0.153 2.001 (0.773–5.178)
45–60 19 (2.22) 15 (1.88) 4 (7.27) 0.004 7.689 (1.952–30.281)

Number of sexual partners 2.00 (2.00–3.00) 2.00 (2.00–3.00) 2.00 (2.00–3.00) 0.986 1.001 (0.850–1.180)
First sexual intercourse(age), years 0.061
<13 11 (1.29) 9 (1.13) 2 (3.64) Referent
13–15 268 (31.38) 256 (32.04) 12 (21.82) 0.063 0.211 (0.041–1.085)
16–17 271 (31.73) 252 (31.54) 19 (34.55) 0.186 0.339 (0.068–1.683)
18–19 199 (23.30) 180 (22.53) 19 (34.55) 0.363 0.475 (0.096–2.361)
≥20 105 (12.30) 102 (12.77) 3 (5.45) 0.038 0.132 (0.020–0.898)

Num of pregnancies 2.00 (1.00–3.00) 2.00 (1.00–3.00) 3.00 (1.00–4.00) 0.071 1.180 (0.986–1.413)
Smoking, yes 134 (15.69) 123 (15.39) 11 (20.00) 0.365 1.374 (0.690–2.734)

(n = 134) (n = 123) (n = 11)
Smoking (years) 7.00 (2.00–11.00) 6.67 (2.00–11.00) 10.00 (3.00–15.00) 0.100 1.062 (0.988–1.141)
Smoking (packs/year) 1.38 (0.51–3.00) 1.35 (0.51–3.00) 2.00 (1.25–3.40) 0.169 1.017 (0.910–1.137)
Hormonal contraceptives, yes 589 (68.97) 553 (69.21) 36 (65.45) 0.561 0.843 (0.474–1.499)

(n = 589) (n = 553) (n = 36)
Hormonal Contraceptives(years) 2.00 (1.00–5.00) 2.00 (1.00–4.50) 1.50 (0.50–9.50) 0.007 1.092 (1.024–1.165)
IUD, yes 199 (23.30) 187 (23.40) 12 (21.82) 0.788 0.913 (0.472–1.768)

(n = 199) (n = 187) (n = 12)
IUD (years) 2.19 (1.60–3.77) 2.17 (1.56–3.65) 3.00 (2.50–4.88) 0.352 1.081 (0.918–1.272)
STDs, yes 79 (9.25) 67 (8.39) 12 (21.82) 0.395 2.000 (0.406–9.886)

(n = 79) (n = 67) (n = 12)
Number of STDs 2.00 (1.00–2.00) 2.00 (1.00–2.00) 2.00 (1.00–2.00) 0.926 0.958 (0.388–2.365)
STDs: condylomatosis 44 (55.70) 37 (55.22) 7 (58.33) 0.842 1.135 (0.327–3.941)
STDs: vaginal condylomatosis 4 (5.06) 4 (5.97) 0 (0.00) / /
STDs: vulvo-perineal condylomatosis 43 (54.43) 36 (53.73) 7 (58.33) 0.768 1.206 (0.347–4.183)
STDs: syphilis 18 (22.78) 18 (26.87) 0 (0.00) / /
STDs: HIV 18 (22.78) 13 (19.40) 5 (41.67) 0.100 2.967 (0.811–10.861)
February 20
22 | Volum
Portions in bold represent p < 0.1. IUD, intrauterine device; STD, sexually transmitted disease.
FIGURE 2 | Flowchart of the integrated stacking structure. 1) The training sets were divided into two groups of data: training and verification sets, and the training set
is divided into five equal parts. 2) Take TreeBag as an example (The Figures above are Treebag, MonMLP, and XGBoost); train1, train2, train3, train4, and train5 are
used as verification sets in proper sequence, and the rest are used as training sets. The model is trained by 5-fold cross-validation, and then predicted on the test set.
Therefore, TreeBag can get five prediction results, which are vertically overlapped and merged into a matrix. The other two models are the same. 3) The predicted
values of the three models are taken as three characteristic variables, and the resulting classifier LMT is used for fitting. Then, the reserved training set was averaged.
The verification set of each characteristic variable was used to verify the performance of the LMT-stacking model. TreeBag, Bagged Classification and Regression Tree;
MonMLP, Monotone Multi-Layer Perceptron Neural Network Random Over-Sampling Examples; XGBoost, eXtreme Gradient Boosting; LMT, Logistic Model Trees.
e 12 | Article 821453
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sexual partners was not significantly correlated (p = 0.986) with
the occurrence of cervical cancer.

These nine features were incorporated into the model and
cross-validated.

Prediction Performance of the
Sampling Method
Table 2 described the comparative performance scores of
different sampling methods using RF. Each sampling model
had been verified internally and externally. In the external
validation, SMOTE-based RF performed best among all
classifiers with an AUC of 0.849 and had the highest score in
four of our seven performance metrics. The sensitivity and
specificity were 90.9% and 73.1%, respectively, both higher
than 70%. The accuracy, precision, F1 score, and F2 score were
74.2%, 18.9%, 0.312, and 0.195, respectively. SMOTE was
therefore selected as the imbalance data processing algorithm
for the final model.

Evaluation of the model performance using the receiver-
operating characteristic (ROC) (Supplementary Figure S2)
Frontiers in Oncology | www.frontiersin.org 6
showed the comparison of the prediction ability of external
and internal validation of the model under different sampling
models. The curves modeled the sensitivity proportion of actual
at-risk women identified at risk of developing cervical cancer to
the specificity proportion of identified no-risk women in
the models.

Prediction Performance of 12 Machine
Learning Models
Toward at-risk patients of cervical cancer classification, Figure 4
compared the performance metrics of 12 different models.
According to the entropy weight score, TreeBag resulted in the
best performance, with an AUC score of 0.852 for the test
dataset. The sensitivity and specificity were 100% and 73.1%,
respectively. Compared to RF, the performance of sensitivity and
AUC was improved. As a whole, the tree-based models (TreeBag,
RF, Adaboost, XGBoost, SGB, and LMT) performed better than
other models, and the performance difference between the
models was minor. Additionally, the performance of the deep
learning model MonMLP ranked third, with an AUC of 0.793
FIGURE 3 | Variable importance measures for each predictor of morbidity. IUD, intrauterine device; STD, sexually transmitted disease; HIV, human
immunodeficiency virus.
TABLE 2 | Prediction performance of random forest algorithm on different sampling models.

Methods Cutoff Accuracy Precision Sensitivity Specificity F1 Score F2 Score AUC

Oversampling Train set 0.703 0.978 0.749 1.000 0.977 0.857 0.535 0.997
Test set 0.099 0.660 0.159 1.000 0.637 0.275 0.172 0.803

Undersampling Train set 0.333 0.761 0.191 0.840 0.756 0.312 0.195 0.870
Test set 0.343 0.743 0.163 0.727 0.744 0.267 0.167 0.739

Both sampling Train set 0.672 0.947 0.550 0.977 0.945 0.704 0.440 0.988
Test set 0.191 0.597 0.138 1.000 0.569 0.242 0.151 0.784

ROSE Train set 0.270 0.773 0.171 0.659 0.781 0.272 0.170 0.733
Test set 0.178 0.632 0.129 0.818 0.619 0.222 0.139 0.745

SMOTE Train set 0.600 0.952 0.586 0.864 0.958 0.698 0.436 0.968
Test set 0.268 0.742 0.189 0.909 0.731 0.312 0.195 0.849
Febr
uary 2022 | Volu
me 12 | Article 8
The portions in bold represent the model is optimal in a single index. ROSE, random oversampling example; SMOTE, synthetic minority oversampling technique; AUC, area under
the curve.
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and sensitivity and specificity of 72.7% and 83.1%, respectively.
The MonMLP model was significantly better than other models
with top performance in terms of specificity. The tuned
parameters of these models were listed in Supplementary
Table S3.

According to the correlation results of the 12 models
(Supplementary Figure S4), we divided the 12 models into 4
clusters (Figure 4) by using the hierarchical clustering method.
The intra-cluster model prediction difference was small, while
the inter-cluster model was large. In the first group, TreeBag and
RF were included, and the correlation between them was as high
as 0.80. Treebag was better than RF in predicting high-risk
patients with cervical cancer. According to the hierarchical
clustering results, AdaBoost, XGBoost, and SGB belonged to
the tree model based on boosting integration and were divided
into the second group. The correlation between the three models
was greater than 0.50. The best model was XGBoost with an
AUC, sensitivity, and specificity of 0.795, 81.8%, and 73.8%,
respectively. The third group consisted of the MonMLP model
and two simplistic models (RgeLogistic and SLDA). In terms of
performance, MonMLP performed better than the other two
models. This was partly due to the small number of positive
biopsies, and therefore the two simplistic models could not learn
enough logical relationships. In the fourth group, only LMT,
KNN, GaussPrRadial, and SVMRadial performed well.

Prediction Performance of
Stacking Models
In order to meet the two requirements of the stacking
structure for the base classifier and improve the performance
Frontiers in Oncology | www.frontiersin.org 7
(27), we selected an optimal model from each group, namely,
TreeBag, XGBoost, MonMLP, and LMT. The performance
ranking of those models might be TreeBag > MonMLP >
XGBoost > LMT. LMT model was a simpler model based on
the Logistic and tree model, with high generalization and
strong generalization robustness (26). Therefore, we chose
LMT as the second layer structure of stacking (result
classifier) and TreeBag, XGBoost, and MonMLP as the first
layer (base classifier). Finally, two LMT-stacking models
with different tuning parameters were built by training
(Supplementary Table S3). The AUC, sensitivity, and
specificity of the LMT-Stacking1 model were 0.877, 81.8%,
and 81.9% (Figure 4), respectively, and 0.877, 81.8%, and
90.9%, respectively, for the LMT-Stacking2 model. The
difference in AUC between the two models was only 0.1%,
and the performance difference was not significant. Similar
results were seen in the ROC curves for each of the models, as
shown in Supplementary Figure S5.
DISCUSSION

AI and ML algorithms are increasingly used in healthcare to
analyze large datasets and perform predictions. However, the use
of these algorithms in identifying women at high risk of
developing cervical cancer is limited and often based on
former generation models, which have more limited accuracy
than more advanced algorithms. In this study, we have proposed
the use of SIML that integrates multiple algorithms to improve
the prediction accuracy.
FIGURE 4 | Prediction performance of ML models on the test sample. ML, machine learning; TreeBag, Bagged Classification and Regression Tree; MonMLP,
Monotone Multi-Layer Perceptron Neural Network Random Over-Sampling Examples; XGBoost, eXtreme Gradient Boosting; LMT, Logistic Model Trees; RF, random
forest; SGB, Stochastic Gradient Boosting; SVMRadial, Support Vector Machines with Radial Basis Function Kernel; KNN, K-Nearest Neighbors; GaussPrRadial,
Gaussian Process with Radial Basis Function Kernel; RgeLogistic, Regularized Logistic Regression; SLDA, Stabilized Linear Discriminant; AdaBoost, AdaBoost
Classification Trees; AUC, area under the curve.
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The findings of this study indicated that various ML
algorithms could be used to predict women at high risk of
developing cervical cancer based on demographic, behavioral,
and clinical data. However, the SIML with TreeBag, XGBoost,
and MonMLP as base classifier and LMT as result classifier
provided the best overall performance. Compared with the LMT-
Stacking1 model, the sensitivity of the LMT-Stacking2 model
was highly improved, while the specificity decreased. However,
because the data had few positive samples and the sensitivity
varied significantly, the performance of the LMT-Stacking1
resulted in a better overall performance because it was
more balanced.

Predictors for Developing Cervical Cancer
According to the feature selection based on RF, hormonal
contraceptives (years), the number of pregnancies, smoking
(years), the number of sexual partners, the use of IUD (years),
and smoking (packs/year) were identified to be the most
important influencing factors for the at-risk patient, especially
the long-term use of hormone contraceptives. Human
papillomavirus (HPV) infection was the leading cause of
cervical cancer (31). According to Cox (32), the risk of
developing an HPV infection was not only related to age but
also increased with the increasing number of sexual partners,
highlighting the need to improve awareness and improve
vaccination campaigns. Co-infection with HIV might impair
the ability of the immune system to control HPV infection.
Additional risk factors included smoking, high parity, and long-
term use of hormonal contraceptives (31). Exogenous hormones
had been considered as auxiliary factors in the pathogenesis of
cervical cancer caused by HPV. If the HPV-positive women took
the hormone contraceptives for a long time, the risk of cervical
squamous cell carcinoma tripled (33). Smoking was related to the
development of squamous cell carcinoma and was an auxiliary
factor and primary carcinogen in the development of cervical
cancer (34). The use of IUD could create a potential malignant
focus close to the cervical canal, eventually creating a
transformation zone whereby preneoplastic lesions arise. The
transformation zone was both targeted by HPV and a major
effecter and inductive site for cell-mediated immune
response (35).

Machine Learning and Cervical Cancer
Most studies on cervical cancer made use of ML to predict
survival in cervical cancer (36). Although some studies had used
generalized estimating equation regression models to predict the
early risk probability of developing cervical cancer (34), their
prediction accuracy remained limited. Our ML model utilized
more features and could, therefore, improve the prediction
accuracy. The Pittsburgh cervical cancer screening model
consisted of 19 variables, including cytological examination
and HPV test results. The incidence of cervical cancer was
predicted by combining the case results, detailed medical
history [including gender, HPV vaccination status,
menstruation, contraception history, age, and race (37)]. The
model could be used for risk stratification of patients only after
Frontiers in Oncology | www.frontiersin.org 8
screening. The advantage of our proposed model was that it
provided a simple tool to identify high-risk groups before
screening by combining behavioral data provided by patients
with clinical data.
LIMITATIONS

The main limitation of this study was the limited sample size and
population coverage. Compared with deep learning, SIML had
the advantage of being suitable for small sample data, which only
needed 80–560 samples. The specific sample size required
depended on the dataset and sampling method (38). Therefore,
the sample size in our study was sufficient to build a model. If the
overall sample size was increased, the performance of the model
could be improved significantly. Additionally, some potentially
important parameters, such as previous screening information,
were not considered in our study. Data on variation in behavioral
patterns over time were not available, and therefore, we could not
establish their impact on the model. Moreover, samples were
obtained from the same institution, limiting the generalizability
of the model. Although we used a combination of internal and
external validation, we recommend the use of external datasets to
further test the performance of this model.
CONCLUSIONS

This study shows that SIML can be used to accurately identify
women at high risk of developing cervical cancer and
performed better than other ML algorithms. This model
could be used to personalize the screening program by
optimizing the screening frequency and improving the care
plan in high- and low-risk women based on their demographics,
behavioral patterns, and clinical data. This will eventually
reduce unnecessary screening in low-risk groups and hence
reduce the screening costs.
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Supplementary Figure 1 | Visualization results before and after missing values
was filled. The part of red color is the missing value, with each column as the
standard. The larger the value is, the darker the color is. On the contrary, the smaller
the value is, the lighter the color is.

Supplementary Figure 2 | Receiver operating characteristic curves for Random
Forest prediction performance of difference Sampling models.

Supplementary Figure 3 | Receiver operating characteristic curves for 12 ML
models.

Supplementary Figure 4 | Correlation coefficient diagrams of 12 ML models.

Supplementary Figure 5 | Receiver operating characteristic curves for LMT-
stackingmodels.
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