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Background: The malignant probability of MRI BiRADS 4 breast lesions ranges from 2%
to 95%, leading to unnecessary biopsies. The purpose of this study was to construct an
optimal XGboost prediction model through a combination of DKI independently or jointly
with other MR imaging features and clinical characterization, which was expected to
reduce false positive rate of MRI BiRADS 4masses and improve the diagnosis efficiency of
breast cancer.

Methods: 120 patients with 158 breast lesions were enrolled. DKI, Diffusion-weighted
Imaging (DWI), Proton Magnetic Resonance Spectroscopy (1H-MRS) and Dynamic
Contrast-Enhanced MRI (DCE-MRI) were performed on a 3.0-T scanner. Wilcoxon
signed-rank test and c2 test were used to compare patient’s clinical characteristics,
mean kurtosis (MK), mean diffusivity (MD), apparent diffusion coefficient (ADC), total
choline (tCho) peak, extravascular extracellular volume fraction (Ve), flux rate constant (Kep)
and volume transfer constant (Ktrans). ROC curve analysis was used to analyze the
diagnostic performances of the imaging parameters. Spearman correlation analysis was
performed to evaluate the associations of imaging parameters with prognostic factors and
breast cancer molecular subtypes. The Least Absolute Shrinkage and Selectionator
operator (lasso) and the area under the curve (AUC) of imaging parameters were used
to select discriminative features for differentiating the breast benign lesions from malignant
ones. Finally, an XGboost prediction model was constructed based on the discriminative
features and its diagnostic efficiency was verified in BiRADS 4 masses.

Results:MK derived from DKI performed better for differentiating between malignant and
benign lesions than ADC, MD, tCho, Kep and Ktrans (p < 0.05). Also, MK was shown to be
more strongly correlated with histological grade, Ki-67 expression and lymph node status.
MD, MK, age, shape and menstrual status were selected to be the optimized feature
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subsets to construct an XGboost model, which exhibited superior diagnostic ability for
breast cancer characterization and an improved evaluation of suspicious breast tumors in
MRI BiRADS 4.

Conclusions: DKI is promising for breast cancer diagnosis and prognostic factor
assessment. An optimized XGboost model that included DKI, age, shape and
menstrual status is effective in improving the diagnostic accuracy of BiRADS 4 masses.
Keywords: breast cancer, BiRADS 4, diffusion kurtosis imaging, imaging marker, XGboost model
INTRODUCTION

Breast cancer (BC) is the most common cancer and a leading
cause of female mortality worldwide (1). It presents substantial
heterogeneity in histology, clinical presentation and therapy
response. Four major BC subtypes can be defined by gene
expression profiling: luminal A, luminal B, HER2-enriched,
and basal-like (triple-negative BC, TNBC) (2, 3). Among
patients with BC, recurrence-free and overall survival are
thought to be related to the histological grade, Ki-67
expression, the status of lymph node (LN), estrogen receptor
(ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2) (4).

Magnetic resonance imaging (MRI), a non-invasive modality
that provides an excellent soft-tissue contrast with high
sensitivity, is well-established for BC characterization,
treatment planning, and post-operative prognostication (5).
Dynamic contrast-enhanced MRI (DCE-MRI), which enables
detailed morphologic and haemodynamics evaluations through
pharmacokinetic modeling techniques, has been widely used for
BC diagnosis and monitoring tumor’s response to chemotherapy
(6–10). However, the diagnostic specificity of DCE-MRI for BC
varies greatly due to background parenchymal enhancement and
overlapping of the time-intensity curves between benign and
malignant lesions, which leads to unnecessary biopsies (8).
Furthermore, DCE-MRI may not be appropriate for patients
who are allergic to contrast agents or have liver or kidney
dysfunction. In vivo proton MR spectroscopy (1H-MRS)
provides molecular and biochemical information on tumor
classification based on the observation of total choline (tCho)
levels (11). However, tCho provides limited sensitivity for
differentiation between breast lesion types (12). Apparent
diffusion coefficient (ADC) derived from diffusion-weighted
imaging (DWI) assumes an ideal Gaussian distribution of
water displacement without any restriction (13, 14), it’s
another non-contrast MRI modality to assess complex tissue
microstructural features (15, 16). However, water diffusion in
living tissues is generally restricted due to the complex
total choline; BLs, breast lesions; LN,
progesterone receptor; HER2, human
the selection operator algorithm; FSE-
xation fast spin echo eXcel; EPI, Echo
g for breast assessment; PRESS, point-
radio; STIR, Short inversion-Time

2

microstructural environment, including the presence of cell
membranes and other organelles, and thus tends to deviate
from a Gaussian distribution (17). Diffusion kurtosis imaging
(DKI) follows a non-Gaussian distribution and is considered
useful for characterizing heterogeneous tumors. This modality
was introduced by Jensen et al., and included parameters of mean
kurtosis (MK) and mean diffusivity (MD) (18). In this context,
greater MK or lower MD values suggest more restrictions to
normal water diffusion and greater tissue complexity (19).
Previous DKI applications revealed its greater sensitivity over
ADC for characterizing hepatocellular carcinoma, glioma, BC,
and prostate cancer (20–23). Sun et al. observed using 1.5-T
imaging on BC that greater MK was significantly associated with
higher histological grade and elevated Ki-67 expression (24).
Similarly, our preliminary work on 3.0-T MRI revealed the
usefulness of MK for breast lesions (BLs) characterization (25).

Breast MRI findings using the Breast Imaging Reporting and
Data System (BiRADS) lexicon descriptors provide a standardized
language to define thefinal assessment categories for predicting the
likelihood of malignancy, allowing radiologists to communicate
important findings in a consistent and repeatablemanner (26, 27).
However, themalignant probability ofMRIBiRADS4 ranges from
2% to 95% (28), leading to unnecessary biopsies and even causing
huge anxiety for patients.

XGboost is a more powerful version of the Gradient Boosting
Decision Tree (GBDT) algorithm (29), in which a second-order
Taylor expansion is performed on the square loss function to
achieve better accuracy.The objective function is defined as follows:

Obj(t) ≅o
n

i=1
½gifi(xi) +

1
2
hif

2
t (xi)� +W(ft)

where W(ft) = g T +
1
2
loT

j=1w
2
j

Here gi and hi are first and second order gradient statistics on
the loss function. n represents the numbers of samples. ft(xi)
represents the regression tree functions at the t-th iteration. T
represents the number of leaves in the tree. w2

j represents L2 norm
of leaf scores. W(ft) the regularization term based on complexity of
the model (i.e. number and weight of leaf nodes), which effectively
prevents overfitting. In addition, XGboost adopts shrinking and
column subsampling techniques to improve the generalization and
learning speed of the algorithm. These advantages make XGboost a
widely accepted model in many machine learning and data mining
applications (30, 31).
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Given that MK derived from DKI is a promising imaging
marker for predicting the aggressiveness of tumors according to
previous preliminary studies (24, 25), and XGboost is a scalable
machine learning system for tree boosting. Thus, the purpose of
this study involved in larger sample size was to construct an
optimal XGboost prediction model through a combination of
DKI independently or jointly with other MR imaging features
and clinical characterization, which was expected to reduce the
false positive rate of MRI BiRADS 4 and improve diagnosis
efficiency of BC. So far, no study has reported that the XGboost
model based on DKI improves the diagnostic specificity of MRI
BiRADS 4. This information could help radiologists provide
referring clinicians with a promising prediction model to
increase the diagnostic accuracy of MRI BiRADS 4, thereby
preventing unnecessary biopsies and optimizing personalized
diagnosis and treatment.
MATERIAL AND METHODS

Patients
This study protocol was approved by our Institutional Review
Board, and written informed consent was obtained from all
patients. 120 patients (median age: 44 years, range: 17–71
years) with 158 BLs were recruited from the Department of
General Surgery of our hospital between October 2018 and June
2021. Patients were excluded based on the flowchart as shown in
Figure 1. Twenty-two patients had two or more neoplasms, and
each lesion was examined separately. 158 BLs were divided into a
training group (n=108, malignancy=53, benign=55) and a
validation group (n=50, malignancy=25, benign=25). The
training group, consisting of 6 BiRADS 2 masses, 56 BiRADS 3
masses, 12 BiRADS 4 masses and 34 BiRADS 5 masses, was used
to construct an XGboost diagnostic model. The validation group,
included 50 BiRADS 4 masses, was used to verify the diagnostic
Frontiers in Oncology | www.frontiersin.org 3
performance of the XGboost model in BiRADS 4 masses. The
BiRADS classification of MRI was evaluated based on the
morphology findings, dynamic enhancement pattern and ADC
measurement of lesion, according to the American College of
Radiology BiRADS 5th version for breast MRI (26, 27).

MRI Protocol
All MRI examinations were performed using a 3.0-T MR scanner
(GEMedical System,Milwaukee,WI, USA) with a dedicated four-
channel bilateral breast coil. Premenopausal women were
examined in the prone position after the first week of their
menstrual cycle. Following a T1-weighted FSE-XL sequence and
a T2-weighted FRFSE-XL sequence, the routine DWI and DKI by
an echo-planar imaging sequence, 1H-MRSaswell asDCE imaging
were performed. The protocol parameters were shown in Table 1.
A cubic region of interest (ROI, 1–6 cm3) was positioned inside the
lesion for 1H-MRS acquisition, with 4 saturation bands. An
automatic shimming adjustment of the unsuppressed water
signal was performed to reach water linewidths of 10–20 Hz.

MRI Analysis
All raw diffusion imaging data were post-processed using
Functool 9 software, which is integrated into the MR imager
(GE Medical System, Ruede la Minière, France). This process
automatically generates the imaging metrics of DWI and DKI.
ADCmaps were generated fromDWI using b values of 0 and 800
s/mm2, considering all 3 diffusion gradient directions. MK and
MD maps were derived from DKI using b values of 0, 500, 1,000,
1,500, 2,000, and 2,500 s/mm2, considering all 15 diffusion
gradient directions. ROIs (mean size: 94 ± 33 mm2, range: 60–
380 mm2) for each lesion were manually drawn on three different
solid neoplastic regions while avoiding necrotic tissue,
hemorrhagic components, and dominant ducts. Average ADC,
MK, and MD values were subsequently calculated. LCModel
software (Canada) was used to identify the tCho peak at 3.23
FIGURE 1 | Flowchart of the study population.
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ppm in the breast spectrum inside the lesion. DCE-MRI data
were post-processed using GenIQ software integrated into the
MR imager. Taking the standard map and modified Tofts model
as the mathematical model, the functional maps of volume
transfer constant (Ktrans), flux rate constant (Kep) and
extracellular volume fraction (Ve) were obtained in at least
two-thirds of the breast lesions.

The characteristics of the lesions included size, shape, margin,
BiRADS categories and imaging parameters were analyzed by
two senior radiologists specialized in breast imaging (5 and 10
years of diagnostic experience) and who were blinded to the
histopathological diagnosis. The size of the lesions was measured
in MR imager on the last phase in DCE-MRI. Intra-class
correlation coefficients (ICCs) were used to assess the
consistency of parameters calculated twice by the radiologists,
and “good” correlation was defined as an ICC >0.75.

Pathology and Immunohistochemistry
The histopathological findings were analyzed by two experienced
pathologists (5 and 10 years of pathologically diagnosing breast
tumors), blinded to thepatients’ clinicopathological characteristics.
BC histological grades were based on the modified Bloom–
Richardson guidelines (grades 1–2: low-grade disease, grade 3:
high-grade disease) (32). LN status was determined by the
postoperative histopathological examination. Positive results for
ER and PR expression were defined as positive staining for ≥1% of
nuclei in 10 high-power fields (33). The positive result for HER2
expression was defined as an immunohistochemical result of 3+ or
if gene amplification was observed via fluorescence in situ
hybridization (34). The Ki-67 nuclear protein reflects cell
proliferation and its expression was scored as the percentage of
tumor cell nuclei with positive immunostaining based on a
threshold value of 14% (high Ki-67 expression: >14%) (35, 36).

Statistical Analysis
The Kolmogorov–Smirnov test was initially used to analyze for
normal distributions of variables and then the Levene test to
examine the homogeneity of variance. Wilcoxon signed-rank test
and c2 test were used to evaluate continuous and categorical
Frontiers in Oncology | www.frontiersin.org 4
variables, respectively. Receiver operating characteristic (ROC)
curve analysis was used to evaluate the performances of the
imaging parameters for diagnosing BC and predicting
histopathological findings, with excellent diagnostic ability
defined as an area under the ROC curve (AUC) >0.8. Spearman
correlation analysis was used to evaluate the associations between
the imaging parameters and the BC prognostic factors and
molecular subtypes. Correlations were classified based on the
correlation coefficient as excellent (≥0.75), moderate to good
(0.50–0.74), fair (0.25–0.49), and small (≤0.24).

All statistical analyses were performed using IBM SPSS
(version 25; IBM Corp., Armonk, NY), MedCalc (version
15.6.1; Ostend, Belgium), GraphPad Prism (version 7,
GraphPad, USA), and python (version 3.8.8). Differences were
considered statistically significant at p-values <0.05.

XGBoost Model Construction and
Verification
The XGBoost model was constructed and verified in four stages: I.
Significant features were selected based on Wilcoxon signed-rank
test and c2 test. II. The best imaging parameters were selected
based on the ROC curve. The optimal combination of imaging
parameters and clinical features were selected based on the least
absolute shrinkage sum selection operator (LASSO). III.
Representative features were used to construct the XGBoost
model and to derive feature importance scores, where the
optimal feature subset was determined by 3-fold cross-validation
performed 50 times. IV. BiRADS 4 lesions in the validation group
were used to verify the effectiveness of the model.
RESULTS

Clinicopathological Findings
This study evaluated 158 BLs in 120 patients. 78 lesions (49.4%)
were confirmed to be malignant, including invasive ductal
carcinoma (n=64), invasive lobular carcinoma (n=1), medullary
carcinoma (n=3), papilloma carcinoma (n=4), mucinous
adenocarcinoma (n=1) and intraductal carcinoma (n=5). The
TABLE 1 | Imaging protocol parameters for T1WI, T2WI, DWI, DKI, 1H-MRS and DCE-MRI.

Parameter T1WI T2WI ADC DKI 1H-MRS DCE-MRI

Sequence FSE-XL FRFSE-XL DW-EPI DW-EPI PRESS VIbrant
Orientation Axial Axial Oblique

Axial
Oblique
Axial

Axial 3-
dimension

Repetition time (ms) 333 4100 5000 5000 2000 3.9
Echo time (ms) 7.6 76.4 91.0 69.6 155 2.1
Fat suppression – Dixon STIR STIR – SPECIAL
Field of view (cm) 35 35 35 35 35 35
Matrix 320×256 320×224 128×128 128×128 256×192 256×256
Slice thickness (mm) 6 6 6 6 – 5
No. of sections 24 24 48 2024 – 1024
Bandwidth (Hz/pixel) 41.7 83.3 250 250 2.5 83.3
b values (s/mm2) – – 0, 800 0, 500, 1000, 1500, 2000,

2500
– –

Number of diffusion
directions

3 15

Total scan time (s) 94 185 200 430 243 326
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remaining 80 lesions (50.6%) were benign, including
fibroadenomas (n=58), benign phyllodes tumor (n=1), cyst
(n=5), and benign breast tissues (n=16). The patients’
characteristics and tumor features are presented in Table 2.

Imaging Parameters for Differentiating
Between Malignant and Benign BLs
Parametric ADC, DKI, 1H-MRS, and DCE-MRI maps were
successfully generated for all patients, with two representative
cases shown in Figure 2. Relative to benign lesions, malignant
lesions were associated with lower ADC values ([median 0.955,
range 0.680~1.550]×10-3 mm2/s vs. [median 1.440, range
0.440~2.250]×10-3 mm2/s; p<0.001), lower MD values ([median
1.049, range 0.726~1.508]×10-3 mm2/s vs. [median 1.478, range
0.723~2.360] ×10-3 mm2/s; p<0.001), higher MK values ([median
1.269, range 0.609~2.080] vs. [median 0.530, range 0.000~1.907];
p<0.001), higher Kep value ([median 0.799, range 0.330~2.729]min-1

vs. [median 0.444, range 0.056~1.745] min-1; p<0.001), and higher
Ktrans value ([median 0.528, range 0.132~1.497] min-1 vs. [median
0.341, range 0.032~1.754]min-1; p = 0.019),as shown inTable 2. The
Ve values did not show a significant difference between benign and
malignant masses. Based on the AUC values shown in Table 3, MK
was better for differentiating between malignant and benign lesions
(0.952), thanADC(0.902),MD(0.891), tCho (0.766),Kep (0.793) and
Ktrans (0.692). The performance of DKI combined with ADC and
DCE-MRI showed thehighestAUCcomparedwithothermodalities,
but there was no significant difference in the diagnostic accuracies of
DKI alone or combinations of multiple parameters. Using 0.866 as
the MK cut-off value for identifying malignant BLs revealed that
Frontiers in Oncology | www.frontiersin.org 5
samples with values below the cut-off point resulted in a false
diagnosis rate of 9.5% for MK, which was lower than the rates for
ADC (14.3%), MD (12.7%), tCho (21.9%), Kep (23.8%), and Ktrans

(30.2%), shown in Figure 3.

Imaging Parameters to Predict Prognostic
Factors and Molecular Subtype
MKvalues were significantly higher for high-grade BC than for low-
grade BC ([median 1.362, range 0.881~1.843] vs. [median 1.195,
range 0.968~1.773]; p = 0.011). ADC andMD values were markedly
lower for high-grade than for low-grade BC ([median 0.92, range
0.74~1.19]×10-3 mm2/s vs. [median 0.97,range 0.82~1.55]×10-3

mm2/s; p = 0.040; median 1.034, range 0.757~1.440]×10-3 mm2/s
vs. [median 1.142, range 0.888~1.508]×10-3 mm2/s; p = 0.012)
(Table 4). MK was superior for predicting the histological grade
(AUC: 0.691), over ADC (AUC: 0.655) and MD (AUC: 0.690)
(Figure 4A). Furthermore, MK was positively correlated with the
tumor’s histological grades (r = 0.326, p = 0.025), while both ADC
(r = -0.290, p = 0.007) andMD (r = -0.347, p = 0.011) was negatively
correlated with the histological grade.

The MK value was significantly higher in BC with high ki-67
expression than those with low Ki-67 expression ([median, 1.288,
range, 0.883~1.843]×10-3 mm2/s vs [median 1.081, range
0.714~1.410]×10-3 mm2/s; p = 0.012), while both ADC and MD
values had a tendency to be lower in highKi-67 expressionBC than
in lowKi-67 expression BC (Table 4). Moreover, Ki-67 expression
was fair correlated with MK (r=0.326, p = 0.011), and was better
predicted by MK (AUC: 0.776) than by ADC (AUC: 0.714) and
MD (AUC: 0.565) (Figure 4B).
TABLE 2 | The patients’ clinical and demographic characteristics and tumor features.

Characteristics Benign lesions (n = 80) Malignant lesions (n = 78) P-value

Patient characteristics
Age (range, y) 35 (17~51) 52 (26~71) <0.001
Menstrual status <0.001
Premenopausal 78 42
Postmenopausal 2 36

Lesion characteristics
Size (range, mm) 17 (6~80) 24 (11~110) <0.001
Shape <0.001
Oval or round 56 24
Irregular 24 54

Margin <0.001
Circumscribed 63 24
Not circumscribed 17 54

DWI parameter
ADC (range,×10-3mm2/s) 1.440 (0.440~2.250) 0.955 (0.680~1.550) <0.001
DKI parameter
MK (range) 0.530 (0.000~1.907) 1.269 (0.609~2.080) <0.001
MD (range, ×10-3 mm2/s) 1.478 (0.723~2.360) 1.049 (0.726~1.508) <0.001

tCho peak 10 41 <0.001
DCE-MRI parameters Benign lesions (n=46) Malignant lesions (n=17)
Ve(range) 0.671 (0.149~1.000) 0.955 (0.285~0.999) 0.050
Kep(range, min-1) 0.444 (0.056~1.745) 0.799 (0.330~2.729) <0.001
Ktrans(range, min-1) 0.341 (0.032~1.754) 0.528 (0.132~1.497) 0.019
TIC

Not enhancement 6 0
persistent (type I) 30 5
plateau (type II) 10 11
washout (type III) 0 1
March 2022 | Volume 12 | Article
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MK was also significantly higher in BC with axillary LN
involvement than those without axillary LN involvement
([median, 1.300, range, 0.993~1.843]×10-3 mm2/s vs [median
1.193, range 0.714~1.777]×10-3 mm2/s; p = 0.025), while ADC
and MD didn’t show significant differences (p>0.05) (Table 4).
In addition, MK presented a fair correlation with lymph node
status (r = 0.291, p = 0.024), and its predictive ability of lymph
node status (AUC: 0.673) was higher than ADC (AUC: 0.589)
and MD (AUC: 0.576) (Figure 4C).

There were no significant differences regarding MK, MD, or
ADC values according to LN involvement, and PR, ER, or TNBC
status (Table 4). Pharmacokinetic parameters, such as Ve, Kep,
Frontiers in Oncology | www.frontiersin.org 6
and Ktrans, also did not show statistical differences in predicting
prognostic factors and molecular subtypes.
Interobserver Agreement for ADC, MK,
MD, Ve, Kep and Ktrans

The ICC (two-way random model) for the two radiologists’
assessments were 0.963 (95% confidence interval [CI]: 0.950–
0.973), 0.978 (95% CI: 0.970–0.984), 0.976 (95% CI: 0.968–
0.982), 0.908 (95% CI: 0.852–0.943), 0.950 (95% CI: 0.918–
0.969), 0.920 (95% CI: 0.872–0.951) for ADC, MK, MD, Ve,
Kep and Ktrans, respectively.
A

B

FIGURE 2 | (A) Invasive ductal breast carcinoma grade 3 (estrogen receptor-positive, 98%; progesterone receptor-positive, 98%; HER-2-negative, Ki-67-positive,
90%) in a 58 year-old woman. Images show an unregular lesion of decreased T1 signal and increased T2 signal in the left breast. DCE-MRI shows a mass with
unregular borders and imhomogenous enhancement. MK map shows increased signal intensity in this region compared with surrounding glandular (mean:1.867);
MD map and ADC map both show decreased signal intensity in the same region (mean:0.919×10-3mm2/sec and 0.635×10-3mm2/sec); 1H-MRS shows a noticeable
Cho peak at 3.23 ppm. (B) Fibroadenoma in a 35-year-old woman. There is an oval lesion with decreased T1 signal, increased T2 signal, regular borders and
homogenous enhancement in the left breast. MK map, MD map and ADC map show non-different signal intensity in this region compared with surrounding glandular
(mean: 0.243, 1.93×10-3mm2/sec and 1.613×10-3mm2/sec); Cho peak doesn’t appear at 3.23 ppm in 1H-MRS.
March 2022 | Volume 12 | Article 833680
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Construction and Validation of an Optimal
XGboost Model for Predicting BC in
BiRADS 4 Masses
Univariate analysis revealed the following significant risk factors for
BC: patient age, menstrual status, lesion size, lesion shape, lesion
margin status,ADC,MK,MD, tCho,Kep andK

trans values, as shown
Frontiers in Oncology | www.frontiersin.org 7
in Table 2. According to lasso regression and single factor ROC
value comparison, 5 non-enhanced features including MD, MK,
age, shape and menstrual status were selected to be the optimized
feature subset to construct a XGboostmodel, inwhichMDandMK
were themost significant features, with the importance scores of 24
and 20 respectively (Figure 5A). This XGboost model exhibited
TABLE 3 | ROC analysis of the diagnostic performance for MK, MD, ADC, tCho, Kep and Ktrans alone or in combination for differentiation of malignant and benign
lesions.

Multi-parameters AUC (95% CI) Cut-off Sensitivity Specificity Accuracy

ADC 0.902
(0.845–0.944)

1.151 89.7%
(70/78)

83.7%
(67/80)

86.7%
(137/158)

MD 0.891
(0.839–0.943)

1.243 83.3%
(65/78)

86.2%
(69/80)

84.8%
(134/158)

MK 0.952
(0.918–0.985)

0.866 97.4%
(76/78)

81.2%
(65/80)

89.2%
(141/158)

tCho 0.766
(0.652–0.857)

– 80.4%
(41/51)

72.7%
(16/22)

78.1%
(57/73)

Kep 0.793
(0.668-0.918)

0.568 82.4%
(14/17)

73.9%
(34/46)

76.2%
(48/63)

Ktrans 0.692
(0.548-0.836)

0.487 64.7%
(11/17)

71.7%
(33/46)

69.8%
(44/63)

MK+MD 0.951
(0.866-0.990)

– 88.2%
(15/17)

95.7%
(44/46)

93.7%
(59/63)

MK+MD+ADC 0.957
(0.895-992)

– 94.1%
(16/17)

89.1%
(41/46)

90.5%
(57/63)

ADC+ Kep+ Ktrans 0.895
(0.792-0.958)

– 82.4%
(14/17)

87.0%
(40/46)

85.7%
(54/63)

MK+MD + Kep+ Ktrans 0.964
(0.884-0.995)

– 100%
(17/17)

93.5%
(43/46)

95.2%
(60/63)

ADC+MK+MD+Kep+K
trans 0.967

(0.888-0.996)
– 100%

(17/17)
93.5%
(43/46)

95.2%
(60/63)
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FIGURE 3 | Comparison of the false diagnosis rate (FDR) for ADC (A), MD (B), MK (C), Kep (D) and Ktrans (E) parameters in differentiating between benign and
malignant breast lesions.
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superior diagnostic ability for BC characterization in the training
group, with a ROC value of 0.940 (Figure 5B). To further verify the
predictive reliability of this model for BC diagnosis, 50 BiRADS 4
masses in the validation group were introduced into this model, of
which 21 cases were correctly diagnosed as malignant and 22 cases
were correctly diagnosed as benign ones, with the diagnostic
sensitivity and specificity of 84% and 88%, respectively (Table 5).
DISCUSSION

This study demonstrated that MK derived from DKI was
performed better than MD, ADC, Ve, Kep and Ktrans for
Frontiers in Oncology | www.frontiersin.org 8
differentiating between benign and malignant BLs. Also, MK was
shown tobemore strongly correlatedwith histological grade,Ki-67
expression and LN status, and was proved to be a promising
imaging marker for predicting the clinical and pathological
characteristics of BC. Finally, an optimized XGboost model was
constructed by combining MD, MK, age, shape and menstrual
status, which exhibited superior diagnostic performance for BC
characterization and an improved assessment of suspicious breast
tumors in BiRADS 4. Overall, we provide a novel and minimally
invasive means by using DKI as relevant predictors for diagnosing
and determining the microstructural characteristics of BCs.

The rapid proliferation of different cell typesmakes BC a highly
heterogeneous cancer, which may be reflected in the elevated MK
A B C

FIGURE 4 | Comparison of the diagnositic performance for ADC, MD and MK in predicting histological grade (A), Ki-67 expression (B) and Lymph node status (C).
TABLE 4 | Comparison of ADC, MK, MD, Ve, Kep, K
trans among different subtypes of breast cancer.

ADC (n = 60, ×10-3 mm2/s) MD (n = 60, ×10-3 mm2/s) MK (n = 60) Ve (n = 16) Kep (n = 16, min-1) Ktrans (n = 16, min-1)

Histological grade
P value 0.040* 0.012* 0.011* 0.999 0.713 0.562
High 0.92,0.74~1.19 1.034,0.757~1.440 1.326,0.881~1.843 0.702,0.549~0.997 0.729,0.368~2.729 0.454,0.154~1.497
Low 0.97,0.82~1.55 1.142,0.888~1.508 1.195,0.968~1.773 0.660,0.285~0.999 0.831,0.330~1.588 0.547,0.132~1.054

Ki-67
P value 0.051 0.557 0.012* 0.439 0.521 0.611
≥14% 0.96,0.74~1.51 1.070,0.757~1.508 1.288,0.883~1.843 0.671,0.468~0.999 0.811,0.330~2.729 0.528,0.154~1.497
<14% 1.09,0.86~1.55 1.126,0.869~1.502 1.081,0.714~1.410 0.549,0.285~0.965 0.751,0.460~0.799 0.414,0.132~0.767

Lymph node status
P value 0.251 0.327 0.025* 0.900 0.704 0.364
Positive 0.96,0.74~1.55 1.052,0.757~1.508 1.300,0.993~1.843 0.671,0.285~0.999 0.799,0.330~2.729 0.528,0.132~1.497
Negative 0.97,0.77~1.19 1.148,0.792~1.502 1.193,0.714~1.777 0.616,0.549~0.924 0.751,0.585~0.811 0.414,0.154~0.537

ER status
P value 0.867 0.224 0.204 0.635 0.492 0.181
Positive 0.96,0.68~1.55 1.104,0.757~1.508 1.257,0.714~1.843 0.743,0.285~0.999 0.772,0.330~1.588 0.429,0.132~1.054
Negative 0.95,0.77~1.29 1.040,0.786~1.440 1.326,0.881~1.660 0.631,0.549~0.924 0.807,0.585~2.729 0.547,0.414~1.497

PR status
P value 0.550 0.679 0.581 0.636 0.492 0.181
Positive 0.94,0.74~1.55 1.087,0.757~1.508 1.262,0.714~1.843 0.743,0.285~0.999 0.772,0.330~1.588 0.429,0.132~1.054
Negative 0.99,0.77~1.49 1.049,0.786~1.440 1.301,0.881~1.660 0.631,0.549~0.924 0.807,0.585~2.729 0.547,0.414~1.497

HER-2
P value 0.637 0.471 0.244 0.262 0.684 0.103
Positive 0.96,0.77~1.1 1.007,0.792~1.440 1.313,1.088~1.777 0.856,0.562~0.999 0.848,0.585~2.729 0.648,0.528~1.497
Negative 0.96,0.74~1.55 1.082,0.757~1.508 1.264,0.714~1.843 0.633,0.285~0.997 0.775,0.330~1.588 0.453,0.132~1.054

TNBC vs. non-TNBC
P value 0.728 0.267 0.558 0.364 0.439 0.704
TNBC 0.97,0.80~1.19 1.043,0.786~1.186 1.336,0.881~1.630 0.613,0.549~0.649 0.863,0.751~1.040 0.557,0.414~0.663
non-TNBC 0.96,0.74~1.55 1.097,0.757~1.508 1.259,0.714~1.843 0.787,0.285~0.999 0.772,0.330~2.729 0.493,0.132~1.497
March 2022 | Volum
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values and the concurrently decreased MD and ADC values. MK
derived from DKI quantifies the degree that water diffusion
deviates from Gaussian diffusion and reflects the tissue
complexity, which is considered proportional to the neoplasm’s
cellular microstructural heterogeneity and tissue complexity. MD
is a corrected diffusion coefficient that removes non-Gaussian bias.
In malignant tissues, water molecule diffusion is usually restricted
by intracellular, extracellular, and intravascular spaces, aswell as by
tightened cellular membrane microstructures, leading to lower
ADC and MD values. Here, MK was superior for distinguishing
between malignant and benign BLs, over MD and ADC. This
findingmight be explained byADCrelying on an assumption of an
ideal Gaussian distribution of unrestricted water diffusion, while
the DKI technique assumes that water diffusion follows a non-
Gaussian distribution, which is better to explain tissue complexity
or physical barriers to diffusion within tissue (cell membranes,
organelles, stromal desmoplasia, and so forth) (8). Single-voxel 1H-
MRS-based tChopeakdetectionwasalso evaluated, although itwas
less effective than MK for differentiating between malignant and
benign BLs. The low sensitivity of 1H-MRS might be explained by
various factors, including the need for high-quality shimming and
fat-suppression.Poor shimming results inB0field inhomogeneities
that broaden spectral line widths, causing a reduction of SNR and
the ability to separate different chemical resonances. Moreover, it
also compromises the performance of chemically selective fat and
water suppression in localized MRS. Without appropriate fat
suppression, lipid sidebands can obscure choline peaks in the
spectra. What’s more, breast MRI presents low sensitivity for
detecting choline levels in smaller lesions (<10 mm), which
limits the applicability of MRS in this model.

This study also revealed higher MK, but lower ADC and MD
values, for BC cases that involved high-grade disease and high
Frontiers in Oncology | www.frontiersin.org 9
Ki-67 expression. Similar results have been observed in previous
studies (24, 25). Ki-67 expression is a biomarker for cell
proliferation, with high expression suggesting increased
cellularity, vascular hyperplasia, and necrosis. High-grade
tumors are also characterized by active mitosis and the absence
of normal glandular architecture, which is correlated positively
with high Ki-67 expression (36, 37). These changes reflect BC-
related hypercellularity and increased microstructural
complexity, leading to higher kurtosis and lower diffusivity.
Nevertheless, MK exhibited a strongly correlation with Ki-67
expression and Histological grade, suggesting that DKI is a
valuable tool for characterizing BC.

MK was significantly higher in tumors with axillary LN
involvement than those without axillary LN involvement in this
study, which agrees with the findings by Huang et al. (25) but
conflicts with those by Sun et al. (24). This discrepancy might owe
to differences in tumor size, as our study involved a greater number
of larger lesions, which may tend to be more heterogeneous. This
study failed to detect significant differences in any of the imaging
parameters according to TNBC or non-TNBC type. This finding
might be related to the fact that ER expression inhibits
angiogenesis, which might restrict water diffusion in ER-positive
BC, while HER2 and PR expression can increase angiogenesis (38).
Therefore, ER, PR, and HER2 expression might influence
angiogenesis by regulating vascular endothelial growth factor
production at different levels in BC. Nevertheless, tumor
heterogeneity also likely contributes to the lack of a clear
relationship between the BC subtype and imaging parameters.

DCE-MRI, making use of Tofts two-compartment model,
quantifies the contrast agent exchange between the intravascular
and the interstitial space, providing measurements of tumor
blood flow, the microvasculature, and capillary permeability.
A B

FIGURE 5 | (A) Feature importance score in XGboost algorithm model combined with MD, MK, age,shape and menstrual status. (B) Receiver operating
characteristic curve analysis of the models for BC characterization.
TABLE 5 | Validation of a XGboost model for predicting BC in MRI BiRADS 4.

Biopsy XGboost model, n (%)

Benign Malignant

Benign (n=25) 22 (88%) 3 (12%)
Malignant (n=25) 4 (16%) 21 (84%)
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The pharmacokinetic parameters can potentially improve the
differentiation of benign and malignant breast tumors and
distinguish different breast cancer subtypes (39). This study
revealed that there were significant differences in Ktrans and Kep

between benign and malignant tumors, which agree with the
previous study by Li et al. (6). However, no significant differences
were observed between pharmacokinetic parameters and
prognostic factors of BCs, and the diagnostic efficiency of
pharmacokinetic parameters was also lower than that of MD
and MK. The possible reason might be the fact that there were
only two BCs which exhibited a wash-out type of dynamic
enhancement pattern.

XGboost algorithm has been widely used in medical fields,
such as Chronic Kidney Disease Diagnosis (30), COVID-19 (40),
etc. Hou et al. (31) compared the diagnostic efficiency of the
logistic regression model, SAPS-II score prediction model and
XGboost algorithm model in predicting 30-days mortality for
MIMIC-III patients, and found that the XGboost model
performed the best, indicating its great potential in medical
applications. As can be seen in Figure 5 and Table 5, the
optimized XGboost model in our study exhibited superior
diagnostic ability for BC characterization in both the test
group and the validation group. In particular, this model
improved the diagnostic specificity of BiRADS 4 tumors,
suggesting its potential usefulness in reducing the number of
unnecessary biopsies, as well as reducing anxiety of patients and
waste of medical resources in the long term.

Our study had some limitations. First, the sample size was
relatively small, and only a few patients had PR-positive tumors or
theTNBCtype.Thus, usinga larger samplewithmultiplehistological
BC typesmay yield amore accurate estimate. Second, the low spatial
resolution of DWI might lead to inaccurate measurements of small
benign lesions (< 1 cm). Hence, an improved high-resolution
sequence for DWI might be required to detect small lesions. Third,
all parameters were calculated on the same MR scanner, and our
findings might be specific to the sequences we used.

In conclusion, our study demonstrated that DKI is promising
for breast cancer diagnosis and prognostic factor assessment. An
Frontiers in Oncology | www.frontiersin.org 10
optimized XGboost model that included DKI, age, shape and
menstrual status is effective to improve the diagnostic specificity
of BiRADS 4 masses, thereby preventing unnecessary biopsies
and optimizing personalized diagnosis and treatment. However,
a multicenter prospective study with a larger cohort should be
performed in the near future to validate these results.
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