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Purpose: There are several means of synthetic computed tomography (sCT) generation
for magnetic resonance imaging (MRI)-only planning; however, much of the research
omits large pelvic treatment regions and female anatomical specific methods. This
research aimed to apply four of the most popular methods of sCT creation to facilitate
MRI-only radiotherapy treatment planning for male and female anorectal and
gynecological neoplasms. sCT methods were validated against conventional computed
tomography (CT), with regard to Hounsfield unit (HU) estimation and plan dosimetry.

Methods and Materials: Paired MRI and CT scans of 40 patients were used for sCT
generation and validation. Bulk density assignment, tissue class density assignment,
hybrid atlas, and deep learning sCT generation methods were applied to all 40 patients.
Dosimetric accuracy was assessed by dose difference at reference point, dose volume
histogram (DVH) parameters, and 3D gamma dose comparison. HU estimation was
assessed by mean error and mean absolute error in HU value between each sCT and CT.

Results: Themedian percentage dose difference between the CT and sCT was <1.0% for
all sCT methods. The deep learning method resulted in the lowest median percentage
dose difference to CT at −0.03% (IQR 0.13, −0.31) and bulk density assignment resulted
in the greatest difference at −0.73% (IQR −0.10, −1.01). The mean 3D gamma dose
agreement at 3%/2 mm among all sCT methods was 99.8%. The highest agreement at
1%/1 mmwas 97.3% for the deep learning method and the lowest was 93.6% for the bulk
density method. Deep learning and hybrid atlas techniques gave the lowest difference to
CT in mean error and mean absolute error in HU estimation.
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Conclusions: All methods of sCT generation used in this study resulted in similarly high
dosimetric agreement for MRI-only planning of male and female cancer pelvic regions. The
choice of the sCT generation technique can be guided by department resources available
and image guidance considerations, with minimal impact on dosimetric accuracy.
Keywords: MRI radiotherapy planning, image-guided radiotherapy, synthetic CT, computer-assisted radiotherapy
planning, rectum neoplasms, cervix neoplasms, endometrium neoplasms, anal canal neoplasms
1 INTRODUCTION

Magnetic resonance imaging (MRI)-based radiotherapy
treatment planning is an increasingly popular concept in
radiation oncology. MRI affords greater soft tissue contrast for
tumor and organ at risk (OAR) definition than computed
tomography (CT), and MRI-based planning reduces the
registration errors associated with supplementary image
registration (1–3). To move away from the conventional use of
CT in treatment planning, a synthetic CT (sCT) is created from
the MRI, to facilitate MRI-based treatment planning. The sCT is
an estimation of the electron densities of the tissues in the body,
which allows for dose calculation in the radiation therapy
treatment planning systems.

Larger pelvic treatment sites have received less attention in
this area of work than prostate treatment sites, with previous
larger pelvis sCT generation methods utilizing small groups of
patient numbers and without consideration of the differences in
male and female pelvic anatomy (4–7). This is also significant as
the treatment volumes for colorectal and gynecological cancers
traverse a more variable body contour and bony anatomy than
prostate treatments. Rectum, anal canal, and gynecological
treatments involve the treatment of larger and more variable
body contour and bony anatomy than prostate treatments with
differing prescription doses to the gross tumor volume,
surrounding tissue deemed to be at high risk of tumor spread;
the disease-positive nodes; and the surrounding local
nodal volumes.

Several methods of sCT creation have been reported in the
literature, which can be summarized into essentially four popular
methods: bulk density assignment, tissue class density
assignment, atlas-based, and computer learning (8). However,
more commonly, the hybrid approaches of these methods are
being utilized for greater accuracy (9, 10). The choice of the sCT
generation technique can be guided by the need for extra
resources, the ease of application, dosimetric accuracy, and
image guidance considerations.

Bulk density assignment involves applying a single
Hounsfield unit (HU) value to an entire volume, usually
assuming water equivalency. This method may also
differentiate between bone and tissue regions and apply a
separate HU value to bone for greater accuracy. It is a
relatively easy method to implement, usually manually
performed, meaning that it requires minimal resources such as
additional software or complex scanning protocols. The
limitations of this method are that it does not take tissue
inhomogeneity into account and it also may not generate
2

realistic digitally reconstructed radiographs (DRRs) for
treatment image guidance structures (1, 8). This method is
currently utilized in brachytherapy treatment planning, in
which image guidance is not a consideration and tissue
inhomogeneity is not of great concern, given the relatively
sharp dose fall off around the applicator (11). Bulk density
assignment has also been investigated for prostate and brain
treatments and has been utilized for sCT quality assurance
measures (1, 12–14).

Tissue class density assignment is an extension of bulk density
assignment, in which tissue inhomogeneity is addressed to some
extent. This method involves using particular MRI sequences,
such as a DIXON sequence, to classify body tissues into subtypes,
i.e., muscle, fat, bone, and air. Each of these tissue subtypes is
assigned an appropriate HU value (15). Tissue class density
assignment has been a popular method of sCT creation,
commonly combined with other atlas-based methods to
improve bone region estimations, and has been utilized in
commercial software (9, 10, 16). Previous applications of this
method have focused mostly on the pelvic region (12, 17, 18).

An atlas-based approach involves comparing an MRI to a
library atlas of co-registered CT and MRI pairs. The MRI scans
in the atlas are non-rigidly registered to the acquired MRI scan,
and the deformation matrix is applied to the corresponding CT
pairs, to create the sCT. This approach can be performed using a
single atlas pair, but has seen greater success for pelvis sites when
multiple atlases are registered and combined with local weighted
voting of atlas patch values, termed a hybrid multi-atlas
approach (19–21). This method takes tissue inhomogeneity
into account and can be used with image guidance. This
method has successfully been translated to the clinic and has
also been used for bone definition in commercial hybrid sCT
generation products (9, 21–23).

Deep learning is an increasingly popular machine learning
method for sCT generation, utilizing deep convolutional neural
networks to convert an MRI into an sCT scan. Deep learning
methods have been used successfully in the literature for pelvic
and brain sCT creation, with the model outperforming other sCT
generation methods (4, 24, 25). Models can be trained using CT/
MRI pairs or can utilize unpaired MRI and CT data, thereby
reducing the errors introduced in the registration process
between the two images (4, 26, 27). Deep learning methods
commonly utilize generative adversarial networks (GAN)
composed of a generator and discriminator trained with paired
CT/MRI data, such that the generator creates the sCT from the
MRI, while the discriminator differentiates whether the image is
real or fake, providing feedback to the generator. This continues
February 2022 | Volume 12 | Article 822687

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


O’Connor et al. sCT Generation for Pelvic Planning
until the discriminator can no longer determine that the image is
synthetic (27). Unpaired generative methods utilize a cycle GAN
model in which a single GAN network creates the sCT as
described above, while a second GAN network converts the
sCT image back to an MRI, and the difference between the
images is fed back to the training loop (27). Similar to atlas-based
methods, deep learning can be used for image guidance.

Each of these methods has its advantages and trade-offs in its
accuracy, time, and ease of conversion. sCT methods have been
predominantly developed to date for prostate and brain
treatment sites, and previous comparisons of sCT generation
methods have been performed for prostate treatments (28–30).
More recently, a deep-learning method was developed using a
multicenter anorectal cancer patient cohort (31).

This work provides a comparison of four major methods for
the generation of synthetic CT: bulk density assignment, tissue
class density assignment, hybrid multi-atlas, and deep learning
sCT generation for a large dataset of male and female rectum,
anal canal, cervix, and endometrium treatments. The sCT
methods were compared with the conventional CT scan in
terms of dosimetric impact on the treatment plan and mean
error and mean absolute error in Hounsfield unit values.
2 MATERIALS AND METHODS

2.1 Patient Data Collection
Ethics approval for the study was obtained through the local
health district human research ethics committee (ref:17/06/21/
3.02), and all patients gave informed consent to participate in the
trial. MRI and CT datasets and treatment plans of 40 patients (20
male, 20 female) who received radiation treatment for
histologically confirmed malignancy of either the rectum, anal
canal, cervix, or endometrium were used for the study.

Patients were positioned with their legs flat using a CIVCO
Vac-Lok bag (CIVCO Medical Instruments, IA, USA) for
immobilization. CT scans were acquired on a SOMATOM
Confidence CT scanner (Siemens Healthineers, Erlangen,
Germany) at 120 kV with 2.0 mm slice thickness. Oral or
Frontiers in Oncology | www.frontiersin.org 3
intravenous contrast was administered at the request of the
radiation oncologist. MRI scans were performed immediately
following the planning CT scan, on a MAGNETOM Skyra 3T
MRI scanner (Siemens Healthineers, Erlangen, Germany),
equipped with a Qfix flat couch (Qfix, PA, USA) and
DORADOnova MR 3T external laser bridge (LAP, Luneburg,
Germany). A 32-channel spine coil was utilized under the flat
couch top and two 18-channel body coils were used over the
pelvic region. To avoid compression of the external body
contour, body coils were positioned in a Qfix INSIGHT MR
Body coil holder. A stitched T1 VIBE Dixon MRI sequence
(Table 1) was acquired to facilitate sCT generation. The Dixon
imaging technique provides an in-phase, out-of-phase, fat-
weighted, and water-weighted image from a single acquisition.
The MRI and CT scan range included the entire lumbar spine to
mid femur, and patients were scanned with a full bladder and
empty bowels.

Treatment planning was performed on the CT scan using the
Eclipse TPS (version 15.6; Varian Medical Systems, Palo Alto,
USA). Three patients in the male cohort were planned as
intensity-modulated radiation therapy (IMRT), while all the
other patients were planned as 6-MV, 2–3 arc volumetric-
modulated arc therapy (VMAT). The three patients planned as
IMRT were re-planned as VMAT retrospectively, to standardize
the planning technique analyzed for the study.

2.2 sCT Creation
2.2.1 Bulk Density Assignment
The bulk density assignment included two tissue classes—bone
and soft tissue. The bone regions were outlined manually on the
T1 in-phase Dixon MRI sequence, while the whole body region
was defined by image thresholding. Choi et al. had previously
derived the optimal bulk density values for bone and tissue to
patients treated for prostate cancer, which equated to a relative
electron density of 1.20 and mass density of 1.25 g/cm3 for bone
regions and a relative electron density of 0.97 and mass density of
0.99 g/cm3 for tissue (12).

2.2.2 Tissue Class Density Assignment
For the tissue class density assignment method, the tissue was
separated into three tissue classes: fat, muscle/visceral, and bone.
The entire body region was defined using image thresholding and
the bone regions were outlined manually on the T1 in-phase Dixon
MRI sequence. The fat tissue was segmented from the fat-weighted
Dixon MRI image using image thresholding. The muscle and
visceral tissue was defined by a Boolean subtraction of the fat and
bone regions from the body contour. The optimal electron densities
of each tissue class in this study were also determined by Choi et al.
for prostate treatments, which equated to a relative electron density
of 1.16 and mass density of 1.20 g/cm3 for bone regions, a relative
electron density of 1.02 and mass density of 1.03 g/cm3 for muscle,
and a relative electron density of 0.91 and mass density of 0.92 g/
cm3 for fat (12).

2.2.3 Hybrid Multi-Atlas Based
Participants were separated into male (n = 20) and female (n =
20) cohorts for the creation of gender-specific atlases. A bias field
TABLE 1 | MRI acquisition parameters.

Parameter T1 VIBE Dixon

Scan type VIBE Dixon
TE (ms) 1.23/2.46
TR (ms) 4.19
Flip angle (°) 9
FOV (mm) 256 * 499
Slice thickness (mm) 1.6
Base resolution 160
Acquisition plane Coronal
Phase direction R>L
Bandwidth (Hz/px) 1,200
Fat-water shift (px) 0.3
Distortion correction 3D
Acquisition stages 2
Overlap (mm) 48
Composing Inline
February 2022 | Volume 12 | Article 822687
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correction was applied to the MRI image to homogenize the
image intensity across the field, and the hybrid atlas-based sCT
generation method of Dowling et al. was utilized, with a leave-
one-out cross-validation approach applied for both groups (i.e.,
19 CT/MRI pairs were used to generate an sCT for each target
patient MRI) (21). This approach was modified from the original
method to account for the larger field of view, by utilizing a
custom structure-guided rigid (6 degrees of freedom) and non-
rigid registration (using binary labels based on the bone and
bladder contours) between each CT and MRI pair in the atlas set.
Each MRI in the atlas set was registered to the acquired MRI
initially by using the body mask, and then deformably registered
to the target MRI. A local weighted voting was then applied with
a 3D radius and a gain parameter to increase the sensitivity of
patch value similarities. These weightings were applied to the
corresponding patches in each of the co-registered CT scans in
the atlas to create the sCT.

2.2.4 Deep Learning
The deep learning model was created using a conditional
generative adversarial network (cGAN), consisting of a single
generator and a discriminator, trained using the paired MRI-CT
data (32). The network is set with a condition, meaning that both
Frontiers in Oncology | www.frontiersin.org 4
the generator and the discriminator of the network are
conditioned on the CT (target) image for a direct MRI to sCT
conversion (32). The CT and MRI scans were preprocessed using
a binary mask to remove the background and the scans were
resampled to a matrix of 320 × 320 voxels. A bias field correction
was applied to the MRI image to homogenize the image intensity
across the field, and then standardization of the image intensity
peaks was applied to standardize tissue weightings across the
whole cohort. Image registration between the CT and MRI was
performed using structure-guided (bone) non-rigid registration.
The patient cohort was separated into four groups of 10 and then
used for training and testing four individual cGAN models using
four-fold cross-validation, that is, each model was trained with
the CT/MRI pairs of 30 patients and generated sCT scans of 10
patients for testing.

The generator was a modified U-net with a similar
architecture to the model proposed by Han et al. and Largent
et al. (Figure 1) (26, 30). The network was an encoding–
decoding network that extracted features from the input MRI
and reconstructed an sCT using these features. At the encoding
part, features were extracted through the convolutional blocks
with a filter size of 3 × 3 and stride 1. The features were then
down-sampled through the down-sampling convolutional blocks
FIGURE 1 | Generator architecture. Note that the number of filters (i.e., 64 filters) indicates the number of filters in each convolutional layer.
February 2022 | Volume 12 | Article 822687
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with a filter size of 3 × 3 and stride 2, as suggested by Largent
et al. (30). The features from the encoding part were then used in
the decoding part to construct the sCT. At the decoding part, the
feature maps were up-sampled via a 3 × 3 transpose convolution
with stride 2, also suggested by Largent et al. (30). The last
convolution block of the decoder part consisted of a 1 × 1
convolution with stride 1, followed by a hyperbolic tangent
activation to output the sCT. In all except the last block, each
convolutional block in the generator used batch normalization
and a rectified linear unit (ReLU) activation function. Skip
connections were added between the encoder and the decoder
for concatenating the channels of the feature map. Furthermore,
two dropout layers with a drop rate of 0.5 were applied, one after
the bottleneck and the other after the CU1024 block to
prevent overfitting.

The discriminator was a small CNN-based image classifier,
and its architecture was similar to the model proposed by
Largent et al. (30). It can be defined as:

Discriminator:CD8-CD16-CD32-CD64-CD128-C128-F
where CD was the down-sampling block and F was the fully
connected layer with sigmoid activation. The numbers on each
block indicate the number of filters. All the CD blocks of the
discriminator used the leaky ReLU, with the slope coefficient 0.2,
as the activation function for allowing a small gradient for the
input that is less than zero (33). The last convolutional block
(C128) operated a 1 × 1 convolution with stride = 1. The output
was then fully connected for 1D output. The discriminator was a
binary classification model using binary cross entropy so that it
predicts an output in the range of 0 (fake) and 1 (real).

The weights of both models were initialized with a normal
distribution with mean = 0 and standard deviation = 1e-4. For
updating the generator, a loss was calculated by adding the
adversarial loss, calculated via the discriminator, and the L1
(mean absolute error) loss between the generated output (sCT)
and the target image (CT). Weights on both the adversarial and
the L1 losses were set to 1. Adam optimization algorithm was
used for stochastic gradient descent optimization and the
learning rate was set to 1e-4. Batch size and training epochs
were set to 10 and 20, respectively.

2.3 sCT Validation
The CT scan, T1 VIBE Dixon MRI, and sCT datasets were
imported into the treatment planning system. For each subject,
the atlas-based and deep learning sCT datasets were co-
registered to the MRI and the MRI registered to the CT using
rigid registration, with a registration boundary of the top of the
second lumbar vertebrae to the greater trochanter. The bulk
density and tissue class segmentation methods were performed
on the MRI scan. To reduce disparity introduced by bowel gas,
the bowel gas on the datasets was overridden to average
surrounding tissue HU value for 10 patients. Two patients with
a large discrepancy in body contour of >4 cm in the lateral
posterior region, between the CT and MRI, due to tensing of the
gluteal muscles in CT, had this region removed from the sCT
calculation volume, so as to not affect the results.

The treatment plan, structure set, and International
Commission of Radiation Units and Measurements (ICRU)
Frontiers in Oncology | www.frontiersin.org 5
reference point were copied from the original CT to each sCT,
and the plan was recalculated with identical monitor unit values.
Dosimetry was compared using the dose difference at the plan
ICRU point, relevant dose volume histogram (DVH) dose
parameters for planning target volume (PTV) and organ at
risk (OAR) structures per standard guidelines for each
treatment site, and a 3D dose gamma comparison (34, 35).
The plan on the CT scan was used as the gold standard. As
several DVH parameters were evaluated for PTV and OAR
structures, the average dose difference is a combined average of
each of these parameters for all structures. The percentage dose
difference was calculated by the formula (DsCT − DCT)/DCT *
100%. Due to the non-parametric nature of the data, statistical
significance was determined using a Mann–Whitney U-test with
a significance level of 0.05. Three-dimensional gamma analysis
was performed using an in-house MATLAB code (MATLAB;
MathWorks, Massachusetts, USA), using dose difference (%) and
distance to agreement (mm) criteria of 3%/2 mm, 2%/2 mm, and
1%/1 mm. An erosion of 15 mm of the body perimeter was
applied to exclude failures which occurred at the skin edge due to
small unavoidable differences in body contour between datasets,
and a 10% low-dose threshold was applied.

Hounsfield unit estimation accuracy was assessed using mean
error (ME) and mean absolute error (MAE) in HU value for the
entire body and bone region. To account for regions of image
degradation in some sCT datasets, the superior and inferior 30
mm of the datasets was not included in these calculations.
3 RESULTS

Detailed patient demographics are outlined in Table 2. Of the 40
patient datasets used in the trial, 4 patients in the male cohort
and 11 patients in the female cohort received iodine-based oral
contrast, while 1 patient in the female cohort received iodine-
based IV contrast for the planning CT scan.

All sCT generation methods were successfully applied to the
MRI scan of each patient. An example of the conventional CT
scan, T1-weighted MRI, and each sCT generation method for a
single patient is shown in Figure 2. The closest agreement in ME
and MAE in HU estimation was for the deep learning and hybrid
atlas techniques for the whole body, bone, and soft tissue
estimations (Table 3). The dosimetric results correlated well
with the ME and MAE results, with the greatest difference in ME
and MAE resulting in the greatest dosimetric error for the bulk
density method.

There was no statistically significant dose difference to CT at
the ICRU reference point for any of the sCT methods (Table 3).
The median DVH dose difference for all structures and
parameters combined was less than 0.5% for all sCT methods,
with the greatest agreement for the deep learning method and the
least agreement in the bulk density method (Table 3 and
Figure 3). There was a statistically significant difference (p =
0.002) for the bulk density sCT, with a median percentage dose
difference at the ICRU reference point between the male
and female cohort of −0.89% [interquartile range (IQR)
of −0.72, −1.15) and −0.09% (IQR of 0.09, −0.83), respectively.
February 2022 | Volume 12 | Article 822687
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There was no statistically significant difference in the median
percentage dose difference at the ICRU reference point between
the male and female cohort for the other sCT methods.

The 3D gamma results with criteria of 3%/2 mm for all sCT
methods were within the American Association of Physics in
Medicine (AAPM) TG218 report guidelines of >95% (Table 4)
(36). The closest agreement at 1%/1 mm was seen for the deep
learning sCT, while the greatest difference between the male and
female cohort was in the hybrid atlas-based and bulk
density methods.
4 DISCUSSION

The results presented in this article compare favorably to previous
studies of sCT generation for MRI-only planning. The methods
chosen for sCT generation in this article were based on previous
literature, which returned similarly high dosimetric agreement in
separate studies on MRI-only planning for pelvic treatments. The
bulk density assignment was based on the bone–tissue maps of
Frontiers in Oncology | www.frontiersin.org 6
Choi et al., which was applied to 54 prostate treatment plans (12).
Choi et al. presented a dose agreement at ICRU point of −0.15% ±
0.90% (IQR = 0.31, −0.65) and a mean 3D gamma agreement of
90.7% ± 0.2% with a criteria of 1%/1 mm (12). The bone and body
contours in this study were assigned the same densities to the
study of Choi et al., to determine if those values are also applicable
to male and female patients with anal canal, rectal, endometrial, or
cervical cancer (12). Compared with the study of Choi et al., the
dose agreement at ICRU point in this study was lower at −0.73% ±
0.59%, while the mean 3D gamma agreement at 1%/1 mm was
higher at 93.6% ± 3.8%. The difference in the results may be due to
the study of Choi et al. being optimized for prostate treatments,
while this study applied the method to male and female cohorts
with treatment regions in the pelvis and lower abdominal region
(12). The bulk density values of the tissue could have been affected
by a difference in fat to water ratio in this region and body mass
index between the different cohorts of patients (37).

The fact that the density values were not re-optimized for the
cohort of this study would also explain the difference in the
results for the tissue class density assignment results. The tissue
FIGURE 2 | CT and sCT scans (with corresponding MRI) with treatment plan calculated and dose color wash displayed. Column (A) T1 in-phase-stitched T1 VIBE
Dixon; column (B) original CT scan column; column (C) deep learning-generated sCT; column (D) hybrid atlas-generated sCT; column (E) tissue class density
assignment sCT (three tissue classes); and column (F) bulk density overrides sCT.
TABLE 2 | Patient demographics.

Cohort size Age range BMI range (kg/m2) Relevant surgical history Primary treatment site Staging range

Male cohort 20 49–88 (mean = 65) 20.5–33.6 (mean = 25.5) Hernia repairs (n = 3)
Rectal resections (n = 2)
Appendectomy (n = 1)

Rectum (n = 20) T1N0–T4N1

Female cohort 20 41–85 (mean = 61) 18.0–36.9 (mean = 26.2) Hysterectomy (n = 6)
Common iliac stent (n = 1)
Caesarean (n = 1)
Hernia repair (n = 2)
Appendectomy (n = 3)

Rectum (n = 4) T3N0–T3N2
Anal canal (n = 4) T1N0–T3N1
Cervix (n = 8) IIA–IIB
Endometrium (n = 4) IIIA–IIIC
February 2022 | Volume 12
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class density assignment method was based on the bone–muscle–
fat (BMF) maps of Choi et al. which were once again applied to
54 prostate treatment plans (12). Compared with the cohort in
this study, the dose agreement at the ICRU point was higher for
Choi et al. −0.16% ± 0.65% (IQR 0.22, −0.60), compared
with −0.48% ± 0.44% (IQR −0.28, −0.85), while the mean 3D
gamma agreement at 1%/1 mm was lower at 93.8% ± 8.6% than
in this study at 95.3% ± 3.3%.

The atlas-based method was based on the hybrid atlas sCT
generation method of Dowling et al., which had previously
shown to outperform the atlas-based method of the group (20,
21). Dowling et al. applied the hybrid atlas approach to 39
Frontiers in Oncology | www.frontiersin.org 7
prostate cancer treatment plans. The hybrid atlas approach was
modified in our study, for a larger anatomical region by
incorporating structure-guided rigid and non-rigid registration
(bone and bladder) in the atlas set. The results of the study of
Dowling et al. correlate strongly with the results of this study,
with similarly low percentage difference of the dose calculated at
the ICRU reference point of −0.3% ± 0.8% and −0.3% ± 0.5%,
respectively, and a mean 3D gamma agreement at 1%/1 mm
of >95% and 94.8%, respectively (21).

The deep learning approach to sCT generation in this study is
similar to that of Largent et al. and Maspero et al. (4, 30). The
cGAN approach was favored for our study over a cycle GAN due
TABLE 3 | ICRU median percentage dose difference and median DVH dose difference by the sCT method.

ICRU %DD DVH %DD Mean absolute error (HU) Mean error (HU)

Median (IQR) p-value Median (IQR) p-value Whole body Bone Soft tissue Whole body Bone Soft tissue

Deep learning −0.03 (0.13, −0.31) 1.00 0.18 (0.40, −0.05) 0.93 34.7 ± 5.1 109.4 ± 12.3 25.2 ± 3.4 −2.5 ± 5.8 −46.0 ± 19.6 −0.7 ± 6.3
Hybrid atlas −0.30 (−0.02, −0.57) 0.82 −0.27 (0.12, −0.77) 0.76 57.4 ± 8.0 186.9 ± 17.9 47.3 ± 7.8 −2.0 ± 9.0 −78.0 ± 35.3 4.1 ± 8.5
Tissue class −0.48 (−0.28, −0.85) 0.68 −0.48 (0.11, −0.66) 0.71 58.8 ± 10.4 228.2 ± 11.2 44.6 ± 8.5 −9.8 ± 7.3 −25.8 ± 39.7 −8.6 ± 7.5
Bulk density −0.73 (−0.10, −1.01) 0.64 −0.33 (0.19, −0.67) 0.70 89.1 ± 7.7 244.1 ± 10.0 76.1 ± 6.7 8.0 ± 13.7 5.7 ± 39.3 7.8 ± 14.7
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FIGURE 3 | Percentage DVH dose difference by structure (each structure parameter combined) for each synthetic CT method.
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to the high GPU memory requirements and long training times
of the cycle GAN method. Maspero et al. applied the cGAN
approach to sCT generation for pelvic radiotherapy, performing
dose analysis on 30 patients (10 prostate, 10 rectum, and 10
cervix) (4). Maspero et al. reported a similar dose difference of
0.1%–0.3% to this study of −0.03% ± 0.42% and a gamma
agreement at 2%/2 mm of 94.8% compared with this study of
99.7% ± 0.4%.

All sCT generation methods assessed in this study returned
similarly high dosimetry agreement when compared with CT
and were all within clinically acceptable ranges. However, image
guidance and the amount of resources required are other drivers
in the choice of an sCT generation method. Accurate bony
anatomy is required for image guidance on treatment.
Although bulk density and tissue class density assignment
methods do not necessarily require additional software to
perform, the manual contouring of the bone regions on MRI
can be time-consuming. As such, these methods have
successfully been combined with an atlas-based approach for
the bone mask and are the basis of commercial sCT generation
products (9, 10). Atlas-based and deep learning methods both
provide reliable bone definition and are increasingly favored for
MRI-only planning due to image guidance considerations. Deep
learning methods have the advantage over atlas-based methods
in the time it takes to generate an sCT. The deep learning method
presented in this study took 3.5 s for a single sCT generation,
while the atlas-based method took approximately 50 min.
Therefore, for the methods presented in this study, there are
advantages and drawbacks of each method, and centers are able
to use this knowledge to identify the most suitable method for
MRI-only planning.

This study has shown that a bulk density assignment, tissue
class segmentation, hybrid atlas, and deep learning methods of
sCT generation can be utilized for MRI-only planning of male
and female cancers of the rectum, anal canal, cervix, and
endometrium. The implications of this study indicate that
selection of an sCT generation technique can be driven by
department resources, with minimal impact to plan dosimetry,
therefore greatly expanding the accessibility of MRI-only
planning in radiation therapy.
Frontiers in Oncology | www.frontiersin.org 8
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TABLE 4 | 3D gamma dose comparison for each sCT technique (mean ± 1 SD).

3%/2 mm 2%/2 mm 1%/1 mm

Pass rate (%) Average gamma Pass rate (%) Average gamma Pass rate (%) Average gamma

Deep learning All 99.8 ± 0.3 0.09 ± 0.02 99.7 ± 0.4 0.14 ± 0.03 97.3 ± 2.0 0.28 ± 0.07
Female 99.8 ± 0.3 0.10 ± 0.02 99.6 ± 0.4 0.14 ± 0.03 97.4 ± 1.2 0.28 ± 0.06
Male 99.9 ± 0.3 0.09 ± 0.03 99.7 ± 0.4 0.14 ± 0.03 97.1 ± 2.5 0.27 ± 0.08

Hybrid atlas All 99.8 ± 0.3 0.12 ± 0.04 99.7 ± 0.3 0.17 ± 0.05 94.8 ± 4.5 0.35 ± 0.11
Female 99.8 ± 0.3 0.13 ± 0.04 99.7 ± 0.4 0.19 ± 0.06 93.4 ± 5.2 0.38 ± 0.12
Male 99.8 ± 0.2 0.10 ± 0.03 99.7 ± 0.3 0.15 ± 0.04 96.3 ± 3.2 0.31 ± 0.09

Tissue class All 99.8 ± 0.3 0.12 ± 0.03 99.7 ± 0.4 0.18 ± 0.04 95.3 ± 3.3 0.35 ± 0.08
Female 99.8 ± 0.3 0.12 ± 0.02 99.7 ± 0.4 0.18 ± 0.03 95.2 ± 3.1 0.36 ± 0.07
Male 99.9 ± 0.2 0.12 ± 0.03 99.7 ± 0.4 0.17 ± 0.04 95.4 ± 3.2 0.34 ± 0.09

Bulk density All 99.8 ± 0.3 0.14 ± 0.03 99.7 ± 0.4 0.19 ± 0.05 93.6 ± 3.8 0.38 ± 0.09
Female 99.8 ± 0.4 0.12 ± 0.03 99.6 ± 0.4 0.17 ± 0.05 95.1 ± 3.3 0.34 ± 0.09
Male 99.9 ± 0.2 0.13 ± 0.03 99.7 ± 0.4 0.21 ± 0.05 92.1 ± 3.6 0.42 ± 0.09
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