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Normal early human B-cell development from lymphoid progenitors in the bone marrow
depends on instructions from elements in that microenvironment that include stromal cells
and factors secreted by these cells including the extracellular matrix. Glycosylation is
thought to play a key role in such interactions. The sialyltransferase ST6Gal1, with high
expression in specific hematopoietic cell types, is the only enzyme thought to catalyze the
terminal addition of sialic acids in an a2-6-linkage to galactose on N-glycans in such cells.
Expression of ST6Gal1 increases as B cells undergo normal B-lineage differentiation. B-
cell precursor acute lymphoblastic leukemias (BCP-ALLs) with differentiation arrest at
various stages of early B-cell development have widely different expression levels of
ST6GAL1 at diagnosis, with high ST6Gal1 in some but not in other relapses. We analyzed
the consequences of increasing ST6Gal1 expression in a diagnosis sample using lentiviral
transduction. NSG mice transplanted with these BCP-ALL cells were monitored for
survival. Compared to mice transplanted with leukemia cells expressing original
ST6Gal1 levels, increased ST6Gal1 expression was associated with significantly
reduced survival. A cohort of mice was also treated for 7 weeks with vincristine
chemotherapy to induce remission and then allowed to relapse. Upon vincristine
discontinuation, relapse was detected in both groups, but mice transplanted with
ST6Gal1 overexpressing BCP-ALL cells had an increased leukemia burden and shorter
survival than controls. The BCP-ALL cells with higher ST6Gal1 were more resistant to
long-term vincristine treatment in an ex vivo tissue co-culture model with OP9 bone
marrow stromal cells. Gene expression analysis using RNA-seq showed a surprisingly
large number of genes with significantly differential expression, of which approximately
60% increased mRNAs, in the ST6Gal1 overexpressing BCP-ALL cells. Pathways
significantly downregulated included those involved in immune cell migration. However,
ST6Gal1 knockdown cells also showed increased insensitivity to chemotherapy. Our
combined results point to a context-dependent effect of ST6Gal1 expression on BCP-ALL
cells, which is discussed within the framework of its activity as an enzyme with many N-
linked glycoprotein substrates.
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INTRODUCTION

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a
collective name for leukemias with differentiation arrest at
various stages of early B-cell development. Owing to extensive
molecular analysis including gene expression and DNA
sequencing, it is possible to distinguish up to 23 different
subcategories of BCP-ALL (1). However, very little is known
regarding the glycome of such leukemias. Glycosylation is a
dynamic and highly abundant protein post-translational
modification in which glycans are attached to proteins or lipids
by controlled biosynthetic pathways. Glycoproteins and
glycolipids are major constituents of the cell surface glycocalyx,
the major zone involved in all intercellular interactions.
Glycosylation is applied by the consecutive and controlled
action of numerous glycosyltransferases located in the
endoplasmic reticulum and Golgi stack. Main sites of glycan
attachment in glycoproteins are at serine/threonine [O-glycans]
or asparagine [N-glycans] residues (2).

Sialyltransferases (ST), which attach sialic acids [Sia] as the
final monosaccharide to such glycan structures, are of particular
significance due to the unique biochemical properties of Sia. Sias
are attached by specific sialyltransferases ST3Gal, ST6Gal/
ST6GalNAc, and ST8Sia to glycoproteins in a2-3, a2-6, or a2-
8 glycosidic linkages, respectively. The exact linkage has
biological significance: carbohydrate-binding proteins [lectins]
have evolved to recognize such specific linkages, forming the
biological basis of, for example, species-restricted influenza
infection (3) and specific binding by Siglecs such as the B-cell
inhibitory CD22 (4). As a consequence, Sias play a crucial role in
numerous signaling pathways including but not limited to those
regulating Siglec signaling in innate and adaptive immunity (5).

There are only two human ST6Gal enzymes known to attach
Sia onto N-glycans in an a2-6 linkage. ST6Gal2 is expressed
mainly in neuronal tissues and in the thyroid gland (6), whereas
ST6Gal1 is ubiquitously expressed, with highest levels in the liver
and hematopoietic tissues (7). ST6Gal1 is the most intensively
studied sialyltransferase in cancer. Increased ST6Gal1 expression
was reported in pancreatic, prostate, breast, and ovarian cancer,
and was implicated as contributing to tumor growth, metastasis,
and signal transduction pathways relevant to tumorigenesis (8–
15). Nonetheless, the possible active contribution of this enzyme
to carcinomas is also controversial (16).

ST6Gal1 is known to sialylate many well-known cell-surface
glycoproteins as demonstrated by exogenous enzymatic assays
on different cell lines [HEL, HeLa and mouse lung (17–19)]. In
human HEL cells, which were established from a patient with
Hodgkin’s disease, the 100 different substrates identified
included for example CD44, numerous integrins, ICAMs,
IGF1R, NOTCH1/2, and PTPRC/CD45. Since many of these
glycoproteins contribute to cancer, sialylation is viewed as
important from a potential diagnostic, therapeutic, and
mechanistic viewpoint (20–22). ST6Gal1 also modifies the
activity of the cell surface adhesion receptor PECAM1 and the
Abbreviations: BCP-ALL, B-cell precursor acute lymphoblastic leukemia; GEP,
gene expression profiling; rpkm, reads per kilobase million.

Frontiers in Oncology | www.frontiersin.org 2
store-operated calcium channel Oria1 (23, 24). Thus, increased
expression of ST6Gal1 could contribute to tumorigenesis by Sia
modification of many different cell surface glycoproteins,
regulating cell–cell interactions and differential intracellular
signaling through this route. However, the information
regarding which glycoproteins are substrates of specific STs is
limited because it requires analytical ability to discriminate Sia
linkage in a protein-specific context.

Recently, we compared the glycome of primary B-lineage
MLL-r leukemia, a subgroup of BCP-ALL, with that of normal
bone marrow control CD19+CD10+ pre-B cells. Interestingly,
we found increased levels of sialylated N-glycans, including a2-6
sialic acid-linked glycoconjugates, in the leukemia samples
despite a downregulation of ST6GAL1 on a transcript level
(25). We considered that such higher levels of N-linked a2-6
Sia in primary BCP-ALL cells could have functional
consequences, but a possible contribution of ST6Gal1 to BCP-
ALL has not been examined. To test this, we here overexpressed
ST6GAL1 in a diagnosis BCP-ALL and found that in this BCP-
ALL, high levels of ST6Gal1 associate with increased malignancy
and large effects on the transcriptome of the cells.
RESULTS

BCP-ALL Cells Have Extensive a2,6
Sialylation With High but Varying Levels of
ST6GAL1 mRNA Expression
a2-6 sialylation can be detected by the lectin SNA. We used it to
examine this specific Sia linkage in glycoproteins of a number of
different PDX-derived as well as established, suspension-
propagated BCP-ALL cell lines. As shown in Figure 1A, when
used as a Western blot probe, SNA detects many glycoproteins,
and/or different glycoforms of the same protein in BCP-ALL cell
lines indicating that ST6Gal1 can sialylate numerous substrates
in this type of leukemia. FACS analysis using SNA confirmed
that there was, overall, very high representation of a2-6-linked
Sia on the cell surface of such cells [for example, see
Supplementary Figure 1B, negative controls US7, LAX57, and
LAX56]. We also analyzed the relative abundance of a2-6-linked
Sia using analytical glycan methods on RS4;11 as an example of a
widely studied BCP-ALL suspension cell line. We found that,
overall, 65% of N-linked glycans were capped by sialylation.
Structures carrying Sia in a2-6-linkage were the single most
abundant (>45%) modification, with fewer a2-3 Sias-containing
glycans (Figure 1B).

These results are in agreement with our glycan analysis of
primary BCP-ALL patient samples (25). We conclude that N-
glycan-linked a2-6 sialylation is a very common glycan-capping
modification in RS4;11 and primary BCP-ALL cells. Because
ST6Gal1 is thought to be the only glycosyltransferase responsible
for this modification, we examined its expression in
hematopoietic cell types. As shown in Figure 2A, normal
human hematopoietic cells differ in ST6GAL1 expression, with
relatively lower levels in myeloid, and highest levels in CD19+ B-
lineage cells. CD34+ bone marrow progenitor cells also have
relatively low ST6GAL1 mRNA consistent with reports of low
March 2022 | Volume 12 | Article 828041
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St6gal1 expression in HSPC in mice (26). Within normal B-
lineage development in the mouse (Figure 2B) and human
(Supplementary Figure 2), progression from pro-B to more
mature B cells correlates with increased St6gal1 mRNA levels.
However, in diagnosis human BCP-ALL samples, expression of
ST6GAL1 showed a more than 300-fold variability between the
highest and lowest levels with no correlation (Figure 2C)
between expression levels and mutation-associated risk
Frontiers in Oncology | www.frontiersin.org 3
category (27–29). In a sample set of pediatric BCP-ALL treated
with induction chemotherapy over 33 days, a significant increase
in expression occurred on day 15 of chemotherapy (Figure 2D),
suggesting that ST6GAL1 expression may additionally be
regulated by inflammation as reported (30–32), which could be
caused by drug treatment and/or ensuing cell death. Using
Western blotting, we also measured ST6Gal1 (Figure 2E) in
three sets of BCP-ALLs for which we had matched relapse/
A B

D E

C

FIGURE 2 | ST6GAL1 is highly expressed in normal and abnormal B-lineage cells. (A) RNA-seq-based expression levels of ST6GAL1 in normal human hematopoietic
cells (1). BM, bone marrow; CB, cord blood; PB, peripheral blood. Cells were sorted for the indicated major lineage markers [CD19: B- cells; CD3: T-cells; CD56: NK
cells; CD14: myeloid/macrophage; CD15: myeloid]. Green: CD19 BM n = 4; CD19 CB n = 10; CD19 PB n = 7. (B) Normalized RMA values of ST6gal1 expression in
murine hematopoietic cell types [GSE15907]. FL, fetal liver. Sp, spleen; LN, lymph node. Colored bars: B-cell developmental stages located in the bone marrow. (C)
Scatter dot plot of rLog2 expression of ST6GAL1 across selected subcategories of human BCP-ALL samples as indicated. Blue lines, mean values. (D) ST6GAL1 RNA
expression in pediatric ALL during chemotherapy treatment. Each symbol represents the mean ± SEM at an individual time point. Mean log-transformed normalized
GEP values in 220 pediatric de novo ALL at diagnosis, day 8, day 15, and day 33 of remission–induction therapy [GSE67684]. **p < 0.01; ****p < 0.0001. Source of
expression data, see Supplementary Table 4. (E) Western blot of the indicated diagnosis and relapsed (R) samples from the same patient. b-actin, loading control.
A B

FIGURE 1 | BCP-ALL cells contain high levels of a2-6 sialylation. (A) Western blot of different BCP-ALL cell lines probed with SNA lectin to specifically detect a2-6-
linked sialic acids on glycoproteins. GAPDH, loading control. Location of molecular weight standards to the right. (B) Analysis of N-glycans in RS4;11 cells as
previously described (25). Combined results of 15 individual RS4;11 cell samples. Overall, more than 65% of all identified N-glycans were found to be sialylated with
7.4% in a2-3, 14.1% in a2-3/6, and 45.1% in a2-6 attachment.
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diagnosis samples (Supplementary Table 1) and that grew in
tissue co-culture. Overall, these analyses showed that ST6GAL1 is
ubiquitously expressed, but at varying levels in B-lineage cells.

Increased ST6Gal1 Expression in US7
BCP-ALL Cells Promotes More Rapid
Leukemia Cell Expansion in Mice
To investigate whether or not increased ST6Gal1 expression can
contribute to a more malignant phenotype in cells that initially
have relatively lower expression, we transduced US7 BCP-ALL
cells with a vector encoding human ST6Gal1 (Supplementary
Figure 1A) or with the empty vector, then flow-sorted cells to
obtain a homogenous population. When we compared the ability
of these cells to home to the bone marrow after i.v. injection in
NSGmice, no significant differences were measured (Figure 3A).
We next transplanted the cells into NSG mice to monitor
leukemia development. Based on bioluminescence (Figures 3B,
C), mice transplanted with high ST6Gal1-expressing BCP-ALL
cells showed a more rapid leukemia expansion compared to the
controls and more rapid body weight loss (Figure 3D). Also,
compared to mice transplanted with leukemia cells expressing
original ST6Gal1 levels, increased ST6Gal1 expression was
associated with significantly reduced survival (Figure 3E).

To compare the in vivo response to chemotherapy of these
leukemia cells, we transplanted them into mice and allowed
the leukemia cells to proliferate for 14 days before starting
vincristine treatment. In the first weeks of treatment, based on
bioluminescent imaging, chemotherapy was able to effectively
control the expansion of the leukemia cells (Figures 4A, B,
Frontiers in Oncology | www.frontiersin.org 4
days 7–56). Treatment was discontinued after week 8, and
relapse in both groups became evident about 14 days later.
Based on bioluminescent imaging (Figure 4A, relapse;
Figure 4B) and body weight loss (Figure 4C), US7 cells with
increased expression of ST6Gal1 expanded and caused terminal
leukemia more rapidly than the controls (Figure 4D). Thus, in
vivo, increased ST6Gal1 expression allowed BCP-ALL cells to
expand more rapidly than BCP-ALL cells with lower levels
of ST6Gal1.

Contribution of ST6Gal1 Overexpression to
Chemotherapy Resistance
In vivo, increased ST6Gal1 expression stimulated growth of
BCP-ALL cells compared to cells with lower expression levels.
We then examined if this could be recapitulated in a two-
dimensional tissue culture model. This system makes use of
co-culture with mitotically inactivated OP9 stromal cells to
support growth and viability of the leukemia cells. However,
under steady-state conditions, proliferation of US7-ST6Gal1 OE
and EV cells was comparable (Supplementary Figure 3A). We
also treated the cells with vincristine. As shown in Figure 5A,
when treated with a suboptimal [non-lethal] dose of vincristine,
after prolonged exposure to the drug, US7 cells with increased
expression of ST6Gal1 maintained higher viable cell numbers
compared to the control. Since US7 cells were from a patient at
diagnosis, we also tested a second diagnosis BCP-ALL, LAX57, as
well as a relapse sample, LAX56. Increased expression of
ST6Gal1 in LAX57 and in LAX56 (Supplementary Figure 1A)
also promoted resistance to vincristine, although in LAX57, the
A B

D EC

FIGURE 3 | NSG mice transplanted with US7 ST6Gal1 overexpressing ALL cells have decreased survival. (A) Homing of US7 ST6Gal1 OE or US7 EV leukemia cells
to bone marrow of mice 16 h after i.v. injection. n = 3/group (B, C) Bioluminescent imaging of female cohort (n = 5/group) over time. ****p < 0.001, adjusted p-values,
Šidák’s multiple comparison test. Cells for transplant were transduced with a LV encoding luciferase. (D) Body weight changes and (E) survival of combined male and female
cohorts [n = 10–13 total mice per group]. Kaplan–Meier survival curve comparing US7 control EV with US7 ST6Gal1 OE-transplanted mice. ****p < 0.0001, Log-rank test.
March 2022 | Volume 12 | Article 828041
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difference with control cells was less than that in LAX56
(Figures 5B, C).

BCP-ALL Cells With Knockdown of
ST6Gal1 Expression Also Are More
Vincristine Resistant
We also reduced ST6Gal1 expression in US7 and LAX57 as
diagnosis samples, and in LAX57 and JFK125R as relapses
(Supplementary Table 1) using Cas9/CRISPR gene editing.
FACS using SNA lectin was used as readout and selection method
for trackingablationofST6GAL1gene function through loss ofa2,6
sialylation (Supplementary Figure 1B). Western blotting also
confirmed substantial reduction in ST6Gal1 protein levels
(Supplementary Figure 1C). Because sialylation of the
lysosomal/cell surface protein Lamp1/CD109a was reported to
stimulate lysosomal exocytosis (33), we also specifically
investigated the degree of a2,6 sialylation of Lamp1 in the
Frontiers in Oncology | www.frontiersin.org 5
ST6GAL1 knockdown cells using a SNA affinity column. As
shown in Supplementary Figure 1D, whereas Lamp1 protein
isolated from wild-type cells bound to the SNA affinity column,
knockdownofST6Gal1 largelyeliminated the ability ofLamp1 tobe
retained on the column. Thus, reduction of ST6Gal1 activity was
clearly achieved in these BCP-ALLs. Steady-state growth of these
cells in the absence of drug treatment was not consistently affected
(Supplementary Figure 4). We also tested the four different BCP-
ALLs with reduced ST6Gal1 levels in a long-term co-culture with
OP9 cells for sensitivity to vincristine. As shown in Figure 6, cells
expressing lower levels of ST6Gal1 were, to a varying degree, more
tolerant to vincristine treatment than the matched original wild-
type cells. We conclude that in in vitro co-culture, neither ST6Gal1
overexpression nor knockdown consistently affects steady-state
proliferation of these BCP-ALL cells but changes in ST6Gal1
expression levels do reduce the ability of the cells to respond to
the stress of vincristine drug treatment.
A B C

FIGURE 5 | BCP-ALLs with ST6Gal1 overexpression have a growth advantage under long-term treatment with relapse-permissive doses of vincristine. All cells were
treated for 12 days while in co-culture with OP9 stromal support. Cell proliferation, measured by an assay for ATP levels, is expressed as a percentage of the PBS
control at each time point. (A–C) US7, LAX57, and LAX56 cells as indicated and treated with 0.75 nM, 2.5 nM, or 5 nM vincristine. (A) Mean ± SEM of n = 8
replicates per time point per sample combined from two independent experiments. (B, C) Mean ± SEM of n = 4 replicates per time point per sample. Two-way
ANOVA, adjusted p-values, Šidák’s multiple comparison test. *p < 0.05, ***p < 0.001, ****p < 0.0001.
A

B DC

FIGURE 4 | Vincristine-induced remission and relapse of NSG mice transplanted with US7 ST6Gal1 OE or control EV cells. Female mice were transplanted with 2 ×
106 cells on d0. Vincristine i.p. treatment was started on day 14 after transplant and was administered once per week at 0.5 mg/kg. (A) Bioluminescent images (BLI)
of mice and (B) BLI quantification at weekly intervals of the two cohorts. n = 5 female mice/group. Two-way ANOVA, adjusted p-values, Šidák’s multiple comparison
test. *p < 0.05; ***p < 0.001. (C) Body weight loss (D) Overall survival. **p = 0.0047, Log-rank test.
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Effect of Stromal Galectin-1 on BCP-ALL
Cells With ST6Gal1 Overexpression
A relatively well-described consequence of the sialylation of
glycoproteins on the cell surface is to allow or inhibit the
binding of lectins, a type of protein that specifically recognizes
and binds to carbohydrates. Galectin-1 is such a lectin and it is
inhibited in its binding to client glycoproteins by their a2-6 N-
linked sialylation (34). Glycan–Galectin interactions are known
to regulate B-cell function (35) and Galectin-1 plays a role in
immune modulation as well as in cancer (36–38). Our previous
studies had shown that inhibition of Galectin-1 using a drug,
PTX008, sensitizes BCP-ALL cells to chemotherapy (39). These
BCP-ALL cells endogenously produce Galectin-1 to a varying
degree (39), but stromal cells can also be a source of extracellular
Galectin-1 (40). Therefore, we knocked Galectin-1 out in the
OP9 stromal cells used for co-culture, via Cas9/CRISPR
(Figure 7A), and tested the effect on BCP-ALL cell growth and
resistance to vincristine treatment in co-culture with the
knockout cells. We found that wild-type and Galectin-1
Frontiers in Oncology | www.frontiersin.org 6
knockout OP9 cells supported wild-type and ST6Gal1 OE US7
cells equally well under normal growth conditions
(Supplementary Figure 3B), excluding a major role for
stromal Galectin-1 interactions with cell surface glycoproteins
that are sialylated by ST6Gal1 during normal growth. After 12
days of vincristine chemotherapy, proliferation of BCP-ALL cells
with original levels of ST6Gal1 expression (EV samples
Figures 7B–D) plated on OP9 Galectin-1 knockout stroma
was comparable (LAX57 and LAX56) or enhanced (US7)
(Figures 7B, C, compare white bars) with respect to the same
cell types grown on wild-type OP9 cells. On day 12, US7 ST6Gal1
OE and LAX56 ST6Gal1 OE cultures grown on OP9 Galectin-1
knockout cells (Figures 7B, D) also had higher cell counts. Based
on literature data, increased glycoprotein sialylation by ST6Gal1
should reduce Galectin-1 binding. Based on our PTX008
inhibitor studies (39), reduced Galectin-1 binding in turn
should chemo-sensitize the BCP-ALL cells. Instead, OP9
Galectin-1 knockout cells protected BCP-ALL cells as well as,
or better than, WT cells (Figures 7B–D). Thus, stromal-
A B DC

FIGURE 6 | Knockdown of ST6GAL1 expression correlates with increased resistance to vincristine. Paired sets of control BCP-ALLs and cells with ST6Gal1
knockdown were plated on mitotically inactivated OP9 cells and treated for 15 days with the indicated concentrations of vincristine. (A, D) Values mean ±SEM of n =
3–4 replicates per time point per sample. (B, C) Four to six replicates per time point per sample. Two-way ANOVA, Šidák’s multiple comparison test, adjusted p-
values, *p < 0.05, **p < 0.01; ***p < 0.001, ****p < 0.0001.
A B DC

FIGURE 7 | Effect of co-culture of BCP-ALL cells on OP9 stromal cells lacking Galectin-1. (A) Western blot documenting loss of Galectin-1 in selected OP9
Galectin-1 ko clone. (B–D) US7, LAX57, or LAX56 cells as indicated grown on control OP9 (OP9 neg C) or OP9 Galectin-1 knockout (Gal1 KO) cells. US7, LAX57,
and LAX56 were treated with 0.75, 2.5, and 5 nM vincristine. Values, mean ±SEM of n = 4 replicates per time point per sample. Two-way ANOVA, Tukey’s multiple
comparison test, adjusted p-values. *p < 0.05, **p < 0.01; ***p < 0.001, ****p < 0.0001.
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produced Galectin-1 binding to a2,6 N-glycoproteins on BCP-
ALL cells is not mechanistically linked to the enhanced resistance
of ST6Gal1 OE cells to vincristine stress.

Increased Expression of ST6Gal1
Associates With Relatively Large
Transcriptome Changes
In other types of cancer cells, ST6Gal1 expression was reported
to regulate transcription [e.g., (41)]. We therefore also compared
the transcriptomes of US7 ST6Gal1 OE and EV control cells. As
expected, ST6GAL1 RNA was significantly increased in the US7
ST6Gal1 OE cells (Figure 8A and Supplementary Table 2). In
addition, we found differential expression of approximately 5%
of all the protein-encoding genes that are expressed in these cells
(Supplementary Table 3). Schultz et al. (42) previously reported
that increased ST6Gal1 expression correlates with increased
expression of the stem cell transcription factor Sox9 in colon
and pancreatic cancer cell lines, conferring a stem-cell-like
phenotype. However, in the BCP-ALL cells studied here, the
gene expression data did not point to induction of a more stem-
cell-like or primitive phenotype with increased ST6GAL1
expression. Instead, Ingenuity Pathway Analysis of the US7
OE/EV RNA-seq data indicated “increased neoplasia” of the
US7 ST6GAL1 OE cells compared to cells with baseline levels of
ST6GAL1 (Supplementary Table 2). We therefore compared
differential gene expression in ST6Gal1 overexpressing US7 cells
with that of a matched set of 10 diagnosis/relapsed BCP-ALL
samples (43). Interestingly, there were 29 genes with common
Frontiers in Oncology | www.frontiersin.org 7
differential expression, of which 19 were regulated in the same
direction in US7 ST6Gal1 OE cells and relapses, including
VEGFA and TGFb2 (Supplementary Table 2).

In terms of drug resistance in in vitro co-culture, we compared
our data to ICN13 BCP-ALL cells that had been treated with
relapse-permissive doses of vincristine while in co-culture with
OP9 cells (Oliveira et al., in preparation). In that study, on d30 of
drug treatment, 948 genes were differentially expressed compared
to PBS-treated controls cultured for the same period of time. A
comparison of the transcriptome of ST6Gal1 overexpressing US7
cells with vincristine-resistant ICN13 cells showed overlap of 78
genes with differential expression (Supplementary Table 3,
Supplementary Figure 5A). However, 69 of these showed an
increase in one condition (ICN13 × vincristine) and decrease in
the other (ST6Gal1 overexpression), ruling out a straightforward
positive correlative effect for specific genes that would account for
increased in vitro vincristine resistance in US7 cells with increased
ST6Gal1 expression.

Real-time RT/PCR was used to further validate increased
mRNA levels of six selected genes in US7 ST6Gal1 OE cells.
These included CD109 and BEX4, two genes that had high
expression in MLL-r samples compared to normal pre-B
controls (25). CD109 was of interest because increased
expression correlates with worse outcome in AML and diffuse
large B-cell lymphoma (44, 45). The stress pseudo-kinase TRIB3 is
also implicated in acute leukemias (46, 47), and IZKF2 is a well-
known transcription factor in normal and malignant
hematopoietic cells (48, 49). As shown in Figure 8B, the analysis
A

B

C

FIGURE 8 | Transcriptome of US7 cells with different levels of ST6Gal1 expression. (A) Volcano plot summarizing 484 differentially expressed genes (>2-fold; p >
0.05, rpkm cutoff = 1) in BCP-ALL cells with increased ST6Gal1 levels, with approximately 60% of protein-encoding expressed genes showing up-regulation. n = 3
biological replicates per RNA sample. (B) Real-time RT-PCR on selected genes with increased expression in the US7 ST6Gal1 OE cells. Values for the control EV
samples were set as 1 and results are expressed as fold change. Note the discontinuity of the Y-axis. (C) Comparison of expression of selected genes in matched
US7 control and US7 ST6Gal1 knockdown cells using real-time RT/PCR.
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validated higher expression of these genes in US7 ST6Gal1
overexpressing cells. Conversely, expression of the genes was
somewhat lower in ST6Gal1 knockdown US7 cells (Figure 8C).
However, real-time RT/PCR analysis for expression of the same
genes in LAX56 and LAX57 with ST6Gal1 overexpression did not
yield a similar outcome (Supplementary Figure 6A). In addition,
ST6Gal1 knockdown in two additional BCP-ALLs, ICN13 and
BM41 (Supplementary Table 1, Supplementary Figure 6B) did
not provide results consistent with those in US7 cells, ruling out a
universal regulation of these genes by ST6Gal1 expression in BCP-
ALL. Therefore, we did not find consistent changes in different
BCP-ALLs in the expression of protein-encoding genes that could
correlate with levels of ST6Gal1 and would explain the increased
ability of ST6Gal1 overexpressing cells to proliferate in mice, and
their increased resilience against vincristine stress in vitro
co-culture.
DISCUSSION

ST6Gal1, a Non-Essential Protein With
Unique Enzymatic Activity, as an Attractive
Target for Treatment of Leukemias?
Although ST6Gal1 is thought to be the main enzyme responsible
for the bulk of N-glycoprotein-linked a2-6 sialylation, mice with
total St6gal1 knockout are viable, with a surprisingly mild
phenotype mainly manifest in immune cell function: increased
inflammation, defects in dendritic cell, and myelopoiesis, as well
as mature B-cell development (50–52). Also, the phenotype of
mice with specific knockout of St6gal1 in the liver, an organ with
particularly high ST6Gal1 expression, is mild (32). Thus, as a
possible therapeutic target, ST6Gal1 would be attractive if
increased expression is causally related to features associated
with a more malignant phenotype. Indeed, as reviewed (53),
numerous studies correlate ST6Gal1 overexpression with some
aspects of increased malignancy in other cancers [also (41)].

A possible contribution of ST6Gal1 to hematological
malignancies has been much less well-studied. The exception is
multiple myeloma, in which ST6Gal1 secreted by more mature B
cells in the bone marrow suppressed myeloid development (54).
It is important to note in this context that normal hematopoietic
progenitor stages express different levels of ST6GAL1 mRNA,
with low expression in hematopoietic stem cells, which
progressively increases during maturation along the B-lineage
(Figure 2). Thus, the varying expression levels of ST6GAL1 in
different BCP-ALL subtypes noted here may also, in part, be
normal for the stage at which the cells have become arrested in
their maturation.

However, we noted that ST6GAL1 expression in the more
than 20 subtypes of leukemic B cell precursors that have
currently been distinguished (1) varied widely even within a
specific subgroup. Accordingly, although in pediatric ALL, high
ST6GAL1 expression correlated with better relapse-free survival
and relapsed samples had lower expression (Supplementary
Figures 7A, B), in adult ALL, the overall survival probability
was in fact similar [at p = 0.37, ns] for patients with high
Frontiers in Oncology | www.frontiersin.org 8
ST6GAL1 (Supplementary Figure 7D). In addition, adult
patients who achieved a complete remission had lower
ST6GAL1 mRNA than those who did not (Supplementary
Figure 7E). Thus, in hematopoietic malignancies, there is no
clear-cut correlation between ST6GAL1 expression and
clinical outcome.

Non-Concordant Phenotype of ST6Gal1
Overexpression and Knockdown in
BCP-ALL Cells In Vitro and In Vivo
Frequently, the importance of a gene for a biological process is
evaluated by loss-of-function and/or gain-of-function experiments;
typically, this entails knockout/knockdown and overexpression.
We used overexpression to investigate if increased ST6Gal1 levels
in BCP-ALL contribute to a more malignant phenotype in mice. In
this system, overexpression in US7 cells clearly promoted increased
malignancy, in the sense that the overexpressing cells proliferated
more rapidly than the cells with baseline expression, which was
also seen after cessation of vincristine treatment. However, in tissue
culture, there was no consistent effect of ST6Gal1 expression levels
on proliferation rate. This suggests somewhat unsurprisingly that,
in vivo, some interactions of the BCP-ALL cells with the
microenvironment are not recapitulated in the tissue culture
model. For example, based on the reported suppression of
myeloid development by ST6Gal1 in multiple myeloma (54), it is
possible that ST6Gal1 overexpressing BCP-ALL cells suppressed
myeloid development in the bone marrow, which, in turn, could
promote leukemia proliferation.

In contrast, in tissue culture, high ST6Gal1 contributed
statistically significantly to increased drug insensitivity in three
different BCP-ALLs. However, unexpectedly, in all three BCP-
ALLs, ST6Gal1 knockdown also decreased responsiveness to
chemotherapy, suggesting a complex contribution of ST6Gal1
to this process. Based on these findings, we posit that effects of
different ST6GAL1 expression levels in BCP-ALL are unlikely to
be captured in a simple gain-of-function/loss-of-function
dichotomy. We hypothesize that this could be explained by the
inherent nature of the enzymatic activity of this protein, as
detailed below.

Expression Levels of ST6GAL1 mRNA
May Not Correspond to Levels of
N-Linked a2,6 Sialylation
There is no linear correlation between the expression of the
ST6GAL1 mRNA, and the generation of specific sialylation on
glycoproteins: as with many other glycosyltransferases, ST6Gal1
does not function in 1:1 stoichiometry with client proteins since it
can attach one or multiple sialic acids to a single glycoprotein.
Indeed, Oswald et al. (32), who studied mice with liver-specific
St6gal1 knockout, remarked “our findings demonstrate that
transcriptional changes, or lack thereof, cannot be reliably used
as a surrogate for regulated changes in protein glycosylation within
a cell”. In addition, the sialylation of glycan structures is determined
not only by ST6Gal1 protein levels but also by hypoxia (55),
interactions of ST6Gal1 with the glycosyltransferase B4Galt1 (56),
and metabolic flux (57, 58), which can regulate the availability of
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the donor sialic acid. The existence of inherent variability in
sialylation is supported by other studies in which we analyzed the
glycome of US7, LAX56 and LAX57 EV, and ST6Gal1 OE cells
(Oliveira et al., in preparation). In a different study, we analyzed the
glycome of drug-resistant ICN13 BCP-ALL cells and found that
these cells exhibit reduced overall sialylation, with a shift from a2-
6- to a2-3-linked Sia without significant changes in expression of
ST6GAL1 (Oliveira et al., in preparation). These results may partly
explain the inconsistent phenotypes found here associated with
different ST6Gal1 expression levels.

Expression of Specific Glycoprotein
Clients of ST6Gal1 N-linked a2,6
Sialylation, and the Impact of Each of
These Clients on BCP-ALL Proliferation
and Vincristine Resistance May Vary in
Different BCP-ALL Samples
In some carcinomas, glycoproteins such as the EGFR and ErbB2
function as critical oncogenes that consistently drive the tumor
phenotype. Interestingly, ST6Gal1 sialylation of these receptors
was linked to sensitivity to cetuximab and trastuzumab
therapeutic monoclonal antibodies (59, 60). Unfortunately,
whether BCP-ALL cells of all subtypes and at different stages
of treatment (diagnosis and relapse) consistently express one or
more of such glycoproteins, of which the a2,6 N-linked
sialylation would be critical for cell growth or drug resistance,
remains unknown. Seeing that more than 350 ST6Gal1 client
glycoproteins have been identified in different cell types (17–19),
identification of such a putative critical glycoprotein, if there is
one, is complicated. Moreover, B-lineage leukemias represent a
continuum of differentiation stages and not all glycoproteins are
expressed at every stage. CD75 is an example of an epitope
generated by ST6Gal1 (61) which apparently is not expressed on
BCP-ALL cells but is present on normal peripheral blood CD19+
B-cells (Supplementary Figure 8). A recent report documenting
the existence of N-linked sialylated RNAs further adds to the
potential complexity of ST6Gal1 involvement (62).

A Relatively Large Effect of ST6Gal1
Overexpression on Transcriptome Is
Consistent With a General, Broad
Effect of N-Linked a2,6 Sialylation on
BCP-ALL Physiology
Apart from increased malignancy, pathway analysis of our RNA-
seq data showed a correlation between increased ST6GAL1
expression and a reduced migration and adhesion profile of
the cells (Supplementary Table 2). We note that this correlation
was unexpected in view of the lack of difference between US7 OE
and EV cells in the in vivo bone marrow homing assay
(Figure 3A). Moreover, the more drug-resistant phenotype of
the ST6Gal1 OE cells suggests that they should have superior
migration and adhesion to protective stromal cells (63, 64).
However, it is consistent with the functional assay by
Woodard-Grice et al. who overexpressed ST6Gal1 in acute
myelogenous leukemia cell lines and found decreased a4b1-
mediated VCAM1 binding (65). Thus, it is possible, based on
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changes in RNA expression, that other glycoproteins that can be
sialylated by ST6Gal1 such as VEGFA (66) contribute to this
complex phenotype.

Overall, our gene expression analysis in which we found
differential expression of 484 genes in fact supports a broad
effect of ST6Gal1 overexpression on the transcriptome,
consistent with involvement of multiple glycoproteins and
multiple downstream effects. The finding that increased
ST6Gal1 expression also changes levels of mRNAs encoding its
own substrate proteins adds further complexity (Supplementary
Figure 5B). Interestingly, variability was also reported by
Venturi et al. (16) who found that increased ST6Gal1 levels
caused very large transcriptome changes in one but not in a
different colon cancer cell line. Surprisingly, in view of the very
different cell types, we found that US7 cells with ST6Gal1
overexpression had 19 genes in common (18 increased and
one decreased) with the SW948 ST6Gal1 overexpressing colon
cancer cells, including, among others, ST6GAL1, TGFb2,
and CTF1.

Conclusion
Venturi et al. (16)who investigated coloncancercell lines stated that
“changes induced by ST6Gal1 expression… are strongly cell-type
specific, ruling out that the association of ST6Gal1 andmalignancy
is a general paradigm”. Our studies support this concept, and
furthermore indicate that ST6Gal1 in BCP-ALL is neither an
oncogene nor a tumor suppressor. This does not exclude an
important contribution of ST6Gal1 to the outcome of specific
therapies such as those making use of monoclonal antibodies, as
described for the EGFR and ErbB2 (59, 60). However, detailed
analytical glycan studies of sialylation on CD19, CD22, or CD20
glycoproteins before and after treatmentwith antibodies orCART-
cells would be needed to determine if ST6Gal1 N-linked a2,6
sialylation is a contributing factor to resistance in B-cell
malignancies treated with such immune therapies.
MATERIALS AND METHODS

Cell Culture and Drug Treatment
GSE102301 describes that US7 [LAX7] and US7R [LAX7R] were
obtained from a patient at diagnosis and after relapse following a
standard 3-week chemotherapy regimen (vincristine,
dexamethasone, L-asparaginase, and doxorubicin). JFK125/
JFK125R, SF06/SF06R, and US7/US7R PDX patient-derived
pre-B ALL samples have been previously described (67, 68).
LAX56 and LAX57 grew directly on OP9 cells and have also been
previously described (69). These BCP-ALLs are all largely
stromal-dependent and were grown in co-culture with
mitotically inactivated OP9 bone marrow stromal cells (ATCC
CRL-2749). They were STR genotyped to confirm their identity.
OP9 cells allowed to adhere overnight were treated with 10 µg/ml
mitomycin C (Sigma, Cat#M4287) for 3 h in complete medium,
washed, and used for co-culture with human ALL cells. Cells
were co-cultured in a-MEMmedia supplemented with 20% FBS,
1% L-glutamine, and 100 mg/ml penicillin/streptomycin (Life
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Technologies, Grand Island, NY). All cell lines used are listed in
Supplementary Table 1. RS4;11 was obtained from the ATCC.
Glycan analysis was performed as described previously (25).

For in vitro drug treatment, cells were plated at 0.5 × 106 cells/
well in a 24-well plate with an OP9 feeder layer. Vincristine
sulfate (Sigma, Cat#V8388) diluted in PBS at different
concentrations was added freshly every 3 days. Each different
BCP-ALL was titrated with different concentrations of
vincristine to identify concentrations that would significantly
inhibit proliferation but not eradicate all leukemia cells.
Vincristine stocks were stored in small aliquots at −80°C.
Diluted samples stored at 4°C were used within 14 days. Cell
viability was determined on cells migrated into the tissue culture
medium using a CellTiterGlo viability assay (Promega,
Cat#G7570) according to the manufacturer’s instructions.

Lentiviral Constructs and Transduction
The empty pLV411G vector was obtained from Simon Barry
(70). pLV411G-ST6Gal1 was obtained from Dukka Škalamera
(71). Inserts were introduced into the pLV411G vector by
GateWay cloning (Invitrogen). The insert encodes the human
ST6Gal1 406 amino acid isoform A, which we verified by DNA
sequencing, in addition to a small C-terminal extension due to
the cloning procedure. 293FT cells were cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Cat#
11995073) with 10% fetal bovine serum (FBS, Atlanta
Biologicals, Cat# S11150H, Lot# K18135), 100 IU/ml penicillin
and 100 mg/ml streptomycin (Gibco, Cat# 15070063). Lentiviral
supernatant was produced by co-transfecting HEK 293FT cells
with the plasmids pCD/NL-BH*DDD, pCMV-VSV-G (from
AddGene), and pLV411G (with or without human ST6GAL1)
using Lipofectamine 2000 (Invitrogen, Cat# 11-668-019) in Opti-
MEM (Invitrogen) medium. The culture medium with the DNA/
lipofectamine mixture was replaced after 3–4 h by DMEM
medium with 10% FBS. After incubation overnight, the
medium was replaced with DMEM medium containing 10%
FBS and 10 mM sodium butyrate. After incubation for 6–8 h, the
medium was replaced with regular growth medium. Twenty-four
hours later, lentiviral supernatant was collected, filtered through
a 0.45-mm filter, and loaded by centrifugation (600g, 30 min at
32°C) onto non-tissue culture six-well plates coated with 50 mg/
ml RetroNectin (Takara). The LV backbone also encodes green
fluorescent protein (GFP), which was used for flow-sorting of
transductants on a BD Aria Fusion flow cytometer. LAX56 and
LAX57 were transduced with the same LV vector for ST6Gal1
overexpression, but with a different empty vector control—
pCL6IEGWO-GPF. All transductants were purified using flow
sorting. US7 cells were also transduced with pCL6IEGWO-
blasto-luc, a luciferase LV vector and selected with 8 mg/ml
blasticidin, after a pilot of 4–20 mg/ml in a 6-day assay to
determine a suitable selection concentration.

Cas9/CRISPR Knockout Conditions
for ST6GAL1
For gene deletion in BCP-ALL cells, predesigned crRNAs, non-
targeting control guide RNAs, trRNAs, and Cas9 protein were
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purchased from Integrated DNA Technologies (IDT, Coralville,
Iowa). The same guide RNA against human ST6GAL1 (IDT
Hs.Cas9.ST6GAL1.1.AC; position 187072904 with the sequence
CAGATGGGTCCCATACAATT AGG) was used for the
different pre-B ALLs. Alt-R® CRISPR-Cas9 guide RNA for
human ST6GAL1 (crRNAs, 100 mM) and Alt-R® CRISPR-Cas9
tracrRNAs (trRNAs, 100 mM) were annealed by incubation at
95°C for 5 min. After cooling to room temperature, Alt-R® S.p.
HiFi Cas9 Nuclease 3NLS (recombinant Cas9 protein, 1 mg/ml)
was then added to the RNA mixture and RNA ribonucleoprotein
complexes were allowed to form for 20 min. Electroporation of
approximately 5 × 106 cells in Neon buffer T was performed
using 3 pulses at 1, 600 V for 10 ms each on a Neon transfection
system (Thermo Fisher) with the addition of 10 nmol Alt-R®

Cas9 Electroporation Enhancer. Twenty-four hours after
electroporation, fresh culture medium was added.

OP9 Galectin-1 Knockout
We combined two guide RNAs against mouse Galectin-1 (IDT
Mm.Cas9.LGALS1.1.AA; position 78929743 with the sequence
GACCTGGGGAACCGAACACC GGG a n d IDT
Mm.Cas9.LGALS1.1AB position 78928002 with the sequence
CGAACTTTGAGACATTCCCC AGG) to target Galectin-1 in
OP9 cells. A total of 2 × 106 cells in Neon buffer T were
electroporated using one pulse at 1,350 V for 30 ms as
described above. Galectin-1 knockdown was confirmed by
Western blot 72 h after electroporation. To isolate Galectin-1
knockout cells, single cells were sorted on a BD Aria Fusion
around day 14 after electroporation. Single clones in 96-well
plates were continuously expanded for 4 weeks with medium
change weekly after the first 2 weeks of culture. Thereafter,
growing clones were transferred to 24-well plates and then to
6-well plates. Galectin-1 knockout clones were verified by
Western blotting and viably stored in LN2.

Monitoring of ST6GAL1 Gene Disruption
by FACS Using SNA
Knockdown of ST6Gal1 was monitored using FACS for
Sambucus nigra (SNA) cell surface reactivity on live cells.
Careful titration of the amount of SNA lectin used for sorting
was needed because exposure of the cells to high concentrations
of SNA resulted in cell death. This is due to the fact that SNA I,
which was obtained from Vector labs (Cat #B-1305), is a
chimeric lectin composed of an A-chain with enzymatic
activity and a B-chain with carbohydrate-binding activity. The
A-chain encodes a ribosome-inactivating protein (72). BCP-ALL
cells were blocked with human FCR blocking reagent diluted
1:100 (MACS Miltenyi Biotec, Cat#130-059-901) for 15 min at
4 °C. Cells were then incubated for 15 min at 4 °C with
biotinylated SNA lectin diluted 1:100 followed by 15 min at 4 °
C with streptavidin-APC diluted 1:200 (eBioscience, Cat# 17-
4317-82). DAPI was added at a 1:100 dilution to distinguish dead
and live cells. To enrich for ST6GAL1 knockdown cells, we flow
sorted cells on a BD Aria Fusion X20 around day 10 after
electroporation. For some ALLs, electroporation with sgRNA
was done twice. Using these procedures for example on day 5
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after a single electroporation, there were 95.5% SNAmed and
0.12% SNAneg cells in the LAX56 population, whereas for
LAX57, this was 82.5% SNAmed and 1.3% SNAneg cells. Repeat
of the electroporation and flow sorting of the SNAmed/neg cells
failed to further yield pure SNAneg populations for any of the
BCP-ALLs (Supplementary Figure 1B).

Western Blotting
For Western blots for ST6Gal1 protein, cells were lysed in RIPA
buffer with added protease and phosphatase inhibitors. We used
R&D Systems human ST6Gal1 antibody diluted 1:500
(Cat#AF5924) and b-actin as loading control (Santa Cruz, 1:500,
Cat#sc-47778HRP).We also assessed the effect of ST6Gal1 ablation
on Lamp1 a2,6 sialylation. BCP-ALL cells were lysed in Triton
T-100 lysis buffer with glycerol at pH 7.4 (Alfa Aesar,
Cat#J63866AK) and glycoproteins were captured with SNA-biotin
(Vector labs Cat #B-1305). Dynabeads Streptavidin magnetic beads
(Invitrogen, Cat#65801D) were used to isolate the SNA-bound
glycoproteins. Proteins were separated on 4%–20% SDS-PAA
gradient gels (Mini-PROTEAN® TGX Stain-Free™ Protein Gels,
Bio-Rad,Cat#4568094). Lamp1 (CD109a) antibodiesused at 1:1,000
dilution were fromBioLegend (Cat#328602). TheWB for OP9 cells
used anti-Galectin-3 (BioLegend, 1:1,000, Cat#125402) or Galectin-
1 (R&DSystems, 1:1,000,Cat#AF1152) antibodies.Westernblotting
for a2,6-sialylated proteins made use of biotinylated SNA from
Vector Laboratories.

Mouse Experiments
For bone marrow homing experiments, 107 cells were injected via
the tail vein into NSG mice (n = 3–4 per group). Sixteen hours
later, bone marrows were analyzed by FACS for CD19, CD10, and
eGFP-positive cells. Results are expressed as cell percentage in the
live cell lymphocyte gate. To measure survival, non-irradiated
NSG mice 8–10 weeks of age were used in all experiments. Female
[n = 5 for US7/EV and n = 7 US7/OE] or male mice [n = 5 per
group] were injected with 2 × 106 leukemia cells on d0. Imaging
for leukemia signal was performed once per week by i.p. injection
of 2.5 mg of D-luciferin in 200 ml of PBS. End points included loss
of >20% initial body weight. For vincristine treatment, we used n =
5 female mice per group. Mice received six weekly vincristine
treatments [0.5 mg/kg; i.p.] starting on d14. Bioluminescence
signals were quantified using Aura imaging software (Spectral
Instruments Imaging, LLC Tucson, AZ).

All animal experiments were conducted under an IACUC-
approved institutional protocol. Methods of euthanasia were
consistent with the guidelines of the American Veterinary
Medical Association.

RNA Expression Analysis
RNAs were isolated from the cells by Trizol extraction. RNA-seq
was performed by Novogene using an unstranded high-
throughput TruSeq stranded mRNA prep kit. Analysis of the
RNA-seq data was performed as previously described (25). The
genome build used for analysis was hg38 and 19,862 protein-
encoding genes were included in the analysis. Significantly
regulated genes were defined as fold change ≥2, p < 0.05, and
low expression filter set at rpkm <1.0. Graphs showing
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normalized RNA counts were generated using GraphPad Prism
(v8.4.3). QIAGEN Ingenuity Pathway Analysis (IPA) version
62089861 was used to analyze results of RNA-seq for pathways
with differential regulation using rpkm>1, p-values and FDR at
<0.05 and logFc at −1.0 to 1.0. RNA-seq data were deposited in
GEO under accession number GSE185611. Accession to all data
is listed in Supplementary Table 4.

For real-time RT/PCR, RNAwas extracted using an RNeasy Plus
Mini Kit (Cat# 74134, QIAGEN). A high-capacity cDNA reverse
transcription kit was from ABI (Cat# 4368814). cDNA
concentrations were determined by Nanodrop. The Power SYBR™

GreenPCRMasterMixwas purchased fromLife Technologies (Cat#
4367659). PCR was on an ABI QuantStudio 7 Flex System with 40
cycles and anneal/extend temperature set at 60°C.

Primers obtained from IDT (Integrated DNA Technologies)
included the following:

Gene Forward Primer Reverse Primer

hCD109 AAGCCAGTGAAAGGAGACGTA CCAGGGGAAGATAGATCCAGG
hTRIB3 AAGCGGTTGGAGTTGGATGAC CACGATCTGGAGCAGTAGGTG
hH1F0 ACTCGCAGATCAAGTTGTCCA GGTTCGTCGCTCTTGGCTA
hMEST ATCGGGTGATTGCCCTTGATT GAAAGAAGGTTGATCCTGCGG
hBEX4 AAAGAGGAACTAGCGGCAAAC CCAAATGGCGGGATTCTTCTTC
hNSUN7 GGACTCCGTTTATGTCATGGC CTCAGACTCGGACAAGGACC
hIKZF2 AACTACTGTGGACGAAGCTACA CGTTTTCCCATATTCCCCGTG
hActin CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT
March 20
Data Availability and Statistical Analysis
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summarized in Supplementary Table 4. Results were analyzed
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significance are indicated in each figure legend.
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