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Background: It is a critical challenge to diagnose leptomeningeal metastasis (LM), given its
technical difficulty and the lack of typical symptoms. The existing gold standard of diagnosing
LM is to use positive cerebrospinal fluid (CSF) cytology, which consumes significantly more
time to classify cells under a microscope.

Objective: This study aims to establish a deep learning model to classify cancer cells in CSF,
thus facilitating doctors to achieve an accurate and fast diagnosis of LM in an early stage.

Method: The cerebrospinal fluid laboratory of Xijing Hospital provides 53,255 cells from
90 LM patients in the research. We used two deep convolutional neural networks (CNN)
models to classify cells in the CSF. A five-way cell classification model (CNN1) consists of
lymphocytes, monocytes, neutrophils, erythrocytes, and cancer cells. A four-way cancer
cell classification model (CNN2) consists of lung cancer cells, gastric cancer cells, breast
cancer cells, and pancreatic cancer cells. Here, the CNN models were constructed by
Resnet-inception-V2. We evaluated the performance of the proposed models on two
external datasets and compared them with the results from 42 doctors of various levels of
experience in the human-machine tests. Furthermore, we develop a computer-aided
diagnosis (CAD) software to generate cytology diagnosis reports in the research rapidly.
February 2022 | Volume 12 | Article 8215941

https://www.frontiersin.org/articles/10.3389/fonc.2022.821594/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.821594/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.821594/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.821594/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:zhaogang@nwu.edu.cn
mailto:gangniu@xjtu.edu.cn
mailto:wren@xjtu.edu.cn
mailto:gaoyi@szu.edu.cn
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.821594
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.821594&domain=pdf&date_stamp=2022-02-22


Yu et al. Deep Learning-Based Cell Classification

Frontiers in Oncology | www.frontiersin.org
Results:With respect to the validation set, the mean average precision (mAP) of CNN1 is
over 95% and that of CNN2 is close to 80%. Hence, the proposed deep learning model
effectively classifies cells in CSF to facilitate the screening of cancer cells. In the human-
machine tests, the accuracy of CNN1 is similar to the results from experts, with higher
accuracy than doctors in other levels. Moreover, the overall accuracy of CNN2 is 10%
higher than that of experts, with a time consumption of only one-third of that consumed by
an expert. Using the CAD software saves 90% working time of cytologists.

Conclusion: A deep learning method has been developed to assist the LM diagnosis with
high accuracy and low time consumption effectively. Thanks to labeled data and step-by-
step training, our proposed method can successfully classify cancer cells in the CSF to
assist LM diagnosis early. In addition, this unique research can predict cancer’s primary
source of LM, which relies on cytomorphologic features without immunohistochemistry. Our
results show that deep learning can be widely used in medical images to classify
cerebrospinal fluid cells. For complex cancer classification tasks, the accuracy of the
proposed method is significantly higher than that of specialist doctors, and its performance
is better than that of junior doctors and interns. The application of CNNs and CAD software
may ultimately aid in expediting the diagnosis and overcoming the shortage of experienced
cytologists, thereby facilitating earlier treatment and improving the prognosis of LM.
Keywords: leptomeningeal metastasis (LM), deep learning, cytology, CSF, cancer cell
INTRODUCTION

Leptomeningeal metastasis (LM) is defined as invading the cancer
cell to the leptomeninges (pia and arachnoid) surrounding the
brain and the spinal cord. Approximately 5% of patients with
advanced cancer are diagnosed with LM (1, 2), and this is also
detected in up to 20% of cases in autopsy studies (3). LM originates
from breast cancer, lung cancer, melanoma, gastrointestinal
cancer, and unknown primary cancer cells (1, 2, 4), and
meningeal is less commonly associated with brain tumors and
hematological malignancies. The prognosis of LM is relatively
poor, where the median survival ranges from 4 to 6 weeks if
treatment is not received. Efficient treatment can prolong the
survival time to about 2 or 3 months (5, 6). Current treatment
strategies include radiotherapy, systemic antineoplastic agents,
and intrathecal chemotherapy. Therefore, an early diagnosis of
LM can bring a precious time for the treatment of patients.

However, challenges such as hidden onset and diversified clinical
manifestations of LM increase the difficulty of diagnosing the
disease in the early stage. Lumbar puncture, one of the essential
tools (over 90% sensitivity) to assist central nervous system (CNS)
diagnosis involvement by the cancer cell, is routinely performed on
patients if no contraindications are present. When cytology is
negative and the rest of the diagnostic evaluation indicators are
positive, LM symptoms should also perform LM diagnosis (7).
Usually, cytologists interpret cytomorphologic features of cells in
cerebrospinal fluid (CSF) and spend two working days in the
normal process of cytology report. A cytologist must accumulate
several years of working experience to diagnose cancer cells.

Nevertheless, a cerebrospinal fluid examination lab shortage
restricts getting the report promptly, delaying the patient
2

diagnosis. Another limitation is that the entire process of
generating CSF cytology reports is time-consuming, labor-
intensive, complicated, and reproducible work. Quantitative
and repetitive work may increase the rate of misclassified cells
in the nervous system, resulting in false disease diagnosis such as
missed or misdiagnosed of LM or improper treatment.

Artificial intelligence (AI) can revolutionize disease diagnosis
and management by reviewing immense amounts of images
promptly and solving complex classification tasks of human
experts. Deep-learning-based methods have been successfully
implemented in many clinical diagnoses (8–12). Compared with
traditional machine learning methods, deep learning (DL) can
produce a more reasonable output for the test dataset by using
multiple processing layers to learn internal data representations
from the training dataset (13). However, the current accuracy of
the initial application of deep learning in clinical diagnosis is
relatively low. Thus, a more generalized model is needed to
improve the accuracy. A generic object detection neural network
like a region-based convolutional neural network (R-CNN) was
explored and found to be more effective in the classification task
(14). ResNet CNN, raised by Xie et al. (15), was used to classify
white blood cells in peripheral blood smears (16). Sahlol et al.
presented a CNN based on a statistically enhanced Salp Swarm
Algorithm to classify the bone marrow (BM) cells into two types
(17). To date, there are few deep learning studies on cells in CSF.

So far, the cytomorphologic spectrum of findings in CSF
involved by subtype of cancer cell has not been well studied. AI
advancement is promising to apply AI techniques for auxiliary
diagnosis of cancer cells in CSF. This study used fast-RCNN to
propose an efficient and fully automated hierarchical deep learning
framework for cerebrospinal fluid cytology, applied to the
February 2022 | Volume 12 | Article 821594
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CNN model. The proposed framework can identify cell trajectories
and cell types. Fast-RCNN has the following capabilities: (i) rapid
positioning of cell trajectories and (ii) CSF cell detection and
classification. This study aims to characterize the cytomorphologic
spectrum of CSF involvement by LM. In particular, we propose to
use CNN models to extract the features of cells in CSF based on
former research to accurately identify and classify cancer cells in
CSF. In addition, we build a CAD system to transfer CNN output
results to a visual CSF cytology report in a few seconds, aiming to
increase cytologists’ efficiency and early diagnosis of LM.
RELATED WORK

Feature Extraction and Classification
Morphological features of white blood cells (WBCs) based on
traditional ML algorithms played a crucial role in the accuracy
of WBC classification in recent research (18). The classifier of
support vector machine (SVM) could achieve 84% accuracy
of 140 digital blood smear images in five types of WBCs (19).
Moreover, bi-spectral invariant features combined with the SVM
and classification tree were used to 10 types of WBCs
classification on three datasets of Cellavision database, ALL-
IDB, and Wadsworth center and ultimately reached an averaged
accuracy of 96.13% (20). Razzak and Naz (2017) extracted the
features of the ELM classifier in CNN and achieved an accuracy
of 98.68% in WBC classification (21).

Deep-Learning-Based Algorithm
DL has been widely used in the WBC classification, which uses
multiple processing layers to learn internal data representations
from training datasets compared to traditional machine learning
methods. Tiwari et al. (2018) applied data augmentation to
expand training. They augmented cell images from 400 to
3,000 and achieved average precision of 88% in double
convolution layer neural networks (DCLNN) (22).
Convolutional neural networks (CNNs) achieved the best
performance with an accuracy of 96.6% in the task of two
types of WBCs classification from the ALL-IDB dataset (23).
In the BCCD dataset, the implementation of recurrent neural
network (RNN) in the CNN reached an accuracy of 90.79% for
the task of four types of WBCs classification (24). CNN obtained
an accuracy of 96.63% in five types of WBCs classification (25).
The dataset proposed by Khouani et al. (2020) contains 145
labeled cells (87 images), including 49 normal cells, 24 dystrophic
cells, and 72 other cells. Their study obtained 92.19% of precision
by Resnet 50. It is the smallest dataset in recent research for WBC
classification (26). Timely proposed CNN and RNN merging
Frontiers in Oncology | www.frontiersin.org 3
model with canonical correlation analysis illustrated an excellent
performance of 95.89% to classify four types of WBCs in
public data from Shenggan/BCCD data and kaggle.com/
paultimothymooney/blood-cells/data (27). TWO-DCNN
obtained the highest precision of 95.7%, with the most
significant area under the receiver operating characteristic
(ROC) curve (AUC) of 0.98 in low-resolution datasets (28).
MATERIALS AND METHODS

Patient Cohort and Dataset
A retrospective study, which is approved by the institutional
review board, was carried out from Xijing Hospital from January
2008 to December 2020. Meningeal cancer diagnosed cases
through medical records followed the 2020 expert consensus
(7). CSF cytology and clinical variables included demographic
information, such as age, gender, etc., collected from the patients.
The inclusion criteria for the meningeal carcinoma study were (i)
confirmed cancer history; (ii) newly emerging neurological
symptoms and clinical signs; (iii) typical CT, MRI imaging
findings, or CSF cytology confirm cancer cells’ presence; and
(iv) the quality of the microscope image is sufficient for analysis,
without movement or artifacts. Before obtaining the optical
image of the CSF cells, we strictly followed the above-
mentioned diagnostic criteria, combined with the patient’s
medical history, clinical signs, imaging, and cytology screening
to confirm meningeal carcinoma cases.

Qualified cytologists made clinical diagnosis following clinical
information, laboratory data, immunophenotyping, cytogenetic
analysis, andmolecular study. The inclusion criterion was that every
slideofLMpatients shoulddisplayacell type thatbelongs tooneof the
research’sdiagnosticcategories.Beforetheimagewasannotated, three
trained cytologists reviewed each case’s CSF slides microscopically,
including MGG staining and immunohistochemistry (IHC) for
auxiliary diagnosis. In addition, the cytologists may also access
patients’medical reports if there is a need to double check. After this
screening, theMGGstainqualifiedslideswerescannedat10mm/pixel
(100×objective) anddigitized into JPGorTIF format.The slideswere
annotated by fourmedical experts, including three cytologists with 7
years of experience (examiners 1–3) and a senior medical technician
with20years of expertise (examiner 4) basedon the cytomorphologic
criteria. Someof these annotations generated the ground truth for the
training of CNN. In theDLmodels, we randomly divided the dataset
into training, validation, and testing sets (Table 1), in which the
partition was made with respect to the individual cell images rather
than the patients. It is worth noting that, in pursuit of an unbiased
assessment, thediagnosticannotations inall cohortswerereviewedby
TABLE 1 | Dataset of CNN1.

Subsets Lymphocyte Monocyte Neutrophil Erythrocytes Cancer cell Total

Training 8716 5360 3954 10323 8925 37278
Validation 1245 766 565 1475 1275 5326
Testing 2491 1531 1130 2949 2550 10651
SUM 12452 7657 5649 14747 12750 53255
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those four examiners via labelmg. The final dataset contained 53,255
cells from90patients. Please note that the dataset in this study cannot
be downloaded directly, but it can be obtained bymaking reasonable
requests to the corresponding author.

We spent over 3 years collecting data and annotating 53,255
cells, currently the world’s most extensive clinical image dataset
of cancer cells in the CSF. To the best of our knowledge, the real-
world dataset we used in this research is of high quality and
practically representative. Furthermore, we cooperated with
around 42 doctors (with different working experience levels) to
perform human screening and diagnosis to compare the
proposed DL models. It highly enhanced the practicality of the
experiments and the dataset, and it could benefit any future
research works that rely on these types of data. Hence, the dataset
in this research is considered representative and practical.

Preprocessing and Training the CNNs
Thedatawerepreprocessedbefore the trainingprocess to increase the
convergence speed of the algorithm. The preprocessing techniques
included the reduction in input data dimensionality, noise removal,
and filtering out irrelevant data. All images were in JPEG and TIF
formats, with a size of 2,560 × 1,920 pixels. Annotated single cell was
extracted for model development, and then, the deep CNN was
trained to gain the optimum classification performance. Given the
relatively moderate size of our training dataset and the limitation
posed by the rarity of the disease, transfer learning strategies were
used in this study.Pretrained faster-RCNNnetwork showedexcellent
performanceon theCOCOdataset.Theweights fromthepre-trained
Resnet-Inception-V2, excluding the top layer, were set as the
pretrained state of our network and then fine-tuned for the current
task (29). A separate network was trained for CNN1 (lymphocytes,
monocytes, neutrophils, red blood cells, and cancer cells) and CNN2
(lung cancer cells, gastric cancer cells, breast cancer cells, and
pancreatic cancer cells), resulting in two trained CNN. The
optimization objective is defined as the cross-entropy between the
predictions and the ground truths. In the training process, the initial
learning rate is set as 0.0005, and the optimizer is Rms prop. To
aggrandize data varieties (Supplementary Tables S1, S2), we
performed on-the-fly data augmentations, including rotating
between 0° and 30°, random flipping horizontally or vertically,
randomly adjusting brightness or contrast or gamma, zooming in
or out, saturation or shifting, optical or grid distortion, and elastic
transformation. Finally, the optimizedmodelwith theminimum loss
was saved and adopted. A good encapsulationmodel was used in the
full images of CSF cell predictions. The networks were implemented
using the TensorFlow1.14 (CUDA version 10.0.130) DL library and
were trained on an Nvidia GTX 2080Ti Graphical Processing Unit
machine with 11,019 Mib of VRAM.

The detection method of CNN used in this research was faster
RCNN. Faster RCNN integrates feature extraction, proposal
extraction, bounding box regression, and classification into one
network, which dramatically improves the overall performance,
especially the detection speed. Comparing RCNN and fast RCNN,
faster RCNN implements Region Proposal Networks (RPN). RPN
replaced the original method of using a segmentation algorithm to
generate region proposals, which significantly improved the speed
of detection region generation. The primary function of conv
Frontiers in Oncology | www.frontiersin.org 4
layers was to extract the feature maps of the image, which was used
in the subsequent RPN layer and the fully connected layer. Conv
layers contained conv, pooling, and relu three sublayers. The cell
images information was the input to the network in the form of a
matrix, and the matrix after the Conv layers can reflect the original
picture. Each feature map sets nine candidate anchors. RPN used
softmax to decide whether the anchors are positive or negative and
then used bounding box regression to correct anchors to obtain
accurate proposals. The feature maps and accurate proposals
above were feed into the region of interest (ROI) pooling, whose
output was further sent to softmax classification and bounding box
regression. After the classification, the detection object category
and the final precise detection frame position were obtained. In the
labeling of the training set, candidate anchors are calibrated
according to the different sizes of the cells. In that case, the RPN
network in the neural network can be iteratively trained to well-
frame the cells in the test set. ResNet-Inception-V2 network is the
backbone network of faster RCNN (29). The top layer of the
Resnet-Inception-V2 architecture is the softmax layer, which
converts the output of the previous layer into a probability
output to solve the classification problem.

Inference and Model Evaluation
CNN1 is trained with five types of cells, including lymphocytes,
monocytes, neutrophils, red blood cells, and cancer cells. This
model aimed to distinguish cancer cells from four types of cells in
CSF to assist in diagnosing LM. We developed a four-way cancer
cell classification model to facilitate cancer target treatment,
namely, CNN2, which consists of lung cancer cells, gastric
cancer cells, breast cancer cells, and pancreatic cancer cells.
The Xijing dataset is used in the following manner: 70% for
training, 10% for validation, and 20% for testing. CNN1/2
performance was evaluated based on the overall mean average
precision (mMAP) on the validation set, AUC on the test set.
ROCs were plotted to show the dynamic tendency, in which
sensitivity varied with specificity in the test set.

CAD Software
CAD software was designed to transfer CNN output results to a
visible CSF cytology report in the hospital (Supplementary
Figure S1). CAD software contains the main interface, the CSF
cytology input interface with patient baseline information, and
the CSF cytology report interface. Trained cytologists type
patients’ baseline information and input the CSF cell images,
and the software would use the CNN model to detect directly.
The output was transformed as a CSF cytology report interface,
and the classification result for each image was stored as a CSV
file in case of the double checking of cytologist consultants. Every
cytology report needs a cytologist consultant signature before
sending the report to the patient.

Comparison Between the DL Model
and Doctor
Multi-center tests were conducted to validate the model’s
generalization abilities comprehensively. We used an additional
413 cells from the First Affiliated Hospital of Xi’an Jiaotong
University and 228 cells from Tangdexu Hospital to test the
February 2022 | Volume 12 | Article 821594
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accuracy between CNNs and doctors with different working
experience levels. Forty-two doctors, including eight experts, 17
junior doctors, and 17 interns, were invited to review the Xi’an
Jiaotong dataset and the Tangdou dataset independently and
blindly. Note that the work experience of experts is more than 5
years, that of juniors is between 1 and 5 years, and that of interns is
<1 year. The test was in a questionnaire, and the test time was 1 h.
The task of test 1 was to classify cells into lymphocytes, monocytes,
neutrophils, red blood cells, and cancer cells, while test 2 was to
subclassify cancer cells into lung cancer cells, gastric cancer cells,
breast cancer cells, and pancreatic cancer cells. After doctors
completed the test, three of them proofread cell images again to
give a standard answer. It was challenging to obtain the
classification of cancer cell types in this process, which only
relied on cytological features. Experts need to consider various
relevant auxiliary examinations (imaging, immunohistochemistry,
etc.) to make a decision. We used Cohen’s kappa coefficient to
compare our deep learning model and most doctors.

Statistical Analysis
Statistical analysis was performed using the R programming
language, and the non-parametric methods were implemented
using Python 3.7.
RESULTS

Five-ways Cell Classification
Model (CNN1)
The five-type classifier can distinguish cancer cells from other cells
(lymphocytes, monocytes, erythrocytes, and neutrophils) in CSF,
which is helpful for cytologists in the early diagnosis of LM. In this
experiment, 53,255 cells were collected and labeled (Figure 1),
including cancer cells (12,750), erythrocytes (14,747), lymphocytes
(12,452), monocytes (7,657), and neutrophils (5,649). The initial
dataset was randomly divided into training (n = 37,278 cells),
validation (n = 5,326 cells), and test (n = 10,651 cells) subsets
(Table 1). Figure 2 shows the output cell image in CSF.
Cytologists classify cancer cells according to cell cytology, which
Frontiers in Oncology | www.frontiersin.org 5
shows moderate pleomorphism, prominent nucleoli, and deep
staining to vesicular nuclei (30).

The highest predictive average precision (AP) in the validation
set is neutrophil at 98.65%, and the lowest mean average precision
(mAP) is monocyte at 91.1% (Table 2). In addition, the mAP for
classifying types of cells is 96.15%, which is sufficient to identify
cancer cells from CSF. The cohort of the test set contains 10,651
cells, and the ROC curves of each type of cell are shown in Figure 3
with the IOU threshold set as 0.5. The AUC of cancer cells is 0.984.
The proposedmethoddemonstrates promising performancewith a
sensitivity of 98.21% and a specificity of 98.3%, while the rest of the
cell types also have significant ROC curves. When AUC is >0.7,
CNN1isgoodenoughtodistinguish cancercells fromtheother four
types of cells. The rate in lymphocytes (0.967), monocytes (0.908),
erythrocytes (0.993), and neutrophils (0.971) show that the model
succeeds in distinguishing cancer cells from four other cell types in
CSF in the external dataset.

Four-Ways Cancer Cell Classification
Model (CNN2)
Classifying typical cancer cell types in LM by CNN2 will make it
possible to predict the original cancer source. In Figure 1, we used a
dataset of 8,499 four-class cancer cells (3,242 images) that were sub-
labeled into lung cancer cells (1,623), gastric cancer cells (4,968),
breast cancer cells (1,553), and pancreatic cancer cells (355). As
mentioned earlier, it was difficult to classify cancer cell subtypes
according to cell morphological characteristics. Hence, cytologists
reviewed the patient’s medical history and auxiliary examinations to
obtain an accurate cancer annotation, such as neuroimaging and
immunohistochemistry. The initial dataset was randomly divided
into the training (n = 5,949 cells), validation (n = 850 cells), and
testing (n = 1,700 cells) subsets (Table 3). Figure 2 shows the
output cell image in CSF.

The experiment result showed that the mAP of lung cancer
cells was the highest (80%), and the mAP of breast cancer cells was
the lowest, which is 65% (Table 4). In addition, the mAP of cell
classification was 78.00%.When the IOU threshold is 0.5, the ROC
curve of each cell is shown in Figure 3. When the AUC of lung
cancer cells is 0.718, the model achieves 78.30% sensitivity and
84.60% specificity. The possibility in the gastric cancer cell (0.631),
A B

FIGURE 1 | (A) Proportion of five types of cells, including lymphocytes, monocytes, neutrophils, red blood cells, and cancer cells, totaling 53,255 cells. (B) The
proportion of four types of cancer cells, including lung cancer cells, gastric cancer cells, breast cancer cells, and pancreatic cancer cells, total 8499 cells.
February 2022 | Volume 12 | Article 821594
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TABLE 2 | Model evaluation for CNN1.

Type Result

Validation Set Testing Set

AP mAP AUC Sensitivity Specificity

Lymphocyte 95.01% 96.15% 0.967 94.80% 97.63%
Monocyte 91.10% 0.908 81.70% 99.73%
Neutrophil 98.65% 0.993 99.60% 98.65%
Erythrocyte 97.93% 0.971 94.40% 99.00%
Cancer cell 98.03% 0.984 98.21% 98.30%
Frontiers in Oncology | www.fron
tiersin.org 6
 February 2022 | Volume 12 | Art
FIGURE 2 | MGG Images (A–D) were captured with a 100× objective on a microscope (A, B). The output of 4-way cell classification (CNN1) in CSF. These images
were taken from slides labeled with Cancer cells (white), lymphocytes (blue), monocytes (green). (C, D) The output of four-way cancer cell classification (CNN2) in
CSF. These images were taken from slides labeled with Gastric cancer cells (blue), Lung cancer cells (green).
A B

FIGURE 3 | (A) Receiver operating characteristic curves for the five cell classification problems. Axial is 1-specificity, and the vertical axis is sensitivity. The Area
under the curve (AUC) of external testing is included. (B) Receiver operating characteristic curves for the four cell classification problems. The Area under the curve
(AUC) of external testing is included.
icle 821594
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breast cancer cell (0.584), and pancreatic cancer cell (0.714)
indicated that the model succeeds in classifying four subtypes of
cancer cell in CSF. It is worth noticing that the improvement of
subtype cancer cells needs further study, which is considered one
of our future works.

Multi-Cohort Testing and Contesting
With Doctors
An external validation dataset from the First Affiliated Hospital of
Xi’an Jiaotong University (n = 413 cells) and Tangdou Hospital
(n = 228 cells) were used in this research. Each doctor’s accuracy,
specificity, and sensitivity were calculated (Table 5). This
experiment aimed to compare the diagnosis results from the
proposed model with the diagnosis results from doctors in
terms of cancer cells in LM. Forty-two doctors from three
different training levels (expert, juniors, and interns) were
invited to test 1 and 2. The experiment results found that CNN
and doctors have good performance in test 1 (the detailed results
are summarized in Supplementary Tables S3–S8). Among the
three doctoral groups, the accuracy of cell prediction from the
expert was the highest. The average accuracy of CNN was slightly
lower than that of the expert group, yet it was higher than that of
the other two doctor groups. We also observed that, even if the
performance of CNN1 is not the best, it can still classify cancer
cells with high accuracy. Cohen’s kappa coefficient (Table 6)
showed that the expert and CNN model strongly correlated with
the standard answer, more significant than 0.86. The junior
doctors had a substantial correlation with the standard answer,
Frontiers in Oncology | www.frontiersin.org 7
and the interns had a moderate correlation with the standard
answer. Test 2 was more problematic, as it required sub-classifying
cancer cells according to different original sites not used in CSF
cytology. A surprisingly good result was that the overall accuracy
of CNN2 in the classification of cancer cell subtypes was higher
than that of all doctors. Meanwhile, the sensitivity and specificity
of CNN2 were 10%–35% higher than that of doctors (Table 7).
CNN2 performed better than the doctors in most of the scenarios,
except that the sensitivity of breast cancer cells was relatively low.
Cohen’s kappa coefficient (Table 8) showed that the correlation
between the CNNmodels and the standard answer was better than
all doctors. As we can see, our model accomplished comparable
performance with doctors and even better in some cases. Besides,
the CNN models consumed much less time in the test than
doctors, who needed to speed 45–60 min in the test (Figure 4).

Cytology Automatic Diagnosis
Report System
With the excellent performance of CNN in man-machine tests,
we developed CAD software to obtain cytological diagnosis
TABLE 5 | Overall sensitivity and specificity in test 1.

Test 1 Sensitivity Specificity

Experts 93.14% ± 1.90% 98.63% ± 0.37%
Junior doctors 81.20% ± 6.15% 96.26% ± 1.24%
Interns 63.01% ± 13.55% 92.60% ± 2.71%
CNN1 87.17% 97.24%
TABLE 6 | Cohen’s k for test 1.

Standard Answer

Experts Junior Doctors Interns CNN1

Cohen’s k 0.89 0.75 0.57 0.86
February 2022 | Volum
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TABLE 3 | Model evaluation for CNN2.

Subsets Lung Cancer Cell Gastric Cancer Cell Breast Cancer Cell Pancreatic Cancer Cell Total

Training 1136 3478 1087 249 5949
Validation 162 497 155 36 850
Testing 325 994 311 71 1700
SUM 1623 4968 1553 355 8499
TABLE 4 | Model evaluation for CNN2.

Type Result

Validation Set Testing Set

AP mAP AUC Sensitivity Specificity

Lung cancer cell 80.00% 79.00% 0.718 78.30% 84.60%
Gastric cancer cell 79.60% 0.606 63.90% 82.50%
Breast cancer cell 65.00% 0.584 25.70% 98.80%
Pancreatic cancer cell 78.00% 0.692 61.40% 98.90%
TABLE 7 | Overall sensitivity and specificity in test 2.

Test 2 Sensitivity Specificity

Experts 45.61% ± 7.11% 89.13% ± 1.44%
Junior doctors 38.83% ± 7.44% 87.79% ± 1.46%
Interns 31.06% ± 5.67% 86.19% ± 1.14%
CNN2 77.63% 95.53%
21594
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reports in this work automatically. In all our experiments, no
matter how difficult the classification task was, the average cell
classification report in CSF took <12 s using the CAD software,
saving 96% time compared with cytologists. We constructed an
automated cell classification platform based on CNN and CAD.
The total processing time of cytologists ranged from 17.8 to
22.7 min, depending on different task, while CNN was relatively
stable, taking 8% of cytologists (Figure 5). It is worth to mention
that the cost of CNN combined with the CAD system platform is
~65,000 dollars; considering it has minimum 5-year service life,
computerized slides expenditure is approximately 2.5 dollars per
slide. As the number of computerized slides increases, the cost of
each slide may be reduced to less than two dollars. The difference
in cost varies with countries or regions.
DISCUSSION

LM, a wretched prognosis disease, is threatening many lives
every year. For a long time, cytology evaluation has been the
baseline for LM diagnosis, directing further examination, target
treatment, and prognosis (31). Cytologists can identify cancer
Frontiers in Oncology | www.frontiersin.org 8
cells through microscopic observation to diagnose meningeal
carcinoma. In addition to demographic information, such as the
patient’s age and gender, CSF cytology (including size, nucleus,
cytoplasm, staining matrix type, and cell distribution) is the
other vital clue to help cytologists distinguish meningeal
carcinoma from non-meningeal carcinoma. However, the
current barrier in the medical aspect is that few cytologists can
develop enough professional knowledge to make a precise
diagnosis of meningeal carcinoma only from morphology to
classify different cancers. Cytologists have many limitations in
image recognition, and the possibility of accurately explaining
the cancer source is low, which may lead to misdiagnosis and
possibly harm the patient’s prognosis. Usually, it takes years for a
trainee physician to become a cytology consultant.

The transition from glass slides under an optical microscope
to virtual slides viewed by computers enables automatic
inspection, especially with AI techniques. Medical AI is
promising for improving healthcare qualities and lessening the
inequality between city, urban, and rural health services. This
study applies DL models and image recognition algorithms to
efficiently predict lung cancer, gastric cancer, breast cancer, and
pancreatic cancer cells compared with cytologists. To tackle real-
world clinical problems based on MGG staining slides in CSF, we
designed the five-type classifier of the cell (CNN1) for
distinguishing cancer from other cells in CSF. In order to find
the possible original site to facilitate the target treatment of LM,
we constructed the four-type classifier of cancer cells (CNN2) to
divide cancer into subtypes.
A B

DC

FIGURE 4 | (A–D) Cell accuracy and time-consumed in the man-machine test. (A) Cell accuracy of 5-way classification in test 1. (B) Cancer cell accuracy of 4-way
classification in test 2. (C) Consume time of 5-way cell classification in test 1. (D) Consume time of 4-way cancer cell classification in test 2.
TABLE 8 | Cohen’s k for test 2.

Standard answer

Experts Junior doctors Interns CNN2

Cohen’s k 0.35 0.21 0.18 0.64
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The CNN models in this study were based on Resnet-
inception-V2, which achievesd a good performance in our
research. The task of CNNs is not only for cell detection but
also for cell location. Cell location increases the difficulty in cell
detection, as most of the areas in the slides in CSF are black, with
little space containing cells. Considering this situation, we used
70% of the dataset for model training and 30% dataset for
validation and testing. In CNN1, the more of a cancer cell on
the validation set was 95%, and the AUC of cancer cells on the
testing set was 0.984. It indicated that the proposed CNNmodel is
sufficiently good for distinguishing cancer cells from the other four
types of cells in CSF. However, the mMAP of a cancer cell on the
validation set was lower than 80%, and the highest AUC of cancer
cell subtype on the testing set was 0.743 in CNN2. The possible
reason that CNN2 showed a flat performance is because CNN2
only contained less than one-fifth dataset as CNN1 used in the
research, which enlarged the scope of the dataset. Here, the clinical
barrier was the shortage of LM patient samples for the known
original site. Besides, the subtype of those four cancer cells belongs
to adenocarcinoma, which is highly similar even if the source is
different. Despite those limitations, CNN2 performance was
significantly better than cytology experts in all cancer subtypes,
except breast cancer. The potential reason is that breast cancer
contains excessively pathology types (around 20 types) than other
cell types. All the above reasons increased the analysis difficulty for
CNN2 in object detection. Even so, CNN2 demonstrated that it is
feasible to use AI techniques for classifying cancer cell subtypes. It
is indicated that our proposed deep learning model could be
adapted to more complicated situations in real clinical scenarios.

We have validated our proposed CNNmodels with over 50,000
cells in the Xijing dataset. We tried to interpret the differences in
prediction effectiveness observed in the multi-center testing
experiments and compared the accuracy between doctors with
different experiences and CNNs. CNN1 had a similar accuracy
Frontiers in Oncology | www.frontiersin.org 9
with experts in terms of the Tangdou dataset. At the same time,
CNN2 outperformed eight full-time cell specialists with an average
increase of 10% accuracy and 15%–20% sensitivity in the cancer
cell classification in terms of the Xi’an Jiaotong dataset. The
possible reason that humans got the worse performance is that
doctor’s diagnosis needs to consider relevant information such as
medical history or primary cancer location. It is nearly impossible
to directly classify the cell morphology based on human eyes
without the above information in the test. Thus, it is difficult for
doctors to give the specific classification without comprising
cytomorphologic features in CSF with other cell types, as some
atypical cancer cell is similar to lymphocyte. It is worth
mentioning that our dataset contained an amount of poorly
differentiated cancer cells. These cells can be classified correctly
with high mAP. With the further expansion of the data volume,
the CNN model can implement the classification of more types of
CSF cells, and the mMAP will be further improved.

In comparison, the CNNmodels show their advantages in robust
feature learning and image classification capabilities. The proposed
CAD system consumes 90% less time processing images than
doctors. LM cytology classification’s current low screening speed
motivates us to apply AI to CSF cytology. However, one of the
limitations of this study is that AI was used in a perfect world. A
laboratory prototype that we constructed in the study is only in the
phase 1 stage of the AI application blueprint. Before this medical
equipment is applied to the clinic on a large scale, it needs multi-
center clinical trials in the real world to verify its performance and
the acquisition of marketing licenses as a product. From a laboratory
prototype to a well-established product in a widely applied clinic, it
takes a few years. With improved laboratory prototypes, large
amount of clinician work may be replaced by AI and overcome
the shortage of cytology consultants. In the future, the adoption of AI
techniques in the medical systemmay be extended to the population
for screening for meningeal carcinoma or other nerve system disease
with typical cytological changes. In addition, AI techniques may
assist in diagnosing or predicting cancer in an early stage, thus
potentially providing more time for an effective treatment to benefit
the prognosis. With technological advances, cancer type prediction
and accuracy can be increased to achieve particular targeted therapy.

This research solves three fundamental difficulties: (1)
obtaining large amounts of annotated training data, (2) ensuring
the acquisition of equipment and modalities, and (3) persuading
nearly 50 doctors with different experiences to participate in
human–machine testing. First, the cell fluid center in our study
is the biggest CSF center in China. This research is the world-first
one that establishes a large-scale clinical MGG images dataset of
meningeal carcinoma cancer cells, which is based on Xijing
Hospital over several decades. We spent over three years
collecting data and annotating over 50,000 cells, which are
currently the world’s most extensive clinical image dataset of
cancer cells in the cerebrospinal fluid. Second, considering the
challenges of unclear diagnosis of meningeal carcinoma and the
time-consuming process for cytology report, we not only built
CNN models but also developed a CAD software, which could
significantly decrease the time for cytology report. Finally, we
validated our proposed CNN models by comparing them with
FIGURE 5 | CAD and cytologists time-consuming in cell classification and
report writing in CSF samples.
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doctors with different years’ work experience. Experiment results
demonstrated that the proposed CNN models achieve a better
than or sufficiently good performance as doctors.

In summary, this research demonstrates the potential of
applying AI techniques to cytomorphology classification, and
this research further extends to offer a CAD software to get a CSF
cytomorphology report in a timely manner. However, to achieve
accurate clinical utility, versatility and generalization must be
adopted. It is worth noticing that these comparative experiments
only show that the CNN model’s “image reading and
identification” capability is better than that of doctors, but not
the actual diagnostic ability to some extent.
CONCLUSION

In this work, we have developed a DL model that effectively
classifies the cancer cells in CSF to assist in diagnosing LM in the
early stage, thanks to the use of labeled data and the step-by-step
training of the CNN models. In addition, we develop a CAD
system to generate cytology diagnosis reports promptly. The
experiment results show that our system outperformed 42
doctors, including eight cytology experts. Our research
confirms the positive influence of applying AI techniques in
medical image processing. It is promising that AI could bring
benefits to extend the window of cancer detection and thus
potentially increase the opportunity to obtain a targeted therapy.
Furthermore, the efficiency brought by the CAD software is
promising to improve the healthcare quality and lessen the
inequality between city, urban, and rural areas.
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