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Purpose: The purpose of this study was to evaluate and explore the difference between an
atlas-based and deep learning (DL)-based auto-segmentation scheme for organs at risk
(OARs) of nasopharyngeal carcinoma cases to provide valuable help for clinical practice.

Methods: 120 nasopharyngeal carcinoma cases were established in the MIM Maestro
(atlas) database and trained by a DL-based model (AccuContour®), and another 20
nasopharyngeal carcinoma cases were randomly selected outside the atlas database.
The experienced physicians contoured 14 OARs from 20 patients based on the published
consensus guidelines, and these were defined as the reference volumes (Vref). Meanwhile,
these OARs were auto-contoured using an atlas-based model, a pre-built DL-based
model, and an on-site trained DL-based model. These volumes were named Vatlas, VDL-
pre-built, and VDL-trained, respectively. The similarities between Vatlas, VDL-pre-built, VDL-trained,
and Vref were assessed using the Dice similarity coefficient (DSC), Jaccard coefficient
(JAC), maximum Hausdorff distance (HDmax), and deviation of centroid (DC) methods. A
one-way ANOVA test was carried out to show the differences (between each two of them).

Results: The results of the three methods were almost similar for the brainstem and eyes.
For inner ears and temporomandibular joints, the results of the pre-built DL-based model
are the worst, as well as the results of atlas-based auto-segmentation for the lens. For the
segmentation of optic nerves, the trained DL-based model shows the best performance
(p < 0.05). For the contouring of the oral cavity, the DSC value of VDL-pre-built is the smallest,
and VDL-trained is the most significant (p < 0.05). For the parotid glands, the DSC of Vatlas is
the minimum (about 0.80 or so), and VDL-pre-built and VDL-trained are slightly larger (about
0.82 or so). In addition to the oral cavity, parotid glands, and the brainstem, the maximum
Hausdorff distances of the other organs are below 0.5 cm using the trained DL-based
segmentation model. The trained DL-based segmentation method behaves well in the
contouring of all the organs that the maximum average deviation of the centroid is no more
than 0.3 cm.
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Conclusion: The trained DL-based segmentation performs significantly better than atlas-
based segmentation for nasopharyngeal carcinoma, especially for the OARs with small
volumes. Although some delineation results still need further modification, auto-
segmentation methods improve the work efficiency and provide a level of help for
clinical work.
Keywords: atlas, deep learning (DL), training, nasopharyngeal carcinoma (NPC), auto-segmentation, organs at
risk (OARs)
INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a common malignant
tumor in the head and neck region. Its annual incidence rate is
about 25 to 30 cases per 100,000 people, and this rate is
increasing year by year (1, 2). Most patients with NPC will
undergo radiotherapy. Radiation delivers the target area,
inevitably exposing normal tissue around the target. The
incidence of adverse symptoms occurs directly related to the
dose received by organs at risk (OARs) (3, 4). Since eliminating
the unnecessary irradiation dose of organs can reduce the side
effects and improve life quality, precise radiation therapy (RT)
becomes particularly important (5). The rapid development of
new technology has continuously improved the accuracy of RT.
Nonetheless, the precise delineation of tumors and OARs before
RT is essential. Therefore, we can quantitatively evaluate OARs
and thus ensure proper treatment after dose calculation.

Due to the lack of contrast to CT images, the indistinct
boundaries, and the numerous organs, physicians need to
delineate the targets and OARs manually for NPC. This
process becomes cumbersome; it also requires time and
workforce, resulting in a relatively low efficiency (6, 7). To
simplify the heavy task of contouring, many software tools for
automatic delineation have appeared from the market, most of
which use atlas-based auto-segmentation (ABAS) methods (8–11),
simultaneously, with the application of machine learning
technique and intense learning methods in RT (12–14). These
artificial neural network-based methods may offer better
performance. Nevertheless, manual delineation is still the
standard procedure for most medical institutions.

This study intends to compare the results from an atlas-based
and deep learning (DL)-based segmentation method of organs at
risk (OARs) for NPC to evaluate the difference between the two
methods and explore conclusions for clinical practice.
MATERIALS AND METHODS

Data Source and Study Design
This retrospective study included a total of 140 patients with
NPC who were treated at our institution from July 2016 to July
2018. All the CT image data we selected were acquired in supine
position with a thermoplastic head and neck mask for each
patient, using a Siemens SOMATOM Definition AS CT scanner
with a selected slice thickness of 3 mm, a valid mAs of 300, a tube
voltage of 120 kV, and a matrix of 512 × 512. We excluded the
2

cases that were too fat or too slim because the head and neck
region was not so big as other parts of the body, such as the
abdomen; there were not so many cases that did not meet. After
scanning, we loaded the CT images into TPS (Pinnacle, Version
10.0). According to the published consensus guidelines and the
fusion with MR or contrast CT, all the OAR delineations were
done manually by the same experienced clinician, defined as Vref

(Vref, the reference volume). In addition, the study randomly
selected 120 CT images and their structure files then transferred
them into MIMMaestro software (Version 6.6.5) to establish the
atlas library, and we used the same 120 CT images and their
structure files to train the DL-based model (AccuLearning®, a
Commercial Company). Also, the pre-built automatic
segmentation model (AccuContour®, a Commercial Company)
is used for comparison. Finally, we used the atlas-based, pre-
built, and on-site trained DL-based automatic segmentation
methods to automatically delineate the remaining 20 patients
and define them as Vatlas, VDL-pre-built, and VDL-trained,
respectively. This study selected 14 OARs, including brainstem,
eyes, lens, optic nerves, inner ears, temporomandibular joints
(TMJs), parotid glands, and oral cavity.

Automatic Segmentation Methods
Atlas-based auto-segmentation used CT images with current
delineation data as template images to build an atlas database,
compared the new CT images with the others in the databases,
then found the best match. Moreover, the new CT images were
registered to the template CT images using intensity-based
deformable registration. We transformed the contours of the
template CT into the new CT image through the deformation
registration parameters and obtained the final contouring result.
Our study chose a uniform case as the atlas template CT
(reference CT). The new cases were added as a subset into the
atlas library after the re-registration with the template CT.
Moreover, we used the majority vote algorithm and match
number 3 to do the atlas auto-segmentation using MIM
Maestro software.

The network model structure in our study is residue-Unet,
with the loss function of Dice function integrated into
AccuContour produced by a commercialized product. Both
encoder and decoder are composed of 5 cascades of Residual
blocks, and each Residual block is composed of two convolution
layers with the convolution kernel size of 3 × 3. Each residual
block is cascaded with the downsampling and upsampling layers.
The downsampling method is maximum pooling, and the
upsampling method is a nearest-neighbor interpolation. The
March 2022 | Volume 12 | Article 833816
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pre-built auto-segmentation model was based on thousands of
finely labeled cases from various medical centers except our
institution. The on-site trained auto-segmentation model was
based on the cases from our institution. According to
information disclosed to the public, the developer utilized
standard methods including supervised or semi-supervised
learning, prior knowledge aggregation, and ROI-specific post-
processing to obtain the pre-built model. The company also
provides a high-performance DL research platform called
AccuLearning for user-customizable on-site training needs.
Preprocessing standardizes and resamples images using
adaptive rules based on image intensity range and distribution
characteristics. Data augmentation is first conducted on the
loaded images, and then balanced cropping is performed
accordingly to the label area to generate the model input.
Model training utilizes an adaptive network structure adjusting
strategy based on gradient feedback and the loss function’s
progress to accommodate the training dataset’s characteristics.

Quantitative Evaluation
We evaluated the results using four parameters, including Dice
similarity coefficient (DSC), Jaccard coefficient (JAC), maximum
Hausdorff distance (HDmax), and deviation of the centroid (DC).
One RT physicist performed all atlas and DL delineation tasks to
prevent any possible differences among the operators.

1. Dice similarity coefficient (DSC) (15)

The DSC is defined to be the ratio of the intersection to the
average area.

DSC =
2 · (Vref ∩ Vauto)

Vref + Vauto

where Vref is the reference delineation volume and Vauto is the
auto-segmentation volume.

2 Jaccard index (JAC) (16)

The JAC is defined to be the ratio of the intersection to the
union area.

JAC =
Vref ∩ Vauto

Vref ∪ Vauto

where Vref is the reference delineation volume and Vauto is the
auto-segmentation volume.

3 Maximum Hausdorff distance (HDmax) (17)

Suppose there are two groups of sets X = {x1, …, xn}, Y={y1,
…, yn}, then the maximumHausdorff distance between these two
sets of points is defined as

HDðX,YÞ = max (h(X,Y), h(Y ,X))

where h(X,Y) = max
x∈X

m in
y∈Y

‖ x − y ‖

4 Deviation of centroid (DC) (18)
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The DC is defined as the deviation of centroid of two volumes.

DC =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xauto − xref )

2 + (yauto − yref )
2 + (zauto − zref )

2
q

Statistical Analysis Methods
The one-way ANOVA test (SPSS, Version 23; SPSS Inc, Chicago,
USA) was applied to measure the difference in evaluation
parameters with an LSD (least significance difference) method
to do the post hocmultiple comparisons (Vatlas vs. VDL-pre-built vs.
VDL-trained). A p-value less than 0.05 (typically ≤0.05) was
statistically significant.
RESULTS

Figures 1, 2 show the contouring results of two real clinical test
cases of the three methods, respectively, where Figures 1A–D,
2A–D show an identical case, and Figures 1E–H, 2E–H show the
same case similarly. To an intuitive evaluation of the contouring
accuracy, the results of four quantitative evaluation parameters of
the OARs for the three segmentation methods, including DSC,
JAC, HDmax, and DC, are presented in the form of box plots
(Figure 3), and the statistical analysis results of the four
parameters are summarized in Table 1.

For DSC results, although the results of VDL-pre-built were
better than the other two in the contouring of brainstem and eyes
(p < 0.05), all of the DSC values of the three were at a relatively
high level (the DSC of the brainstem was more than 0.85, and the
DSC values of eyes were floating around 0.9). For inner ears and
TMJs, the pre-built DL-based model results were worse than the
other two, with no significant differences between the two.
Moreover, for the lens, the values of atlas-based auto-
segmentation were the worst (p < 0.05), and there were no
significant differences between the trained and pre-built DL-
based models results. For the optic nerves, the trained DL-based
model showed the best performance. For the contouring of the
oral cavity, the DSC value of VDL-pre-built was the worst, and that
of the VDL-trained was the best (p < 0.05). Then for the parotid
glands, the DSC value of Vatlas was the minimum (about 0.80 or
so), and those of VDL-pre-built and VDL-trained were slightly larger
(about 0.82 or so). The JAC results were almost the same as the
volume-related parameter of DSC.

For HDmax, the atlas-based auto-segmentation showed
relatively large values in delineating the brainstem, eyes, lens,
and optic nerves. The pre-built DL-based model method showed
a lousy performance of delineation in the inner ears, TMJs, optic
nerves, oral cavity, and parotid glands. For the brainstem, eyes,
and lens, the HDmax of the atlas-based method was much larger
than that of DL-based methods. In addition to the oral cavity,
parotid glands, and the brainstem, the HDmax values of the other
organs were all below 0.5 cm using the trained DL
segmentation model.

Vatlas showed more significant results for the DC value in the
brainstem, eyes, lens, and optic nerves, and the VDL-pre-built

showed larger values in the inner ears, TMJs, optic nerves, and
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oral cavity. The trained DL-based segmentation method
performed well in the contouring of all the organs that the
maximum average DC is no more than 0.3 cm.
DISCUSSION

Although it is time-consuming and intra-observer and inter-
observer differences usually occur, scholars worldwide have been
trying to find a more rapid and more accurate method or
evaluate the already existing processes. Scholars have recently
published many DL studies on auto-segmentation (19–23),
involving various algorithms and machine learning techniques,
especially DL methods. Yang et al. (24) evaluated a U-net-based
whole convolutional neural network (CNN). They got the
conclusion that DL-based auto-segmentation showed great
Frontiers in Oncology | www.frontiersin.org 4
potential to alleviate the labor-intensive contouring of OARs
for RT treatment planning. These methods based on artificial
neural networks, especially after retraining, have shown excellent
functionality better than most classification and regression
methods. This conclusion is consistent with our study.

The clinical applicability of atlas-based auto-segmentation has
been reported many times in the head and neck, chest, abdomen,
and pelvic diseases (25–28). The results show that the atlas-based
auto-segmentation outcomes could meet the clinical application
and significantly reduce manual labor. Dijk et al. (29) evaluated
two image segmentation methods, atlas-based segmentation and
convolutional neural network-based DL model segmentation.
They collected the contours of 589 head and neck cancer
patients from clinical practice and used them to train models.
DL-based segmentation showed encouraging results compared to
the ABAS. The same is true for the findings of our research.
FIGURE 1 | The segmentation results on the atlas and trained DL-based models for two representative cases with the transverse (A, B, E, F), sagittal (C, G), and
coronal (D, H) images, respectively. The ground-truth delineations are depicted in red, the automatic delineations based on the atlas model are depicted in green,
and the automatic delineations based on the trained DL model are depicted in blue. Case 1 is shown in (A–D), and case 2 is shown in (E–H).
FIGURE 2 | The segmentation results on the pre-built and trained DL-based models for the two same cases with the transverse (A, B, E, F), sagittal (C, G), and
coronal (D, H) images, respectively. The ground-truth delineations are depicted in red, the automatic delineations based on the pre-built DL-based model are
depicted in green, and the automatic delineations based on the trained DL-based model are depicted in blue. Case 1 is shown in (A–D), and case 2 is shown in (E–H).
March 2022 | Volume 12 | Article 833816
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The time spent on contouring roughly depends on two main
factors, the visualization of organ boundaries and the volume of
OARs. For software and human observers, high-contrast edges
are easier to detect; otherwise, low-contrast borders are more
challenging to notice. The automatic segmentation method is
generally inaccurate for the boundaries of minor soft tissue,
which increases the time spent on adjustment. Most importantly,
it is also difficult for observers to distinguish the boundaries.
These increase the time required for adjustment additionally.
Even if we assume that automatic segmentation techniques will
achieve human-level performance for contouring in the future,
human observers may still need to evaluate the contouring
results for some difficult situations.

The accurate and reliable segmentation of NPC images is
essential in clinical applications (including RT). However, the
targets of NPC vary in size and shape, as well as variable intensity
within the tumor and similar intensity to nearby tissues, which
makes the segmentation task more difficult. The emergence of
automatic segmentation software has provided convenience for
RT undoubtedly, especially for adaptive radiotherapy, increases
the efficiency of delineation, and reduces the variety in
contouring to a certain extent. However, we could not ignore the
influence of software differences on the delineation outcomes.

In our study, the atlas-based, pre-built, and trained DL-based
automatic segmentation methods had good performances for the
segmentation of the brainstem and eyes. The three methods got
good results of DSC (e.g., the DSC results of the brainstem were
above 0.8, the results of the deviation of the centroid were below
0.2 cm, the DSC results of the eyes were above 0.9, and the results
of the deviation of centroid were below 0.1 cm). The reasons
were that the position of the eyes was relatively fixed and the
boundaries relatively straightforward, and all three methods
could make better identification. The boundary of the
brainstem was not clear, but the position was fixed, so we
could still get a good result.

For the inner ears, TMJs, optic nerves, and oral cavity, the
trained DL-based model showed a vast improvement toward the
pre-built model (Figure 2) because these contours were more
subjectively affected by physicians. Each institution or even
observer might have a different contouring habit for organs. It
is not easy to achieve an overall contouring agreement so that the
specificity of these organs is relatively high. So when one wants to
use a DL-based method for the auto-segmentation of the OARs,
they need to use their data to train the model, or even the same
physician’s patients, to achieve satisfactory results. Atlas-based
segmentation performed a relatively poor performance of the
lens and optic nerves. One possible reason might be that the
volume of these organs was much smaller (24). The atlas-based
method was at a disadvantage of segmenting small volume
organs than the DL method.

Another problematic point is the delineation of the parotid
glands because of the unclear boundary and the variable
contouring habits of each physician. Our study showed that
the contouring results of parotid glands with the atlas-based
method include most of the central areas of parotid glands, and
there was still a lack in the contouring accuracy of the boundary.
Meanwhile, the trained DL-based model slightly increased in the
Frontiers in Oncology | www.frontiersin.org 5
volume of parotid glands, and the boundary was much closer to
the ground truth (Figure 1).

The contouring time of these methods in our research was not
listed in the quantitative evaluation because the contouring time
was so fast, about 3 min for each patient through estimation that
was far less than the manual delineation time. Still, the time to
build an atlas database was cumbersome. Establishing an atlas
database required manual handling of each patient, which spent
about 3 h for 120 patients. At the same time, the training time of
the DL model was just about 49 min, with no need for a large
amount of human intervention. We only chose 120 patients for
the atlas database and training model in this study. The DL
model for training will have a significant advantage if more data
models are added in the future, avoiding the cumbersome
establishment cost and the choice of an individual situation.

At the beginning of our study, we compared the delineation of
the pre-built DL- and atlas-based method and added the on-site
trained model later. It is, this step that made the contouring
result in a significant improvement of both volume and distance
(for example, the DSC values of the inner ears were increased by
0.05 and HDmax decreased by 1 mm, the DSC values of TMJs
were increased by about 0.15 and HDmax decreased by 1.9 mm,
the DSC values of the optic nerves were increased by about 0.16
and HDmax decreased by 2 mm, the DSC values of the oral cavity
were increased by 0.13 and HDmax decreased by 16 mm, and the
centroid distance decreased by 7 mm and the HDmax of the
parotid glands were decreased by 4 mm).

In this study, the trained DL-based model performed
brilliantly, showing a good result in the contouring of each
organ, and all the mean DSC values were more than 0.7
(Figure 3A) (30), which met the clinical standards. In particular,
the widely accepted optic nerves, because of the small size and
unclear boundaries, have a relatively low accuracy of DSC values
in many studies (14, 31–33). Similarly, the optic nerves had worse
accuracy than other organs in our results. Still, the mean DSC
values were above 0.7. We analyzed the excellent performance as a
result of model selection. Although some studies demonstrate that
a better performance needs diversity and numerous training
datasets, all the cases used in our study are contoured only by
one experienced oncologist. Compared to the open-access
resource platform of medical images for cancer research, our
datasets were more specific, eliminating the intra- and inter-
observer variability to the utmost extent with very high quality
and representativeness, which made the trained model more
characteristic to meet the clinical acceptance. Lin et al. (34)
summarized the major deep learning architectures related to
target volume segmentation, surveyed the use of three common
imaging modalities (CT, MRI, PET) in radiation therapy, and
compared their performance. They pointed out that high-quality
annotated data were a big challenge for deep learning models, and
deep learning-based automatic segmentation had great potential.

It is worth mentioning that the atlas-based method also
showed a good ability for the segmentation of OARs of NPC.
Still, to ensure a better result, one needs to use their contouring
cases to build the atlas database, especially for some specific
organs. In institutions with no use conditions of DL
segmentation models, the application of the atlas-based
March 2022 | Volume 12 | Article 833816
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method could still meet the clinical demands for most organs.
Our research innovation combined the atlas-based, pre-built,
and on-site trained DL-based automatic segmentation methods,
providing intuitive results for clinical applications.

A limitation of this study is that we only used 120 cases to
train the DL model to maintain the consistency of the atlas
library. Perhaps with more data added to the DL model, the
delineation results will be further improved, and we also have
reasons to believe this. The diversity of training data and the
automatic segmentation of other organs or targets for the whole
body are also the focus of our following study. With the rapid
Frontiers in Oncology | www.frontiersin.org 6
development of multi-imaging modalities (such as CT, MR,
PET) and radiotherapy technology (such as MRI-Linac), deep
learning-based automatic segmentation methods have more
vast fields.
CONCLUSIONS

Although some delineation outcomes still need further
modification, the trained DL-based auto-segmentation method
performs better than the atlas-based segmentation method that
A B

DC

FIGURE 3 | The box plots of four quantitative evaluation parameters of the OARs for the three segmentation methods. The results of DSC are listed in (A), JAC in
(B), HDmax in (C), and DC in (D). The results of the trained DL-based model are depicted in red, the pre-built DL-based model in blue, and the atlas-based auto-
segmentation in purple.
TABLE 1 | The statistical analysis results of the four quantitative evaluation parameters for three segmentation methods.

Brainstem Eye-L Eye-R Inner ear-L Inner ear-R TMJ-L TMJ-R

DSC 0.002ac 0.015c 0ac 0.004ac 0.052c 0ac 0ac

JAC 0.002ac 0.009bc 0ac 0.003ac 0.041c 0ac 0ac

HDmax 0.071c 0bc 0.004bc 0ac 0.006ac 0.003ac 0.001ac

DC 0.252 0.360 0.007c 0ac 0.123c 0ac 0ac

Lens-L Lens-R Optic nerve-L Optic nerve-R Oral Cavity Parotid-L Parotid-R
DSC 0bc 0bc 0ab 0ab 0abc 0.018bc 0.100c

JAC 0bc 0bc 0ab 0ab 0abc 0.019bc 0.099c

HDmax 0bc 0bc 0.047a 0ab 0ac 0.025ac 0.210
DC 0bc 0bc 0.348 0.019b 0ac 0.220 0.522
March 202
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Each symbol represents significant differences between different groups (p < 0.05).
aIndicates a significant difference between VDL-trained and VDL-pre-built.
bIndicates a significant difference between VDL-trained and Vatlas.
cIndicates a significant difference between VDL-pre-built and Vatlas.
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benefits clinical efficiency, optimizes the treatment procedure,
and provides a certain level of help for clinical work. For clinical
applications, the DL-based automatic segmentation of OARs can
significantly save time for physicians. More factors that influence
the accuracy of automatic segmentation in clinical applications
still need further exploration.
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