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Proton beam therapy (PBT) is often more attractive for its high gradient dose distributions
than other treatment modalities with external photon beams. However, in thoracic lesions
treated particularly with pencil beam scanning (PBS) proton beams, several dosimetric
issues are addressed. The PBS approach may lead to large hot or cold spots in dose
distributions delivered to the patients, potentially affecting the tumor control and/or
increasing normal tissue side effects. This delivery method particularly benefits image-
guided approaches. Our paper aims at reviewing imaging strategies and their
technological trends for PBT in thoracic lesions. The focus is on the use of imaging
strategies in simulation, planning, positioning, adaptation, monitoring, and delivery of
treatment and how changes in the anatomy of thoracic tumors are handled with the
available tools and devices in PBT. Starting from bibliographic research over the past 5
years, retrieving 174 papers, major key questions, and implemented solutions were
identified and discussed; the results aggregated and presented following the
methodology of analysis of expert interviews.
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1 INTRODUCTION

Radiation therapy (RT) is an essential and effective tool in the curative treatment of different
anatomical sites. Unfortunately, with photon RT, safe dose escalation, delivery of concomitant
systemic therapy, or re-irradiation of the recurrent disease may not be feasible due to radiation-
induced toxicities. In contrast, the finite range of proton beams in tissues offers unique dosimetric
advantages that theoretically allow escalating the target dose, potentially prolonging survival while
minimizing exposure of surrounding tissues and consequently radiation-induced toxicity rate.

This theoretical advantage has led to the widespread adoption of proton beam therapy (PBT)
worldwide for a wide variety of thoracic malignancies, including lung cancer, esophageal cancer,
mesothelioma, and thymic cancer. At the state of the art, the tremendous potential of PBT for
treating thoracic cancers is only beginning to be appreciated.

PBT provided a lower total toxicity burden, particularly pulmonary, cardiac, and hematologic
toxicity, within the context of previous attempts at dose escalation for lung and esophageal cancer
(1). Similarly, for mesothelioma patients, the physical properties of proton therapy result in better
sparing of normal tissues, particularly in treating the pleura, in both post-pneumonectomy and
lung-intact settings. There are drastic dose reductions to the contralateral lung, heart, liver, kidneys,
and stomach (2). Re-irradiation, advanced disease requiring extensive cardio-pulmonary irradiated
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volumes, and younger patients may likely benefit from modern
PBT (3). New techniques like stereotactic body radiation therapy
(SBRT) and PBT are now increasingly adopted as the only radical
treatment for small solitary lung tumors (4) and represent the
most used non-surgical modality in treating lung cancers,
permitting the improvement of treatment outcomes and
favorable toxicities.

Moreover, treating thoracic cancers involves solving most
technical and technological imaging, treatment plan, delivery,
and adaptive problems. Several issues are relevant for improving
the efficacy and safety of thoracic moving tumors or tumor
shrinkage/anatomical changes during the treatment, such as the
type of online imaging and the vulnerability of protons to
inherent heterogeneities in the beam path. Therefore, there is
an enhancing need to perform adaptive planning, representing
the key to more comprehensive PBT application (1).

New approaches to combining PBT and immunotherapy (5)
demand creative investigation for introducing ultrahigh dose-
rate Flash, GRID/lattice, and microbeam delivery approaches in
PBT (6–8). The maturity of technologies, including treatment
planning and image-guided technology, is the critical issue for
realizing new PBT treatment strategies.

This work focuses on imaging and motion-related devices
used for PBT treatment simulation, planning, positioning,
adaptation, monitoring, and delivery in thoracic tumors.
2 MATERIALS AND METHODS

2.1 Literature Search Strategy
A PubMed search was performed using the query string to
identify the publication related to proton therapy in thoracic
tumors, mainly represented by small-cell lung cancer (SCLC)
and non-small cell lung cancer (NSCLC), mesothelioma,
thymoma, and esophageal cancer. These thoracic malignancies
are challenging from the treatment point of view because of
relevant tissue heterogeneities, the presence of moving organs
and targets, and the limited availability of onboard soft tissue
imaging devices.

We included the following keywords/strings in the PubMed
query search:

•“proton therapy” AND “thoracic”;

•“proton therapy” AND “non-small-cell-lung-cancers”;

•“proton therapy” AND “small-cell-lung-cancer”;

•“proton therapy” AND “mesothelioma”;

•“proton therapy” AND (“thymoma” OR “thymic malignancy”);

•“proton therapy” AND “esophageal cancer”.

Filters are from June 3, 2016 to June 3, 2021. The research was
restricted to the last 5 years to include only the keywords in the
title and/or abstract. The search was done on the June 3, 2021.

2.2 Study Selection
Two authors independently reviewed titles and abstracts to
decide the study inclusion. Full articles were retrieved when
Frontiers in Oncology | www.frontiersin.org 2
the abstract was considered relevant. Only papers or abstracts
published in English were considered.

Papers were selected if they contained information about the
treatment of thoracic tumors with PBT and gave answers or
inside view on the following medical physics questions:

1. Which is the imaging approach for simulation, planning,
positioning, adaptation, monitoring, and delivery in PBT for
thoracic tumors?

2. How are handled changes in the anatomy of thoracic tumors
with the available tools and devices in PBT?

The data were summarized in a database with the following
issues: first author, journal, year, title.

Data analysis and interpretation rely on Bogner and Menz’s
(9) related to Expert interviews.
3 RESULTS

3.1 Description of Included Studies and
Inclusion Criteria
Based on the reported PubMed/Medline search, 190 papers and
abstracts were identified. The results are represented in Figure 1.
Substantial growth was observed looking at the included papers
through the years. The number of papers related to 2021 was not
complete because the inclusion criteriawere limited to June 3, 2021.

Out of the 190 records, 16were excluded as duplicates. 73papers
of 174 records screenedwere excluded for the following reasons: not
inherent (#73) to the addressed questions. Out of the 102 full-text
articles assessed for eligibility, 31 full-text articles were selected
according tomedical physics-related questions 1 and 2 described in
paragraph study selection inMaterial and Methods.

The following groups were obtained according to the typical
PBT workflow phases in a clinic (see Figure 2): simulation (# 24),
planning (#9), treatment setup (#13), adaptation (#8), motion
monitoring (#6), and treatment delivery (#6). Papers that give
information about two or more groups were counted once for
each group.

Additional subgroups related to subphases are identified in
Figure 2 as reported in Results.

3.2 Simulation
In thoracic tumors, if necessary, respiratory-gated or breath-hold
radiation therapy techniques are used to accommodate tumor
motion; however, most patients are treated with free-breathing,
which is the more efficient technique (10). According to this, we
have reported simulation imaging approaches and motion
handling methods in agreement with the international
guidelines in particle therapy thoracic malignancies (11).

3.2.1 Setup
Patients are mostly immobilized supine in an upper-body cradle
with arms overhead (12). A small Vac-Lok cushion is used on a
so-called wing board to stabilize the arms and the head. The
pelvis and legs are stabilized with larger vacuum bags or directly
positioned on the couch. Patients lay on the table with a gap
April 2022 | Volume 12 | Article 833364
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between the head and pelvic vacuum bags to minimize material
in the beam path (13, 14). The type of cushions is critical because
they could introduce uncertainties in the alignment of different
tissues along the beam path (15).

Significant internal motion is accounted for by utilizing
various measures, including 4-dimensional (4D) CT imaging
and abdominal compression, and/or through the placement of
internal fiducials at the discretion of the treating radiation
oncologist. Sometimes abdominal compression devices are
reported (16).

3.2.2 Imaging for Simulation
The free-breathing patients underwent CT simulation with 4D-
CT to account for respiratory motion with deformation (12, 15,
17–24). Regarding the motion assessment, a tumor motion range
Frontiers in Oncology | www.frontiersin.org 3
less than 5 mm is considered acceptable for free-breathing
delivery (15). Patient respiratory waveforms were monitored
throughout the procedures and recorded with a respiratory
gating system (14, 17, 19, 20, 25–27). Alternatively, to mitigate
intra-fractional motion in NSCLC patients, visually guided
voluntary DIBH CT images are acquired (26, 28–32).

3.3 Planning
3.3.1 Contouring and Plan Evaluation
The use of 18F-fluorodeoxyglucose-PET/computed tomography
(CT) is well established in lung cancer and several other thoracic
malignancies. Simone et al. (33) describes the expected future
roles of PET/CT for thoracic tumors. In the free-breathing cases,
the gross tumor volume (GTV) is often defined based on all
available clinical information in the average intensity projection
FIGURE 1 | Numbers of included and excluded papers derived from the PubMed search related to PBT in thoracic tumors.
FIGURE 2 | Typical pretreatment and treatment PBT workflow with main subitems/tasks for motion management and anatomical change of organs and tumors.
The dashed blocks indicate the online and off-line adaptation tasks that may be optionally applied one or more times during treatment. The blue arrow indicates
the number of fractions in which the inter- and intra-fraction evaluation for motion management is applied.
April 2022 | Volume 12 | Article 833364
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reconstruction images derived from all breathing phases of the
4D-CT (19–21, 25, 34). The plan is then generated on an
averaged 4D-CTs with possible density overwrites. The method
reported by Fracchiolla et al. (23) is to create internal target
volume (ITV) on the free-breathing CT as the union of all CTVs
contoured on each phase of the 4D-CT. The plan is calculated on
the free-breathing CT.

3.3.2 Range Uncertainty
In selecting imaging CT for planning, the uncertainty related to
the proton-stopping-power conversion of the Hounsfield units
plays an essential role. Currently, algorithms using single energy
CT photon to proton stopping power calculations implement a
3%–3.5% uncertainty for each centimeter (cm) of beam path
length (15). However, for planning purposes, one technical
advance that undoubtedly may improve proton treatment for
NSCLC is the employment of dual-energy CT (DECT) or other
techniques that reduce range uncertainty for treatment delivery
(35, 36).

3.3.3 Special Approaches
Incorporating 4D-CT ventilation imaging into functional proton
therapy is feasible (37). In intensity-modulated proton delivery,
the functional proton plans are adequate to further preserve
high-functioning lung regions without degrading the PTV
coverage. This approach is feasible in a subset of patients with
breathing motion limited to 5–7 mm from CT0 (inhalation) to
CT50 (max exhalation) (25, 37).

Sala et al. (32) propose high-frequency percussive ventilation
(HFPV) to reduce motion impact drastically. This approach
employs high-frequency low tidal volumes (100–400 bursts/
min) to provide respiration in awake patients.

3.3.4 Motion Monitor Devices
Different motion monitoring devices are reported used in
combination with X-ray imaging devices adopted for planning,
setup, and delivery in PBT. They are classifiable according to the
type of implemented technology in surface-guided radiotherapy
(SGRT) using optical systems, spirometry, and markers.

The SGRT systems include commercial ones such as the
Varian Real-time Position Management system (Varian
Medical Systems, Palo Alto, CA) (19, 37), Vision RT (23), or
in-house solutions (10). The spirometric systems included DIBH
using the SDX system (Dyn’R-SDX, version 2.06) (30) and the
Active Breathing Coordinator (ABC, Elekta Oncology Systems
Ltd., Crawley, West Sussex, UK) (23). Several authors report
using gold fiducial markers implanted by bronchoscopy (27, 28)
or endobronchial ultrasound guidance (13). The patient’s
respiratory stability was evaluated by studying the marker
motion as a surrogate of tumor displacement using X-ray
imaging devices. Elhammali et al. (12) reported that a
minimum of 3 days for a trans-thoracic approach or 2 days for
a bronchoscopy approach were required to allow fiducials to
stabilize before simulation. Another reported system is the Z-733
V respiratory gating system (Anzai Medical, Tokyo, Japan) (17,
20, 22, 36, 38, 39).
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3.4 Treatment Setup
3.4.1 Image Acquisition and Comparison With
2D/3D Images
For standard treatments in patients with thoracic tumors, daily
patient alignments are achieved by matching fiducial markers or
vertebral bones with 2D/2D matching methods (10, 12, 13, 16,
17, 21, 27, 28, 34, 40). The setup is continued until the eventual
fiducial markers on the digitally reconstructed radiographs are
agreed within 2 mm (13, 28).

The 2D/2D fusion approach limits the visibility of soft tissues
that is crucial for PBT beams and ensures adequate treatment plan
delivery (21). The number of pencil beam scanned proton therapy
(PBSPT) facilities equipped with cone-beam computed tomography
(CBCT) imaging treating thoracic indications is constantly rising
(34, 39, 40), thus allowing the implementation of dose summation
and adaptive treatments. To overcome the absence of onboard 3D
images, weekly CT images are acquired to generate verification and
adaptive plans (18, 23).

3.5 Treatment Adaptation
Forsthoefel et al. (16) reported that treatment setup and delivery
are verified with regularly scheduled quality assurance CT scans
during treatment. Kharod et al. (13) reported that patients
underwent verification CT scans on days 1, 2, 4, and 6 of
treatment to confirm appropriate alignment. Chen et al. (41)
did analyze the correlation between anatomic change and the
need to adopt adaptive radiotherapy (ART).

3.5.1 Off-Line Adaptive
Iwata et al. (28) reported that CT permits evaluating tumor
shrinkage at the end of PBT. Replanning was conducted if beam
leakage to thedistal sidedue to tumorvolumechange (shrinkage)or
body mass reduction was significant. The adaptive replanning was
performed when the esophagus and spinal cord dose increased and
exceeded the limit dose and/orwhen thedose to the lungadjacent to
the tumor increased by about 10%.

3.5.2 Online Adaptive
The online adaptive protocol was reported by (29) based on plan
re-optimization using a fast but limited accuracy analytical
algorithm that can still improve the overall treatment dose for
patients with cancer in the lung and HN regions. Nevertheless,
no online adaptive protocol was reported in the literature in the
papers selected for this study.

3.6MotionMonitoring and Treatment Delivery
In thoracic tumors, respiratory-gated PBT combined with
image-guided techniques enables adaptive plan implementation
(28). Abdominal surface motion is used as a surrogate for tumor
motion, and the beam is turned on only when the monitored
respiratory phase falls within the predefined gating window (17).

4 DISCUSSION AND CONCLUSIONS

To fully realize the potential of PBT for thoracic cancer,
extensive improvements are needed in all the image-related
aspects of the treatment process, from simulation, planning
April 2022 | Volume 12 | Article 833364
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algorithms, and volumetric image guidance to real-time
tracking and treatment adaptation.

For complicated anatomy, intensity-modulated PBT should
be considered with appropriate motion management (27). For
centrally located lesions and re-irradiation, volumetric imaging is
crucial for accurate delivery and reducing the PTV margins.

Our review of selected literature highlighted some barriers for
treatingmoving targetswith significant tissueheterogeneity and the
technologic efforts underway to overcome these challenges for
thoracic malignancies. One of the most important of these was
the lackof 3Dvolumetric imaging in the PBT facilities for treatment
setup and adaptation. Because visualizing tumors with non-
volumetric 2-dimensional images is challenging for PBT, fiducial
markers are frequentlyadopted, although they represent an invasive
procedure and are not always feasible. When tumors are close to
bony structures, these could be used as a landmark (11).

In PBT, 4D-CT, ITV generation, and free-breathing are
frequently reported approaches preferred to DIBH. The free-
breathing approach applies mainly when the tumor displacements
are limited up to 5 mm.

SGRT PBT is a reported option based on repeated CBCT or
CT analysis. In photon beam radiotherapy, the availability of 4D-
Frontiers in Oncology | www.frontiersin.org 5
CBCT and 4D-CT allows assessing the correlation between the
tumor/hepatic dome and skin displacements, enabling an
appropriate intra- and inter-fraction motion management (42).
The spirometry represents the most extensively adopted solution
in PBT.

DECT is considered of interest for a more precise and
accurate estimation of range uncertainties but is not currently
clinically applied.

Adopting an online adaptive strategy demands onboard setup
imaging (CBCT for generating synthetic CT) or CT on-rail and
dedicated software, which permits the adaptation and an in silico
plan quality assurance.
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