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Background: Microsatellite instability (MSI) is associated with several tumor types and
has become increasingly vital in guiding patient treatment decisions; however, reasonably
distinguishing MSI from its counterpart is challenging in clinical practice.

Methods: In this study, interpretable pathological image analysis strategies are
established to help medical experts to identify MSI. The strategies only require
ubiquitous hematoxylin and eosin–stained whole-slide images and perform well in the
three cohorts collected from The Cancer Genome Atlas. Equipped with machine learning
and image processing technique, intelligent models are established to diagnose MSI
based on pathological images, providing the rationale of the decision in both image level
and pathological feature level.

Findings: The strategies achieve two levels of interpretability. First, the image-level
interpretability is achieved by generating localization heat maps of important regions
based on deep learning. Second, the feature-level interpretability is attained through
feature importance and pathological feature interaction analysis. Interestingly, from both
the image-level and feature-level interpretability, color and texture characteristics, as well
as their interaction, are shown to be mostly contributed to the MSI prediction.

Interpretation: The developed transparent machine learning pipeline is able to detect
MSI efficiently and provide comprehensive clinical insights to pathologists. The
comprehensible heat maps and features in the intelligent pipeline reflect extra- and
intra-cellular acid–base balance shift in MSI tumor.
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INTRODUCTION

Microsatellite instability (MSI) is the condition of genetic
hypermutability that results from impaired DNA mismatch
repair. Cells with abnormally functioning mismatch repair are
unable to correct errors that occur during DNA replication and
consequently accumulate errors. MSI has been frequently observed
within several types of cancer, most commonly in colorectal,
endometrial, and gastric adenocarcinomas (1). The clinical
significance of MSI has been well described in colorectal cancer
(CC), as patients with MSI-high colorectal tumors have been shown
to have improved prognosis compared with those with MSS
(microsatellite stable) tumors (2). In 2017, the U.S. Food and
Drug Administration approved anti–programmed cell death-1
immunotherapy for mismatch repair deficiency/MSI-high
refractory or metastatic solid tumors, making the evaluation of
DNA mismatch repair deficiency an important clinical task.
However, in clinical practice, not every patient is tested for MSI,
because this requires additional next-generation sequencing (3, 4),
polymerase chain reaction (5), or immunohistochemical tests (1, 6,
7). Thus, it is in high demand for a cheap, effective, and convenient
classifier to assist experts in distinguishing MSI vs. MSS.

Numerous publications have identified histologic features
that are more commonly seen in MSI. By far, it is a well-
known fact that tumors that have undifferentiated morphology,
poor differentiation, and the high infiltration of TIL cells are
more likely to be MSI (8–11). Unfortunately, it is still challenging
to distinguish MSS from MSI based on pathologist’s visual
inspections from pathological images because the morphology
of MSS is similar to that of MSI (12). The recent technical
development of high-throughput whole-slide scanners has
enabled effective and fast digitalization of histological slides to
generate WSIs. More importantly, the thriving of various
machine learning (ML) methods in image processing makes
this task accessible. In recent years, ML has been broadly
deployed as a diagnostic tool in pathology (13, 14). For
example, Iizuka et al. built up convolutional neural networks
(CNNs) and recurrent neural networks to classify WSI into
adenocarcinoma, adenoma, and non-neoplastic (15). The study
by Bar et al. demonstrated the efficacy of the computational
pathology framework in the non-medical image databases by
training a model in chest pathology identification (16). Notably,
deep learning (DL) model has been used to predict MSI directly
from H&E histology and reported the network achieved
desirable performance in both gastric stomach adenocarcinoma
(STAD) and CC (17). These studies attest to the great potential of
ML methods in medical research and clinical practice.

There is no doubt that the ML revolution has begun, but the lack
of the “interpretability” of ML is of particular concern in healthcare
(18, 19). Here, the “interpretability”means that clinical experts and
researchers can understand the logic of decision or prediction
produced by ML methods (20). In essence, it urges ML systems
to follow a fundamental tenet of medical ethics, that is, the
disclosure of necessary yet meaningful details about medical
treatment to patients (21). Unfortunately, to the best of our
knowledge, most of the existing MSI diagnosis systems, especially
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DL-based systems, are non-interpretable. Therefore, there is an
urgent need to establish a new research paradigm in applying an
interpretable ML system in medical pathology field (22–26).

In this study, we used H&E-stained WSI from TCGA: 360
formalin-fixed paraffin-embedded (FFPE) samples of CC (TCGA-
CC-DX) (27), 285 FFPE samples of STAD (TCGA-STAD) (28), and
385 snap-frozen samples of CC (TCGA-CC-KR). H&E-stained
images in these databases have already been tessellated into
108,020 (TCGA-STAD), 139,147 (TCGA-CC-KR), and 182,403
(TCGA-CC-DX) color-normalized tiles (17), and all of them only
target region with tumor tissue. The aims of the study are as follows:
(i) to build an image-based ML method on MSI classification and
post-process the fed image to a heat map to interpret the diagnosis
ofMSI at an image level; and (ii) to design a fully transparent feature
extraction pipeline and understand the pathological features’
importance and interactions for predicting MSI by training a
feature-based ML model.

Our contributions are two folds. First, we developed ML models
with decent power in the prediction of MSI. This model can exhibit
a visual heatmap demonstrating high-contribution regions for MSI
prediction in the H&E image. Second, we certified certain
pathological features with non-trivial importance in MSI
classification, which is not explicitly studied in the previous
research. Therefore, our study facilitates MSI diagnosis based on
H&E image and sheds light on the understanding of MSI at both
image-level and features level.
MATERIALS AND METHODS

Histopathology Image Sources
The whole-slide H&E-stained histopathology images were obtained
from TCGA, including three cancer subtype datasets. Dataset DX
consisted of 295 MSS patients and 65 MSI patients from FFPE
samples of CC. Dataset KR contained 316 MSS patients and 72MSI
patients from snap-frozen samples of CC. Dataset STAD collected
225 MSS patients and 60 MSI patients of FFPE STAD. Two criteria
in the published study (17) classify patients as MSI: (i) all the
patients who were previously defined as MSI were included in the
MSI group (29); and (ii) some patients with unknown MSI status
but with a mutation count of >1,000 were also defined as MSI (30).

All the images used in our models have already gone through
tumor tissue detection and have been tessellated into small tiles
in J.N. Kather’s work (https://zenodo.org/record/2530835 and
https://doi.org/10.5281/zenodo.2532612). The proceeding for
getting the tiles is of two steps. First, the tumor region is
identified from WSI image, and second, the tumor is divided
into small square subregions, called tiles, where the edge of each
tile is 256 µm. There are 108,020 tiles in TCGA-STAD cohort,
139,147 in TCGA-CC-KR, and 182,403 in TCGA-CC-DX. Color
normalization has already been performed on every tile using the
Macenko method (31), which converts all images to a reference
color space. In all cases, training and test sets were split on a
patient level, and no image tiles from test patients were present in
any training sets.
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Details of Deep Learning and Grad-CAM
The DL model that we considered is ResNet-18, which is one of
the state-of-the-art CNNs (17, 32). We adopted all of the default
settings in ResNet-18 and did not fine-tune any hyperparameters
on it. ResNet-18 is built in Python 3.7 with TensorFlow-GPU
1.14.0 and Keras 2.3.0. Because the ResNet-18 is insensitive to the
adversarial samples, we did not pre-process any image tiles in the
three TCGA datasets. The patient-level areas under the curve
(AUCs), receiver operating characteristic (ROC) curves, and 95%
stratified bootstrap confidence intervals (CIs) for ROC curves
were computed and visualized by two R packages: pROC (33)
and ggplot2 (34). Gradient-weighted Class Activation Mapping
(Grad-CAM) utilizes the gradient information abundant in the
last convolutional layer of a CNN and generates a rough
localization map of the important regions in the image. We
apply the rectified linear unit to the linear combination of maps
to generate localization maps of the desired class. Grad-CAM
visualization was implemented in Python 3.7 with TensorFlow-
GPU 1.14.0 and Keras 2.3.0.

Image Pretreatment
Before feature extraction, we apply pretreatments to the tiles
before feature extraction and we summarized the pretreatments
and associated implementation details in Table 1. First, white
balance is performed on our cohorts because the natural
appearance tone of the object may alter in the formation of
images when exposed in a lightning condition of different color
temperature (37). Because every tile has an area without cell
organization, i.e., without H&E stain, we could view that part as
the neutral reference in adjustment. In addition to the color cast,
overexposure and underexposure also may result in the
distortion of our features (38). Still, taking the unstained area
as the reference, we regulated all tiles into the same level of
brightness. In addition, to get the location of immune cells’
nuclei, we similarly perform color deconvolution (39, 40) to
separate color space from immunohistochemical staining on
each tile. Finally, to extract the Haralick texture features (41,
42) of tumor cells, we used a positive cell detection algorithm to
locate every tumor cell in each tile and use its batch process to get
needed features.

Feature Extraction
In global color feature extraction, the region of interest (ROI) is a
stained area. We recordedmean value, quantiles (25%, 50%, and 70%),
and higher-order moments (variance, kurtosis, and skewness) in ROI
of each channel in RGB and HSV as our global features. Moreover,
with Gaussian mixture model (GMM) model (43), we perform image
Frontiers in Oncology | www.frontiersin.org 3
segmentation to each tile to divide the ROI into three clusters and
record the corresponding features in every cluster as our local features.
We located immune cells’ nuclei after color deconvolution according to
their size and grayscale and calculated the amount as the feature. As for
the differentiation degree of tissue in tiles, we performed dilation,
erosion, and circle Hough transforms (44) to identify outlines similar to
circle in images and to decide their differentiation degree. Because the
more regular shapes exist, the more highly the tissue differentiates.
Because we have recorded the tumor cell’s location, we extract Haralick
features of each tumor cell in one tile and adopt the mean value of all
cells’ as this tile feature via QuPath software (45). In addition, we also
recorded the count of a tumor cell as our feature.

Details of Random Forest and Benchmark
Machine Learning Methods
Our RF method was built and tested using Python version 3.7.1
with RandomForestClassifier in sklearn.ensemble library (46).
During training, 70% of patients in every dataset were
randomly selected, and all of their tiles were used in training,
whereas the rest of the tiles were held out and used as test sets.
There are some anomalous tiles in each dataset, i.e., blurred or
color disorder, resulting in the loss of the information
contained in them. Therefore, we disposed of all of them in
every dataset. In addition, we also delete the tiles owning an
extreme immune cell number (a value that significant in 1%
level) because an extremely small number may represent the
non-tumor area, whereas a too large number represents
lymphatic concentration area. In each forest, we set 500 trees
in total and take Gini impurity as the criterion. For each forest,
we tune the minimum node size of random forest (RF), which is
an important parameter to prevent overfitting, and we keep
other parameters with the default settings. We used a simple
tuning criterion as follows: Consider the candidate minimum
node size: 15, 16, …, 25, and then the size associated with the
least out-of-bag error of RF is chosen. The selected minimum
node size is 23 for the STAD cohort, 17 for both the KR and the
DX cohorts. Again, we used pROC packages to compute AUC
and assess 95% stratified bootstrapped CIs and ggplot2 package
to visualize the model performance.

Out of comparison, we also consider two benchmarking ML
methods suggested by a reviewer including support vector
machine (SVM) (47) and generalized linear model (GLM) (48).
The ridge regularization in GLM is selected via 10-fold cross
validation. Because hundreds of thousands of tiles brought huge
computational burden, SVM ran very slow even in the state-of-
the-art implementation (49), and thus, we did not tune the
parameters in SVM and set them as default.
TABLE 1 | Pre-treatment, software, and parameters used in each pre-treatment.

Pretreatment Software Parameters

White balance OpenCV-Python Default
Brightness Adjustment OpenCV-Python Target average brightness in RR: 240
Color Deconvolution ImageJ (35) Default
Tumor Cell Identification scikit-image (36) Objects with size: 5–17
Ju
Reference region (RR): an area without cell organization, whose values in RGB channels within (180, 255). The parameters are manually selected according to the experience of image
analysis for H&E images.
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Permutation Feature Importance and
Conditional Minimal Depth
Permutation-based feature importance (50) is a widely used model
inspection technique for RF. It is defined to be the decline in a
model accuracy when one feature’s values are randomly shuffled.
The shuffle procedure cancels the relationship between the label and
the feature, and thus, the drop in the model accuracy can serve as a
measurement for the importance of the feature in RF. An alternative
feature importance, minimal depth (51), is defined as the depth
when a feature splits for the first time in a tree. For example, if a
feature splits the root node in a tree, then its minimal depth is 0. The
mean of minimal depths over all trees in a forest can measure the
feature importance. The importance ordering of features under it
keeps highly consistent with the result from the permutation-based
method (Figure S4).

To investigate the interaction between two different features, we
used a generalization of minimal depth, conditional minimal depth,
that measures the depth of the second feature in a subtree with the
root node where the first feature splits (52). Specifically, we recorded
all of such splits with the first feature and calculated the mean of
conditional minimal depths of the second features given the first
feature. A large gap between the mean of conditional minimal depth
and the mean of minimal depth implies possibilities for the second
feature being used for splitting after the first feature. The occurrence
of the large gap implies that the two features have a strong
interaction. We used R version 3.5.1 with randomForest package
(53) to rebuild that RF and analyze and visualize the relations
between different features with randomForestExplainer package (52).

Ablation Experiment for Deep Learning
Ablation experiment (54–56) is conducted to investigate the
contribution of pathological features in DL. Specifically, we
eliminated the RGB mean differences between MSI and MSS
groups in the test set by adjusting the mean value in each tile in
the test set to the mean value of all the tiles as a whole. Then, we feed
the adjusted tiles in the test set into the trained neural network. The
drops of AUCs after reevaluation can verify the contribution of the
RGB feature in the classification of the DL network.

Role of the Funding Source
The funder of this study had no role in study design, data
collection, data analysis, data interpretation, and writing of the
report. The corresponding author had full access to study data
and final responsibility for the decision to submit for publication.
RESULTS

A Deep Learning Classifier and Image-
Level Visual Interpretability
We used a commonly used end-to-end CNN, ResNet-18 (32) in
the study. To fit this DL model for different cancer subtypes, we
trained three ResNet-18 networks based on 70% of the tiles
randomly sampled from three datasets, the remaining 30% of the
tiles in each dataset were used for testing. In the testing cohort, a
Frontiers in Oncology | www.frontiersin.org 4
patient’s slide was predicted to be MSI if at least half of the tiles
were predicted to be MSI. The patient-level accuracy and AUC
were 0.84 in the KR cohort, 0.81 in the DX cohort, and 0.80 in the
STAD cohort (Figure 1B).

On the basis of the trained DL model, the Grad-CAM was
used to make the convolutional-based model more transparent
by generating localization maps of the important regions (57). To
unveil the hidden logic behind the DL and provide visual
interpretability, we deployed Grad-CAM to find out which part
of the H&E image supports DL’s classification. Two typical
images for interpreting DL prediction logic are shown
(Figure 1A). The region highlighted by Grad-CAM points out
the important region for DL decision but not statistical
correlation. Our pathologist noted that the highlighted region
in Figure 1A tended to be where immune cells are mainly
concentrated in the tumor organism; meanwhile, we also
found that the highlighted region presented distinct color and
texture characteristics. We were intrigued by this phenomenon
and further examined this important region in great detail.

Transparent Pathological Image Analysis
Workflow and Feature-Based
Classification Model
The results from Grad-CAM suggested that certain features of
the H&E-stained images might encode essential regions of the
tumor organism. To further investigate this, we developed a
multi-step, automatic and transparent workflow (Figure 2). In
the first step, we standardized the three image datasets by
standard image processing techniques (e.g., white balance and
brightness adjustments). After the image pre-processing, we
extracted visible pathological features. Motivated by the
feedback from Grad-CAM and existing studies (9, 58, 59), we
focused on these H&E feature characteristics: global and local
color features in RGB and HSV channels, the numbers of
infiltrating immune cells and tumor cells, the grading of
differentiation, and the texture features from tumor cells. A
total of 182 features were extracted from each image tile, and
some representative ones are displayed in Figure 3.

We then applied RF (50), one of the most popular ML algorithms,
to all three databases to classify MSI versus MSS on H&E-stained
histology slides. We randomly selected 70% of patients in every
dataset during training, and all their tiles were used in training,
whereas the rest of the tiles were held out and used as test sets. In the
test sets of each dataset, true MSS image tiles cohort had a median
MSS score (the proportion of the prediction result judged to be MSS
in each decision tree of the forest) that was significantly different from
those of MSI tiles (the P-values of the two-tailed t test were 0.02,
0.0024, and 0.002 in the three datasets), indicating that our models
can distinguish MSI from MSS. Because one patient may have many
different tiles, we obtained the patient-level MSI scores by averaging
the RF’s prediction on all its tiles. AUCs for MSI detection were 0.78
(95% CI: 0.7–0.82) in KR cohort, 0.7 (95% CI: 0.65–0.74) in DX
cohort, and 0.74 (95% CI: 0.65–0.79) in STAD cohort (see
Figures 4B, Figures S1B, S2B). These results show that visible
pathological features can be useful in MSI prediction. Comparing
the AUCs of DL and RF, we can see that DL is superior to RF in
July 2022 | Volume 12 | Article 825353
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prediction, yet we would show that RF can reveal informative
messages about the impact of pathological features on MSI
prediction. From the comparison among RF, SVM, and GLM, we
see that, from predictive power, RF surpasses the other benchmarking
ML methods.

Feature-Level Visual Interpretability:
Feature Importance and Interactions
One of the attractive advantages of RF is that it can evaluate the
importance of the features. Therefore, we verify and quantify
Frontiers in Oncology | www.frontiersin.org 5
these features’ power in distinguishing MSI from MSS by
extracting information from a trained model. A representative
pattern can be discovered from the visualization of permutation-
based feature importance (50, 60) in the KR dataset (Figure 4A) .
From the figure, we can deduce that the texture features play a
dominant role. Because the texture features reflect the surface’s
average smoothness of the tumor cells in one tile, we deduce that
the characteristics of the tumor surface are an important clinical
indicator in automatic MSI diagnosis. Color features also have
important contributions. In the global color feature, the higher-
A
B

FIGURE 1 | (A) The original tile and the corresponding heatmap output by the GCAM. The image in the left of (A1) and (A2) display tiles from the TCGA-CC-DX dataset
labeled with MSI and MSS, respectively. The ellipse upon the images corresponds the most contributed region revealed by GCAM. In the heatmaps, the brighter region
contributes more to the classification. For instance, the red one is the most highlighted area, while the blue regions contribute limitedly. Scale bar, 256 µm (B) Patient-level
receiver operating characteristic (ROC) curve for classifying MSI versus MSS in the three datasets with deep learning. The 95% confidence intervals (CI) were computed by the
bootstrap method.
FIGURE 2 | The workflow of studying pathological features in discriminating against MSI from MSS. Five main steps—pretreatments, feature extraction, model
training, patient-level predictions, and feature contributions analysis—were sequentially executed to improve image quality, generate pathological features, build
statistical model, evaluate model performance, and measure features’ contributions, respectively.
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order statistics (skew and kurtosis) contribute more than the
first-order statistics (mean and quantile), indicating that some
useful information contributing to classification are hidden in
high-order features. Local color features also deserve our
attention. Compared with global color features, the local ones
were useful in image segmentation by dividing slices into
different clusters, and we obtained the information in each
cluster. Figure 3 demonstrates the clinical utility of the clusters
as they closely reflected tumor tissue versus non-tumor tissue.
The number of infiltrating immune cells was also important as
expected, whereas the differentiation grade contributed the least
in every dataset.

It is widely accepted that feature interactions (i.e., the joint
effect of features) can be important for the complex disease
(61–64). Our feature-based RF models also allow us to exploit
the pairwise feature interactions in MSI classification, and
thus, we can attain a more clear understanding of the
characteristics of MSI tiles and the mechanism of RF. Here,
we use conditional minimal depth (51) to quantitatively assess
feature interaction and then demonstrate the foremost 15
pairwise interactions (Figures 4C, Figures S2C, S3C). The
feature types with the most effective interaction effect with
other features in each dataset are the local color feature in KR,
the global color feature in DX, and texture features in STAD.
The three features enhanced the importance of the features
interacting with them, even the features themselves may have
a weak effect before. It is also worthy to note that interactions
incline to occur more often between color features and texture
Frontiers in Oncology | www.frontiersin.org 6
features or between local color and global color features. To
understand how the paired features jointly help the MSI
diagnosis, we plot the prediction values of typical feature
interaction on a grid diagram (Figure 5 and Figure S3). In
the KR dataset, a greater immune cell number and a lower
value of the 75th percentile of red channel lead to a higher
probability of MSS. In DX, a higher value of the max caliper in
tumor cells and a fewer tumor cell number lead to a higher
probability of MSS. In STAD, a lower value of the optical
density range of tumor cells’ nucleus in Hematoxylin stains
and a higher value of texture feature correlation in eosin stains
lead to a higher probability of MSS.
DISCUSSION

To our knowledge, this is the first study to not only build up a
classification model in distinguishing MSI from MSS but also
provide an interpretability analysis. Previous studies in
investigating the pathologic predictors of MSI through feature
extraction and logistics regression model suffered from the
limited learning capability as well as the small sample size
and thus could not achieve satisfactory performance (9). Other
works on MSI classification paid attention to the enhancement
of the prediction accuracy by establishing a DL network but did
not provide a detailed description of the mechanism behind the
model (17). In this study, we tackled these problems through
using three different cancer types datasets from TCGA and
A B

DC

FIGURE 3 | Typical feature extraction result. (A) GMM model for image segmentation. The figure on the left is a tile from the TCGA-CC-DX dataset, and its image
segmentation tiles processed by the GMM method are shown in the figure on the right. The green part whose grayscale is the lowest among the three parts tends to
be tumor tissue, whereas the blue and red ones represent non-tumor tissue. (B) Tumor cell detection before Haralick texture identification. The figure on the left is an
original tile, whereas the one on the right is processed with tumor identification. Each red circle in the tile on the right indicates the boundary of one tumor cell.
(C) Infiltrating immune cells detection. The detection of immune cells allows us to calculate the connectivity domain. (D) The grading of differentiation. Detect the
circularly similar arrangement in one slice and grade the degree of differentiation based on its amount. Scale bar, 256 µm.
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following the framework of interpretability with two steps: first,
built up a high-performance DL network with a visual
explanation capacity as model-based interpretability; second,
we further analyzed and confirmed features’ power using a
feature-based interpretable model.

To build an interpretable DL network, we trained residual
learning CNNs and deployed Grad-CAM to the final
convolutional layer of the network to produce the heatmap
that reflects the highly contributed region. Notably, through its
coarse localization map of the image’s essential regions, it
provided preliminary insight into highly contributed
pathological features. It is worthy to note that the prediction
Frontiers in Oncology | www.frontiersin.org 7
performance of our method is also desirable, and it is comparable
to the predictors proposed in other published research (17).
Although Grad-CAM is also used in the recent literature, they
just use it to quantify possible differences between real and
synthetic images.

To understand the contribution of the pathological features on
MSI classification, we manually extracted the clinically meaningful
features via image processing methods, trained an RF classifier
based on those features, assessed the importance of those features,
and exploited their interaction. This procedure achieves feature level
interpretability at the expense of prediction performance; however,
we interestingly found that the texture and color of the H&E image
A

B

C

FIGURE 4 | The visualization of performance and interpretability of the RF in KR dataset. (A) The bar plot of permutation-based variable importance. Features are
arranged from top to bottom in order of importance (the names of the features are provided in the order in Table S2). (B) The patient-level ROC curve for classifying
MSI versus MSS with random forest. Three colors distinguish GLM, SVM, and RF. The 95% confidence intervals (CIs) computed by the bootstrap method are as
follows: (0.53, 0.83) for GLM, (0.49, 0.72) for SVM, and (0.70, 0.82) for RF. (C) The bar plot of the mean of conditional minimal depth (the top 15 feature pairs of
interaction are shown). A feature pair of interaction is listed as A × B, where A and B are one of feature type and their concrete names are listed in Table S3. Feature
pairs are arranged from the bottom to top in the order of the occurrences, which are represented by the color intensity of the bars. The bar’s length indicates the
mean of conditional minimal depth and the distance from the dot to the y-axis measures the mean of minimal depth of (B) The length of the dot line implies the gap
between them, measuring the effect of pairwise feature interaction. A large gap implies a strong interaction (see also Figures S1–S3).
July 2022 | Volume 12 | Article 825353
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and the interactions among them were crucial for diagnosing MSI.
To the best of our knowledge, this has not been noted before. From
the widely studied underlying biology of immune infiltration in
MSI, numerous pieces of evidence indicate that a high tumor
mutational burden increases the likelihood that immunogenic
neoantigens expressed by tumor cells induce increased immune
infiltration (65–67). In addition, color feature is regard as an
important feature for the diagnosis of TFE3 Xp11.2 translocation
renal cell carcinoma viaWSI (58). Finally, the pivotal roles of color
and texture features found in our study reflect extra- and
intracellular acid–base balance shift in MSI tumor (68). Another
interesting fact is that the feature type that tends to interact with the
other features has a clear difference in the three datasets due to the
image heterogeneity raised from the diversity of cancer type (CC or
STAD) and tissue preservation methods (snap-frozen or FFPE)
(69), indicating that the feature interaction mode was influenced by
preservationmethods and tumor types. However, this insight would
not be attained from “black-box” ML method. Moreover, we
hypothesized that the dominant-role features such as color in RF
models were also important in the DL model. To test our
hypothesis, we eliminated the mean color differences between
MSI and MSS groups and reevaluated our DL models’ AUCs.
Specifically, we calculated the RGB mean value of all tiles in both
groups and centralized the RGB mean value of every tile into that
population mean value. We found that the AUCs were reduced by
0.11, 0.12, and 0.14 in DX, KR, and STAD datasets, respectively,
supporting our hypothesis that color features also contributed to the
DL model.

We note that our findings warrant replications through further
biological experiments. The H&E stain is capable of highlighting
the fine structures of cells and tissues. Most cellular organelles and
extracellular matrix are eosinophilic, whereas the nucleus, rough
endoplasmic reticulum, and ribosomes are basophilic. Our study
shows that the spectrum, intensity, and texture of colors matter in
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distinguishing MSI fromMSS, which needs further validation. We
hypothesize that MSI tumor usually has distinct color/texture
characteristics due to diverse gene mutation pattern (1, 70).
Furthermore, the methodology of this study could be applied to
the pathological analysis of other diseases, like infectious, in which
color/texture characteristics of the H&E images are also crucial for
disease diagnosis. One limitation of this study is that the cases in
TCGA datasets may not be an unbiased collection from the real
situation because pathologists may only upload the representative
ones. Although our model performed well in these histopathology
images, we should admit that their performance in the actual
clinical settings requires further research. Therefore, one of our
future direction is integrating more available datasets considered
in (71), and we point out that it can naturally improve the
specificity and control sensitivity simultaneously. Another
limitation is that our study only focused on H&E-stained
images, and we could not confirm whether the pattern in this
study, especially the color features’ contribution, works in other
types of histopathology slices. The classifier models, which can be
used for the diagnosis of other cancer types based on
immunochemical stained images and in vivo images (72, 73),
remain to be explored and established.

Further, our framework provides a positive feedback cycle in
assisting pathologist’s diagnosis of MSI (Figure 6). Specifically, the
localization map outputted by our DL models can help experts to
narrow their focus on the specific region of the whole H&E slide,
thereby contributing to a more accurate and apprehensible
diagnosis with the prediction result of our model. The features’
distribution under our interpretable model can provide experts
with more insight into analyzing the slices of MSI and MSS from
clinical perspectives. Further, considering the similar feature
distribution pattern in three datasets that we used, it is possible
that, after running the same pipeline on MSI H&E slides under
different cancer types, we can discover a generalization pattern
FIGURE 5 | The visualization of typical pairwise features’ interaction in KR dataset. The prediction value ranges from 0 to 1 with color from blue to red. The bluer
means a larger probability of MSI, whereas the redder tends to be MSS (see also Figure S3).
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behind them. After training on a larger dataset, the accuracy of the
identification and the interpretability could improve, thereby
contributing to accurate sample curation and treatment
development of this aggressive cancer subtype.
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