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Nuclear transport factor 2 (NUTF2) is a GDP-binding protein that participates in the
nucleocytoplasmic transport process. The role of NUTF2 in cancer development is largely
unknown and lacks systemic assessment across human cancers. In this study, we
performed a pan-cancer analysis of NUTF2 in human cancers. Out of 33 types of cancers,
19 types had significantly different expression of NUTF2 between tumor and normal
tissues. Meanwhile, survival analysis showed that NUTF2 could be an independent
prognostic factor in several tumor types. Further analysis suggested that the expression
of NUTF2 expression was correlated with the infiltration of immune cells, such as CD8" T
cells, effector memory CD4" T cells, and cancer-associated fibroblasts in kidney renal
clear cell carcinoma. Moreover, co-expression analysis showed the positive association
between NUTF2 and cell proliferation biomarkers (MKI67and PCNA) and epithelial-
mesenchymal transition markers (VIM, TWIST1, SNAI1, SNAI2, FN1, and CDH2),
suggesting that NUTF2 plays important roles in regulating cancer proliferation and
metastasis. This pan-cancer analysis of NUTF2 provides a systemic understanding of
its oncogenic role across different types of cancers.

Keywords: NUTF2, pan-cancer, prognostic, tumor-infiltrating lymphocyte, CAFs

INTRODUCTION

Despite the improving capacity of diagnosis and therapy, cancer remains the second leading cause of
death worldwide. The GLOBOCAN predicts that there will be 27.5 million new cancer patients
worldwide in 2040, with an increase of 61.7% from 2018 (when the number of new cancer cases was
18.1 million) (1). Genomic and epigenomic studies have significantly demonstrated that biological
heterogeneity is a central property of cancers and patients. Furthermore, the same genetic variant
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may play a different role across various types of cancers (2).
Thus, a pan-cancer analysis of cancer-associated genes will be
helpful for understanding their roles in cancer development.

Nuclear transport factor 2 (NUTF2, also known as NTF2) is a
small GDP Ran-binding protein. It was firstly identified as a
nucleocytoplasmic transport enhancer through interaction with
nucleoporin FxFG (3, 4). Additionally, NUTF2 was shown to be a
GDP-dissociation inhibitor and regulated the GDP-Ran gradient
(5-7). Interestingly, a recent study uncovered the capacity of
NUTEF2 to reduce the nuclear size and diameter of the nuclear
pore complex (NPC) (8). It was demonstrated that NUTEF2 plays
vital roles in the phenotype of eyes and diabetic retinopathy via
regulating the nuclear import of Ran proteins and the VEGF
signaling pathway (9, 10). With respect to cancer, upregulation of
NUTE?2 was found in glioma tissues and overexpression of NUTF2
promoted migration and proliferation of glioma cells, indicating its
oncogenic role in glioma (11). However, the role of NUTF2 in other
cancer types is largely unknown.

In the present study, we conducted a pan-cancer analysis of
NUTE?2 based on the TCGA dataset. NUTF2 expression profile and
prognostic significance were investigated among various human
cancers. Additionally, genetic alteration, DNA methylation,
immune infiltration, and protein interactions were also
investigated. Our study comprehensively analyzed the oncogenic
role of NUTEF2 across various cancer types, and highlights the
possibility of NUTF2 to serve as a cancer prognostic biomarker.

MATERIALS AND METHODS

Gene Expression and Survival Analysis
TIMER?2.0 online tool (http://timer.comp-genomics.org/) was used
to compare the expression of NUTF2 between tumor and adjacent
normal tissues across 33 types of cancers (12). We utilized the
“Survival Map” module of GEPIA2.0 (http://gepia2.cancer-
pku.cn/#index) database to investigate the association between
NUTE2 expression and survival status (13). The NUTF2 median
expression was set as the cutoff value in determining the high or low
expression of NUTEF2.

Genetic Alteration and

DNA Methylation Analysis

Genetic alteration analysis of NUTF2 was conducted through the
“TCGA Pan-Cancer Atlas Studies” dataset in the cBio Cancer
Genomics Portal (http://cbioportal.org) (14). The genetic
alteration frequency can be visualized in the “Cancer Types
Summary” sub-menu. In order to evaluate the NUTF2 DNA
methylation pattern, we used the GSCA (Gene Set Cancer
Analysis) (http://bioinfo.life.hust.edu.cn/GSCA/#/) (15)
approach to evaluate the impact of the DNA copy number
amplification and methylation status on NUTF2 expression.

Co-Expression Analysis of NUTF2 in

Pan Cancers

The “Gene_Corr” module in the TIMER2.0 online resource was
applied to investigate the association between NUTF2 expression

and proliferation markers (PCNA and MKI67), EMT markers
(VIM, TWIST1, SNAIL, SNAI2, FN1, and CDH2), and immune
marker gene sets (CD86, CSF1R, CCL2, CD68, IL10, NOS2,
IRF5, PTGS2, CD163, VSIG4, and MS4A4a) in various cancer
types. Spearman’s correlation test was conducted to calculate the
p-value. p < 0.05 was considered significant.

The “Similar Genes Detection” module in the GEPIA2.0
platform was used to identify the top 200 genes that are most
associated with NUTF2 expression. The correlations between
NUTE?2 and the top 5 genes (COX4NB, E2F4, NAEI, NIP7, and
ORC6L) in pan-cancer were calculated in the “Correlation
Analysis” module of the GEPIA2.0 online resource.

Immune Cell Infiltration Analysis

We used the R package “estimate” (16) to calculate the stromal/
immune/estimate score of each sample. The correlations between
NUTEF2 expression and stromal/immune/estimate scores were
calculated by Spearman’s test. The association between TILs
(tumor-infiltrating lymphocytes) abundance and NUTF2
expression was inferred by using the TISIDB online platform
(17). To investigate the impact of NUTF2 on cancer-associated
fibroblast infiltration, the TIDE, XCELL, MCPCOUNTER, and
EPIC algorithms were performed for immune infiltration
estimations. Purity-adjusted Spearman’s rank correlation test
was conducted to calculate the p-value. p < 0.05 was
considered significant.

Protein-Protein Interaction Analysis

The NUTE2 potential binding partners were identified by using
the STRING database (18) with the following parameters:
meaning of network edges (evidence), active interaction
sources (experiments), minimum required interaction score
(low confidence), and max number of interactors to show (no
more than 50 interactors). By this way, a total of 50 NUTF2
interactors were obtained.

Functional Analysis of the Co-Expression
Genes of NUTF2

A total of 200 genes that most significantly associated with NUTF2
expression were performed by the pathway enrichment analysis via
DAVID bioinformatic resources (https://david.ncifcrf.gov/tools.
jsp) (19, 20). In this way, the underlying biological themes of the
top 200 genes can be obtained.

RESULTS

Expression Pattern and Survival Analysis
of NUTF2

To explore the mRNA expression profile of NUTF2 across all
TCGA tumors, we utilized the “Gene_DE” module of the
TIMER2.0 web tool. Compared with corresponding adjacent
normal tissues, it was found that the expression level of
NUTEF2 was upregulated in CESC (cervical squamous cell
carcinoma and endocervical adenocarcinoma), GBM
(glioblastoma multiforme), PCPG (pheochromocytoma and
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paraganglioma) (p < 0.05), PRAD (prostate adenocarcinoma),
THCA (thyroid carcinoma) (p < 0.01), BLCA (bladder urothelial
carcinoma), BRCA (breast invasive carcinoma), CHOL
(cholangiocarcinoma), COAD (colon adenocarcinoma), ESCA
(esophageal carcinoma), HNSC (head and neck squamous cell
carcinoma), KIRC (kidney renal clear cell carcinoma), KIRP
(kidney renal papillary cell carcinoma), LIHC (liver
hepatocellular carcinoma), LUAD (lung adenocarcinoma),
LUSC (lung squamous cell carcinoma), READ (rectum
adenocarcinoma), STAD (stomach adenocarcinoma), and
UCEC (uterine corpus endometrial carcinoma) tissues
(p < 0.001) (Figure 1A), suggesting the oncogenic role of
NUTF2 in these cancers.

We further investigated the prognostic significance of NUTF2
among the 33 different types of cancers. As shown in Figure 1B,
high NUTF2 expression was correlated with poor overall survival
(OS) in ACC, HNSC, KIRC, LGG, LIHC, LUAD, and MESO
(p < 0.05) (Figure 1B). Moreover, the disease-free survival (DFS)
analysis suggested that upregulation of NUTF2 was significantly
linked to poor prognosis of HNSC, KIRC, LGG, LUSC, PAAD,
SARC, and UCS (p < 0.05) (Figure 1C). These results indicated

that NUTF2 is an independent prognostic marker of both DFS
and OS in HNSC, KIRC, and LGG.

Genetic and Epigenetic Alteration Analysis
We explored the genetic alterations of NUTF2 in TCGA pan-
cancer atlas studies via the cBioPortal online resource. It was
found that the overall genetic alteration frequency of NUTF2 was
relatively low in cancers (Figure 2A). The highest alteration
frequency of NUTF2 presented in BLCA was 3.65%, and the
“copy number amplification” type was the primary form (1.95%).
By contrast, no genetic changes were observed in GBM, CRC,
UVM, CHOL, KICH, KIRC, MESO, THYM, and LGG. By taking
the overexpression of NUTF2 in various types of cancers into
consideration, we focused on the copy number amplification
variation of the NUTF2 DNA fragment. It was found that higher
amplification frequency occurred in ESCA (2.19%), BLCA
(1.95%), ACC (1.1%), and KIRP (0.71%). Additionally, we
explored the potential associations between copy number
amplification and NUTF2 expression across the 33 types of
cancers. As shown in Figure 2B, we observed a positive
correlation among 27 types of cancers (Figure 2B) (FDR < 0.05).
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FIGURE 1 | Expression profile and prognostic value of NUTF2 in TCGA cohorts. (A) The expression of NUTF2 in different types of cancers or cancer subtypes was
analyzed via the TIMER2.0 online resource. *p < 0.05; *p < 0.01; **p < 0.001. (B) Overall survival analysis of NUTF2 across the 33 types of cancers. (C) Disease-
free survival of NUTF2 in different cancer types.

Frontiers in Oncology | www.frontiersin.org

January 2022 | Volume 12 | Article 829389


https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

Lietal

NUTF2 Pan-Cancer Analysis

NUTF2

(o] on

A TCGA, Pan-Cancer Atlas
> © Mutation ® Structural variant
2 3%
g ® Deep deletion © Multiple alterations
E 2% © Amplification
c
S
T 1%
oS
< 0%
o
a o a [ ) 2
3268383832382 3882¢83¢8¢¢
o W 2 5 aa o % ¥ 2R ELR - 3% F
B . i . -1 0 1
Correlation of CNV with mRNA expression R B ;m FDRO <0.05 50.05
&
Elo0Q00c0000000000000000000000
z
Q< <O 40 < oo oaoo > 0000 O = <O ® O T
830802038 E238738333202300858583858¢
mmoocowPEXXYIIIY ffirxogsomrES Sax3-~9¢F
ACC BLCA BRCA
Cor=052 [ Cor=088 [@w) || Cor=061 _ fem
= FDR=1.1e-05 ™= FDR=8e-36 ™** FDR = 2.76-110"™"
3
€
=)
c
=
2
o
(]
0 -0.5 -1.0
Correlation between methylation and mRNA expression R ] FDR © <0.05 () >0.05
N
=
2(00Q0000000000000000000000
a T a aaaq = = o a n
§50823898E8538¢32252803 53828238
a5880890fgxe 2333 FEUSERLES2E5a¥3896E
ACC ESCA
Cor=-034 Eor=020 T Ty 1]
FDR =2.6¢-03 FDR=68e5 s
58 . 1
8%
28
2

FIGURE 2 | Genetic and epigenetic alteration of NUTF2 in different types of tumors. (A) Mutation features of NUTF2 in TCGA tumors using the cBioPortal tool.
Structural variation indicates insertion, inversion, translocation, or complex rearrangement of relatively large segments; multiple alterations indicate that two or more
genetic alteration types occurred in specific samples. (B) The association between copy number variation and NUTF2 expression was analyzed via the GSCA
approach. (C) Correlation between NUTF2 expression level and DNA methylation across 33 types of cancers.

Promoter DNA methylation is one of the crucial epigenetic
mechanisms for gene expression regulation and cancer progression
(21, 22). We used the GSCA (gene set cancer analysis) approach to
evaluate the NUTF2 DNA methylation pattern. The significant
negative correlation between NUTF2 expression level and DNA
methylation was identified in 25 types of cancers (Figure 2C) (FDR
< 0.05). According to the above data, we reason that DNA copy
number amplification and methylation are the two underlying
causes of NUTF2 upregulation in cancers.

Co-Expression Analysis of NUTF2

To address the possible role of NUTF2 in cancers, gene co-
expression network analysis was performed. Gene co-expression
analysis is an effective way to delineate gene function and
regulatory association (23, 24). In this study, we firstly focused
on the potential associations between NUTF2 and the classic
proliferation markers, including MKI67 and PCNA (25). As is
shown in Figure 3A, the corresponding heat map showed that

NUTE2 was positively correlated with the expression of MKI67
and PCNA in 16 tumor types, such as ACC, BLCA, and BRCA
(p < 0.05) (Figure 3A). In addition, we also analyzed the
correlation between NUTF2 and the epithelial-mesenchymal
transition (EMT) markers, Vimentin (VIM), TWIST1, Snaill
(SNAI1), Snail2 (SNAI2), Fibronectin 1 (FN1), and N-cadherin
(CDH2), which were widely accepted to be involved in cancer
metastasis (26, 27). Co-expression analysis results indicated that
NUTEF2 was positively correlated with the expression of these
EMT markers among most types of cancers, especially in HNSC
(Figure 3B). These results suggested that NUTF2 may play an
important role in regulating cancer proliferation and metastasis.

Stromal and Immune Infiltration Analysis

Malignant solid tumor tissue contains not only cancer cells, but
also normal stromal, immune, epithelial, and vascular cells. It has
been reported that tumor-associated stromal and immune cells
play important roles in regulating tumor growth, metastasis, and
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drug resistance (28-32). In this study, we used the ESTIMATE
algorithm (16) to calculate the potential association between the
infiltrating stromal and immune cells and NUTF2 expression
level. It was found that NUTF2 expression was significantly
correlated with immune score, stromal score, and ESTIMATE
score in several tumor types (Figure 4A). It is noteworthy that
NUTEF2 expression level is positively associated with immune
score, stromal score, and ESTIMATE score in LGG (Figure 4A).
Previous studies indicated that high immune/stromal/
ESTIMATE scores were significantly correlated with poor
prognosis and advanced tumor grade in LGG (33), suggesting
the cancer promoting role of NUTF2 via facilitating stromal and
immune cell infiltration in LGG. In LUAD, by contrast, low
immune/stromal/ESTIMATE scores were correlated with poor
survival and high-level tumor stage (34). Interestingly, NUTF2
expression was negatively associated with immune/stromal/
ESTIMATE scores in LUAD (Figure 4A). These data suggest
the potential role of NUTF2 in regulating the tumor
microenvironment (TME).

In order to investigate the role of NUTF2 in regulating the
interaction between tumor and immune cells, we used the TISIDB
platform (17) to dissect the correlation between NUTF2 expression
and infiltrating immune cells. In most cancer types, NUTF2
expression was positively associated with infiltrated activated

CD8" T cell, central memory CD4" T cell, gamma delta T cell,
CD56bright/CD56dim NK cell and monocyte (Figure 4B). In
addition, we observed a statistically negative correlation of
NUTE2 expression and estimated type 1/17/2 T helper cell,
regulatory T cell, activated/immature/memory B cell, natural
killer cell, and eosinophil cell infiltration (Figure 4B). Infiltrating
immune cells perform distinct functions and different clinical
impacts in cancers. In KIRC, the infiltration of adaptive immune
subpopulation, including activated CD8" T cells, Tem/Tcm CD8*
cells, and Tem CD4" cells, showed anti-tumor activity and
associated with good prognosis. By contrast, monocytes,
regulatory T cells (Tregs), activated dendritic cells, and gamma
delta T cells (Tgd) played a cancer-promoting role in KIRC (35). In
the present study, we found that NUTF2 expression was positively
associated with infiltrating Tgd, monocyte, and activated dendritic
cells, while negatively correlated with Tem CD4" cell infiltration in
KIRC (Figure 4C). These results imply that NUTF2 promotes
tumor progression by regulating Tgd, monocyte, activated dendritic
cells, and Tem CD4" cell infiltration in KIRC.

Correlation Analysis Between NUTF2
Expression and Immune Cell Markers
Cancer-associated fibroblasts (CAFs), a kind of highly
heterogeneous and hyper-activated fibroblasts, have been
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demonstrated to promote tumor initiation, migration,
inflammation, and drug resistance via the secretion of
chemokines and cytokines, such as VEGFA and CXCL12 (36-
38). In the present study, we used four different algorithms
(TIDE, XCELL, MCPCOUNTER, and EPIC) to investigate the
correlation between NUFT2 expression and infiltrating cancer-
associated fibroblast. It was found that the number of infiltrating
cancer-associated fibroblast was positively associated with the
expression level of NUFT2 in CESC, ESCA, HNSC, KIRC,
THCA, and UVM (appeared in at least 3 out of 4 algorithms)
(p < 0.05) (Figures 5A, B). In addition, we also analyzed the
relationship between NUTF2 expression and marker genes of

immune cells, including monocyte, tumor-associated
macrophage (TAM), M1 macrophage, and M2 macrophage.
The results revealed that the expression of most markers of
monocyte, TAM, M1 macrophage, and M2 macrophage were
significantly associated with NUTF2 expression in COAD, KIRC,
LGG, LUAD, PRAD, and THYM (p < 0.05) (Figure 5C).
Specifically, it was found that CD86 and CSFIR of monocyte;
CCL2, CD68, and IL10 of TAMs; NOS2, IRF5, and PTGS2 of M1
phenotype; and CD163, VSIG4, and MS4A4a of M2 phenotype
were negatively correlated with NUTF2 in THYM (p < 0.05)
(Figure 5D). Further investigation is needed to confirm the role
of NUTF2 in regulating TME.
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FIGURE 5 | Correlation analysis between NUTF2 expression and immune cell markers. (A) The potential association between NUTF2 expression level and CAF
infiltration was explored by different algorithms. (B) The correlations between NUTF2 expression and infiltrated CAF in BRCA, THCA, and THYM were analyzed by
EPIC or TIDE algorithm. (C) Correlation analysis between NUTF2 expression and immune marker genes across all types of cancers in TCGA. (D) The correlations
between NUTF2 expression and marker genes of monocyte, TAMs, M1 Macrophage, and M2 Macrophage in THYM.

Enrichment Analysis of NUTF2
Co-Expression Genes

In an attempt to investigate the potential molecular mechanism of
NUTEF2 in tumorigenesis, we performed the protein-protein
interaction (PPI) network analysis via the STRING online tool.
As shown in Figure 6A, a total of 50 NUTF2-binding proteins were
obtained in the STRING dataset with experimental evidence
(Figure 6A). Furthermore, we merged the expression data of all
TCGA tumors and identified the top 200 genes that most associated
with NUTF2 expression. The top 5 genes COX4NB (R =0.61), E2F4
(R=0.55), NAEI (R=0.55),NIP7 (R=0.56),and ORC6L (R =0.56)
are shown in Figure 6C. In addition, the heat map revealed positive
correlations between NUTF2 expression and the top 5 genes in the
vast majority of cancer types (Figure 6B). Interestingly, recent
studies showed that the higher expression of COX4NB, E2F4, and
NAE1 was associated with poor prognosis in various cancers,

suggesting its cancer-promoting role (39-43). Meanwhile,
functional enrichment analysis of the top 200 genes identified a
number of cancer-related pathways, such as spliceosome, cell cycle,
and RNA transport (Figure 6D). We also focused on the gene
ontology related to biological process, cell component, and
molecular function. It was found that “anaphase-promoting
complex-dependent catabolic process” and “protein binding”
might be involved in the process of NUTF2 on cancer
pathogenesis (Figure 6E). These results revealed the possible
molecular mechanism of NUTF2 in tumorigenesis.

DISCUSSION

In this study, the expression of NUFT2 was investigated across the
33 types of cancers in the database of TCGA. Compared with
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corresponding adjacent normal tissues, the expression of NUTF2
was significantly upregulated in 19 cancer types of TCGA.
Interestingly, we also observed a differential expression of
NUTF2 between HNSC-HPV+ and HNSC-HPV-, evidently
raising the potential association between HPV-related HNSC and
NUTE2. Similar to tobacco and alcohol, human HPV infection was
considered as a risk factor of HNSC (44). Compared with HPV-
negative HNSC, the HPV-positive HNSC shows increased
sensitivity to radiation and chemotherapy and better prognosis
(45-48). It was reported that the tonsillar crypt epithelium is
vulnerable to HPV infection and causes the integration of HPV
DNA to host genome, resulting in the dysregulation of the
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FIGURE 6 | Enrichment analysis of NUTF2 co-expression genes. (A) Protein—protein interaction network was analyzed via the STRING online resource. (B) The heat
map of correlation between NUTF2 and the top 5 genes in different cancer types. (C) Correlation of the top 5 genes and NUTF2 in all the cancer samples. (D) KEGG
pathway analysis of the top 200 genes that associated with NUTF2 expression. (E) Gene ontology analysis of the top 200 genes.

oncoproteins E6 and E7 in host cells. The activation of E6
induces the degradation of p53, leading to the defects in DNA
repair and causing genomic instability of the epithelium cells.
Additionally, accumulated E7 protein interacts and inactivates
the tumor suppressor RB, resulting in uncontrolled cell division
and proliferation (49, 50). Compared with HPV-negative HNSC,
the expression of NUTE2 is decreased in HPV-positive HNSC,
raising the possibility that NUTF2 may be involved in the
pathologic process of HPV-related HNSC via regulating the E6/
E7 signaling pathways.

Breast invasive carcinoma (BRCA) was considered as a
heterogeneous disease and can be divided into four classical
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subtypes based on the expression of ER, PR, and HER2, namely,
HER2-enriched, basal-like, Lumina A, and Lumina B (51). Among
these four subtypes, HER2-enriched and basal-like BRCA are more
aggressive and have a worse prognosis than the other two subtypes
(52). Interestingly, compared with Lumina A and Lumina B
subtypes, the higher expression of NUTF2 was found in HER2-
enriched and basal-like BRCA. Meanwhile, the Lumina A subtype
displayed lower expression of cell proliferation-related genes and
showed better prognosis as compared to the Lumina B BRCA (52).
In our study, Lumina B tumors have higher NUTF2 expression than
Lumina A. These results indicate that NUTF2 may play an
important role in the progression and prognosis in breast cancer.
To further investigate the role of NUTF2 in BRCA, we analyzed the
associations between NUTF2 and the classic proliferation markers
(MKI67 and PCNA) and EMT markers (VIM, TWIST1, SNAII,
SNAI2, FN1, and CDH2). It was found that the expression of
NUTE2 was positively correlated with PCNA and MKI67 only in
Lumina A tumors. Additionally, the expression of TWIST1, SNAII,
EN1, and CDH2 also showed significant association with NUTF2,
suggesting that NUTF2 may play a major tumor-promoting role in
the Lumina A BRCA subtype.

TME is a complicated and multilevel network of interactions
between tumor cells and the surrounding components, including
endothelial cells, fibroblasts, stromal cells, and immune cells.
Benefiting from the development of next-generation sequencing
technologies, the composition characteristics of infiltrated
immune cells can be dissected in common cancers. Recently,
Pornpimol and colleagues estimated 28 subtypes of infiltrated
immune cells in 20 solid cancers via the GSEA strategy (35).
Consistent with previous studies (53-55), the infiltration of
activated CD8" T cells and effector memory CD8" T cells
displayed anti-tumor effect and significantly associated with
good prognosis in most types of cancers. By contrast,
infiltrated MDSCs, Treg, and monotype showed a cancer-
promoting role and correlated with poor survival. Additionally,
the function of activated B cells and memory B cells varied in
different cancer contexts. It was discovered that infiltration of
these two types of immune cells exhibits a pro-tumor role in
breast cancer, but shows anti-tumor effects and associated with
satisfied prognosis in lung adenocarcinoma. The infiltrated
immune cells function in a context-dependent manner, which
means that a certain type of immune cell may display a beneficial
prognostic effect in one cancer type but a harmful effect in
another malignancy (56, 57). In the present study, we discovered
that the expression of NUTF2 was negatively associated with the
infiltrated MDSCs in HNSC, LUAD, LUSC, and SKCM. By
taking the pro-tumor role of MDSCs in these four types of
cancers into consideration, NUTF2-mediated MDSC infiltration
may be a crucial cause for its oncogenic effect.

Cancer-associated fibroblasts (CAFs) are a subpopulation of
hyper-activated fibroblasts within TME. It has been demonstrated
that normal fibroblasts display inhibitory effects on the proliferation
and motility ability of cancer cells (58). The exposure of normal
fibroblasts to cancer-associated factors and TME stimulation, such
as hypoxia stress, enhanced energy reprogram and activation of
fibroblasts. Among numerous cancer-derived factors, IL6, TGFf,

and PDGF are the widely accepted fibroblast-activating factors that
promote the activity of downstream signaling pathway, such as the
SMAD and NF-kB signaling (59, 60). Compared with normal
fibroblasts, cancer-associated fibroblasts express increased
markers, such as FAP, PDGFRa, and aSMA, which have been
used as biomarkers to isolate CAF population from the tumor tissue
(36). It was reported that CAFs display a pro-tumorigenic effectand
regulate tumor metastasis via secreting growth factors and
remodeling the extracellular matrix (ECM), and are involved in
tumor mechanics, drug resistance, angiogenesis, and inflammation
(36). However, recent studies suggested that CAFs display
phenotypic and functional heterogeneity. Heather and colleagues
reported that two CAF subpopulations can be distinguished by the
expression of CD146. The CD146~ CAFs inhibit the expression of
estrogen receptor and response to estrogen, resulting in tamoxifen
resistance, while the CD146" CAFs provide durative estrogen-
dependent proliferation and tamoxifen sensitivity of breast cancer
cells (61). In our study, we found that the infiltration of CAFs was
significantly associated with NUTF2 expression level in BRCA,
TGCT, THYM, CESC, ESCA, HNSC, KIRC, THCA, and UVM
(appeared in at least 3 out of 4 algorithms), suggesting that NUTF2
may participate in the transformation and activation of CAFs.

Gene dysregulation is a hallmark of cancer progression.
Abnormal gene expression can be achieved in several ways,
such as DNA mutation or copy number variation, promoter
methylation, histone epigenetic modification, miRNA regulation,
and m6A modification. In the present study, we revealed that the
expression of NUTF2 was evaluated in 19 types of cancers. It was
known that DNA copy number amplification and methylation
were the two underlying causes for NUTF2 upregulation in
cancers. However, the frequency of DNA amplification is
relatively low in cancers, and other possible explanations for
NUTF2 dysregulation need to be explored.
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