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Pancreatic ductal adenocarcinoma (PDAC) is among the most lethal cancers, with a 5-
year relative survival rate of 5%. The desmoplastic stroma found in the tumor
microenvironment of PDAC is suggested to be partly responsible for the resistance to
most therapeutic strategies. This review outlines the clinical results obtained with an
immune checkpoint inhibitor in PDAC and discusses the rationale to use a combination of
chemotherapy and immune checkpoint therapy. Moreover, essential parameters to take
into account in designing an efficient combination have been highlighted.
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1 INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic malignancies. PDAC is
currently the fourth most common cancer worldwide with the worst 5-year overall survival (OS)
rate of 5% across many solid tumors (1, 2). The PDAC incidence is higher inWestern countries than
in Asia and Africa and is expected to rise over the coming years due to lifestyle, longer lifespan, and
public health problems such as obesity and diabetes (3). In 2030, PDAC would be the second leading
cause of cancer-related deaths in the United States (US) (4).

At the time of diagnosis, 80% of newly diagnosed patients present with locally advanced or
metastatic disease while only about 20% of PDAC patients are candidates for surgical resection (4).
Forpatientswithadvanceddiseases, adjuvant cytotoxic chemotherapywithdrugs suchasFOLFIRINOX
Abbreviations: CAF, cancer-associated fibroblast; DAMPS, damage-associated molecular pattern; DC, dendritic cells; DCR,
durable clinical response; ECM, extracellular matrix; HIF-a, hypoxia-inducible factor 1; ICP, immune checkpoint; MDSC,
myeloid-derived suppressor cells; MHC, major histocompatibility complex; MMR, mismatch repair; MTD, maximum
tolerated dose; NR, not reported; ORR, overall response rate; OS, overall survival; PanIN, pancreatic intraepithelial
neoplasia; PDAC, pancreatic ductal adenocarcinoma; PFS, progression-free survival; PRR, pattern recognition receptors;
PSC, pancreatic stellate cells; TAM, tumor-associated macrophages; TLR, toll-like receptors; TLS, tertiary lymphoid structure;
TMB, tumor mutational burden; TME, tumor microenvironment; Treg, regulatory T cells; TSP-1 thrombospondin-1; US,
United States.
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(5-fluorouracil, leucovorin, irinotecan, oxaliplatin) or nab-
paclitaxel and gemcitabine is the current treatment option.
Indeed, in a phase 2/3 study (NCT00112658), the FOLFIRINOX
combination increased the median OS (11.1 months) and median
progression free-survival (PFS) (6.4 months) compared to
gemcitabine monotherapy (median OS 6.8 months and median
PFS 3.3 months) but was associated with an increase in side effects.
This regimen is therefore an option for the treatment of metastatic
pancreatic cancer with a good performance status (5). Recently, the
combination of nab-paclitaxel and gemcitabine has shown to have
superior efficacy in termsofOS(8.5months),PFS (5.5months), and
overall response rate (ORR) compared with gemcitabine
monotherapy (with median OS of 6.7 months and median PFS of
3.7 months) in the MPACT Phase 3 study (NCT00844649) (6).
Despite these improvements, medians of survival remain
insufficient, which show that efforts must continue to provide
new strategies to patients.

In recent years, the discovery of immune checkpoints (ICP)
has revolutionized immuno-oncology treatments. It has been
shown that tumors develop escape mechanisms to avoid
recognition by the immune system by expressing ligands such
as PD-L1 which binds co-inhibitory receptors like PD-1. By
preventing this interaction, ICP inhibitors restore the activation
of the immune system which translates into clinical benefit for
about 13% patients in many solid tumors (7). Furthermore,
biomarker studies have now described the association between
high expression of PD-L1 (8) and/or high microsatellite
instability (MSI-H) (9) and the response to these treatments.

The study of the PDAC tumor microenvironment (TME) has
highlighted several factors which suggest that immunotherapy
could have a clinical impact in this cancer type. First, the presence
of an immune infiltrate correlated with the prognosis of patients,
suggesting the presence of preexisting antitumor immune
responses (10–12). Furthermore, in a study, 1/3 of pancreatic
tumors has an immune infiltrate similar to that of melanoma
supporting the notion that PDAC is a heterogeneous group of
tumors and some patients harbor immunogenic tumors (13).
Second, the characterization of the tumor microenvironment has
highlighted that the expressions of ICP such as CTLA-4, PD-L1,
LAG-3, and TIM-3 are associated with poor survival in PDAC
tumors (13–15). Finally, reports have shown the presence of
tertiary lymphoid structures (TLS), mostly located in the tumor
periphery of PDAC tissues. In accordance with their favorable
prognosis role in many solid tumors (16), PDAC tumors
harboring TLS are enriched with IgG1 memory B cells and
memory CD4+ T-cells and a higher expression of Th1- and
Th17-related genes (17, 18) combined with a lower infiltration
of immunosuppressive cells. Moreover, these TLS are associated
with longer survival for patients in PDAC (17). Recently,
numerous papers have highlighted the predictive role of these
TLS in the response to ICP inhibitors in solid tumors (19)
including melanoma (20), sarcoma (21). These findings suggest
that PDAC tumors, or at least some of them, could be responsive
to ICP inhibitors.

Despite the presence of biological factors that may suggest a
potential response to single-agent ICP inhibitors, PDAC tumors
Frontiers in Oncology | www.frontiersin.org 2
do not respond to these immunotherapies. Indeed, although
ipilimumab increased the survival of melanoma patients, this
anti-CTLA-4 antibody did not meet its primary endpoint in a
phase 2 clinical trial for advanced pancreatic cancer patients (22).
The combination of two ICP inhibitors (anti-CTLA-4 + anti-PD-
L1) remains ineffective for PDAC patients (23). Multiple
hypotheses have arisen to explain this lack of response in
PDAC. Understanding these resistance factors is a key element
in defining new therapeutic strategies and improving responses
to the ICP inhibitors of these cold tumors, also called
immunological deserts.
2 RESISTANCE FACTORS TO IMMUNE
CHECKPOINT THERAPY IN PDAC

2.1 Immune Cell Content
It has been suggested that the TME mediated the suppression of
T-cell priming and function in PDAC, thus contributing to
resistance to these treatments. Observation of a high density of
immunosuppressive cells in the pancreatic intraepithelial
neoplasia (PanIN) (24) combined with a dysfunctional T-cell
phenotype suggests an impairment of T-cell mediated antitumor
responses from the early stages.

It has been shown that tumor-associated macrophages
(TAM) accumulate in the stroma of the PDAC TME tumor
microenvironment via CCL2 (25) secreted by cancer cells. In the
tumor, multiple cells including cancer-associated fibroblasts
(CAF), regulatory T-cells (Treg), and Th2 cells promote the
TAM polarization toward the M2 phenotype (26). Accordingly,
many studies revealed that a high density of TAM is associated
with poor survival (27, 28), supporting their involvement in the
tumor development and progression. TAM can also contribute
to T-cell exclusion from tumor islets (29). These conclusions are
in line with observations made in mouse models showing that
the depletion of TAM not only impaired PDAC cell proliferation
(30) but also induced T-cell recruitment within the tumor bed
(31) and restored the antitumor activity of T-cells (32).

A study analyzing the Treg contribution in PDAC supports
the notion that myeloid immunosuppressive cells are the most
contributor to the tumor progression in PDAC. Interestingly,
Treg depletion has failed to inhibit tumor growth due to the
establishment of compensatory mechanisms such as an increase
of myeloid cells and CAF reprogramming (33). CAFs are known
to generate dense fibrosis or desmoplasia within and around the
tumor. This desmoplastic stroma is composed of pancreatic
stellate cells (PSC), CAF, and extracellular matrix (ECM)
components and represents up to 80% of the tumor volume
which is a key feature of the PDAC TME. Whether this
desmoplastic stroma prevents immune infiltration is still a
matter of debate. Indeed, ex vivo models support the notion
that excessive collagen deposition impedes T-cell entry into the
TME as the collagen degradation has increased T-cell infiltrates
(34). However, the study of the spatial relationships between T-
cell subpopulations and cancer cells has shown that the
May 2022 | Volume 12 | Article 835502
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desmoplastic stroma has no impact on T-cell infiltration (35).
Surprisingly, the depletion of aSMA+ CAF in mice could
reduces desmoplasia but enhances hypoxia and epithelial-to-
mesenchymal transition, promotes tumor progression, and is
associated with reduced survival (36). These findings suggest that
desmoplastic stroma is also involved in the control of
tumor growth.

2.2 Low Immunogenicity
Immunogenicity is defined as the ability of antigens to induce
immune responses. In the TME, some of the somatic mutations
occurring in cancer cells generate neoepitopes that can be loaded
on to major histocompatibility complex (MHC) molecules and
eventually activate specific T-cells. It is likely that tumors with a
high number of somatic mutations have statistically more
immunogenic neoantigens, that is why the tumor mutational
burden (TMB) representing the number of somatic mutations
per mega base in the genome of a cancer cell is currently used as
an estimation of antigen load in a tumor. However, a recent
study has demonstrated that TMB is not a predictive biomarker
of ICP-inhibitor therapy for all solid tumors including PDAC, in
which CD8 T-cell infiltration is not associated with neoantigen
load (37). In the same line, data from long-term survivors in
PDAC have shown that neoantigen quality rather than quantity
conferred higher tumor immunogenicity (38).

Unlike some other solid tumors such as melanoma and lung
cancer with high TMB (>10 mutations/Mb), PDAC tumors
exhibit a low median TMB (2.7 mutations/Mb), which may
explain the ineffectiveness of ICP inhibitors (39). Impairment
of mismatch repair (MMR) leads to an increase in the number of
mutations and neoantigens conferring microsatellite instability
status. As observed with pembrolizumab, MSI-high (MSI-H)
tumors are more likely to respond to ICP inhibitor therapy.
However, about 1% of PDAC tumors harbor MSI-status,
suggesting that only a small number of PDAC patients may
benefit from pembrolizumab (40, 41).

Taken together, these data clearly demonstrate that many
immunological parameters interfere with the clinical activity of
immunotherapy in PDAC. The current challenge is therefore to
overcome the barr iers of this “cold” TME tumor
microenvironment and to use certain strategies improving
tumor immunogenicity in order to convert them into “hot”
tumors. In this review, we discuss the use of the chemo-
immunotherapy combination to sensitize pancreatic tumors to
immune therapy and modalities to take into account in designing
efficient combinatorial approaches.
3 IMMUNE CHECKPOINT-BASED
CHEMOIMMUNOTHERAPY
COMBINATION

3.1 Rationale of the Combinatorial Strategy
As observed in previous clinical studies, the targeting the TME
using single-agent ICP inhibitors is not enough for PDAC
patients. Although conventional chemotherapies have
Frontiers in Oncology | www.frontiersin.org 3
immunosuppressive effects as seen with lymphopenia and
neutropenia in treated patients, these chemotherapeutic agents
also have immunostimulatory properties that can be exploited to
improve the survival of PDAC patients.

For example, an in vivo study has demonstrated that 5-FU drug
depletes immunosuppressive cells (MDSC, Treg) while increasing
IFN-g production by tumor-infiltrating CD8 T-cells and is
associated with antitumor immune responses (42). It appears
that many chemotherapeutic agents could bypass the permissive
TME in favor of antitumor immunity by using different
mechanisms such as the depletion of immunosuppressive
populations combined with a recruitment of cytotoxic T-cells
within the TME, an induction of DC maturation (43) with an
increased antigen presentation ability, as well as an upregulation of
MHC-I (44) and PD-L1 expression on tumors cells (45).
the immunological effects of chemotherapeutic drugs used in the
clinical management of PDAC tumors are summarized in the
Table 1. By promoting the generation of neoantigens,
chemotherapy enables T-cell recruitment and priming in
addition to cell depletion of immunosuppressive cells while ICP
inhibitor stimulates exhausted T cells (Figure 1). This synergistic
effect has been demonstrated in several preclinical (122) and
clinical (123, 124) studies where the combination lengthened the
median OS with an acceptable safety profile (123).

However, this clinical benefit is not obvious, as demonstrated
by the negative results of the phase 1b trial (NCT01473940)
combining gemcitabine + ipilimumab in late-stage PDAC
patients (125). These clinical observations suggest that some
parameters (chemotherapeutic agents, dose regimen, schedule of
administration) are not optimal yet and should be assessed to
design efficient combinatorial strategies.
3.2 Modalities for This
Combinatorial Strategy
3.2.1 Chemotherapeutic Agents
The immunological effects of some chemotherapeutic agents could
be deleterious in some settings. For example, in PDAC, gemcitabine
promotes the accumulation of macrophages and their polarization
toward the pro-tumor M2 phenotype (64, 69). In response to some
chemotherapeutic agents, TAM (126) and CAF (127) secrete VEGF-
A, VEGF-C and other pro-angiogenic factors (128). In mice,
gemcitabine increases the synthesis of some chemokines and TGF-
b signals leading to gemcitabine resistance (129). However, this drug
is currently part of the standard of care, suggesting that these pro-
tumor effects must be counterbalanced by the immunostimulatory
effects of the drug. Other examples of the controversial effects of
chemotherapeutic agents are reported in Table 1 with the
accumulation of regulatory and immunosuppressive cells after
treatment in mice and in humans. For example, oxaliplatin or
carboplatin favors Treg or MDSC infiltration which is related to
chemoresistance (102).

These findings suggest that a better understanding of these
immune-mediated effects of chemotherapy is required to find the
most promising combinatorial strategies. Moreover, other
parameters such as the dose regimen, schedule of administration,
May 2022 | Volume 12 | Article 835502
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TABLE 1 | Immunomodulatory effects of chemotherapeutic agents used for the treatment of pancreatic ductal adenocarcinoma.

Chemotherapy
class

Molecule Immune-related effects References

Anti-metabolite 5-FU Several cycles decrease CD8 T-cell proliferation, cytotoxicity, and IFN-g secretion of spleen cells (M) (46)
Increased IFN-g production by tumor-specific CD8 T-cells infiltrating the tumor (M) (42)
Decreased number of circulating B cells (M) (47)
Depletion of splenic B cells while lymph node B cells are not affected (M) (48)
Depletion MDSC in the spleen and in the tumor bed (M) (42)
Increased circulating Tregs (M) (47)
Increase of TAM and Treg infiltration in gastric cancer (H) (49)
Increased B7-H6 expression on tumor cells (M) (50)
Upregulation of PD-L1 in gastric cancer (H) (51–53)

Gemcitabine Decrease of ICOS+ CD8 T-cells frequency in draining lymph nodes with a significant decrease on the level of
intratumoral Ki-67-expressing cells (M)

(54)

Decrease in the absolute number of intratumoral CD8 T-cells (M) (54)
Decrease of IFN-g-producing CD4 and CD8 T-cells in the tumor (M) (55)
Increased ratio of T conv/Treg in the tumor (M) (56)
Decrease of circulating Treg levels in blood from pancreatic cancer and increase of the Teff/Treg ratio (H) (57)
Decrease of circulating MDSC associated with an increased peripheral T- and NK-cell proliferation (H) (58)
Decrease of Treg levels in blood (M) (59)
Promotion of TAM accumulation and CSF1, CCL2 upregulation (M) (60)
Increase of monocytes and CD11c+ dendritic cells in pancreatic cancer (H) (61)
Depletion of MDSC, macrophages and eosinophils in the tumor (M) (62)
Switch towards antitumor macrophage profile (H) (63)
Upregulation of M2-polarized macrophage markers such as Arg1 and TGF-b (M) (64)
Decreased suppressive TAM frequency in the tumor (M) (65)
Decrease of MDSCs, Tregs, and macrophages in the tumor (M) (66)
Reduction of IFN-g secretion from CD8+ T cells and inhibition of T-cell activation (H) (67)
Depletion of MDSC in the spleen (M) (65) and tumor (M) (68)
Decrease of TGF-b and induction of M2 recruitment in the tumor (M) (69)
Decrease of peripheral memory T-cells, after several infusions (H) (70)
Decreased Antibody titers (M) (71)
Upregulation of CD47, CD73, and PDL1 at mRNA levels (H, M) (72)
PD-L1 upregulation in cell lines at both mRNA and protein levels (M, H) (51, 73)
Upregulation of PD-L1, CD47 and MHC-I on cell lines (H) (67)
Increased MHC-I expression on tumor cells in ovarian cancer (M, H) (74)
Upregulation of PD-L1 on myeloid cells in pancreatic cancer (H) (57)
ICOS, CD28 and HLA-DR expression on circulating CD4 and CD8 T cells and NK cells in mesothelioma (H) (58)
Upregulation of NKG2D ligands (MICA and MICB) and MHC-I expression on tumor cells (H) (75, 76)

Capecitabine Increase of CD4+, CD8+ central memory T cells, NK cells (H) (77)
Depletion of circulating MDSC in glioblastoma (H) (77)
Decrease of CTLA-4 expression in lymphocytes while no alteration of TIM3 and LAG3 expression was observed (H) (77)

Platinum Cisplatin Increase of CD8 T-cell infiltrate into tumor tissues (M) (78)
Increase of monocytes in the tumor (M) (79)
Increase in T-cell and monocyte/macrophage activation markers (CD62L, CD301) (M) (79)
Decreased frequency of ICOS+ CD4+ or CD8+ T cells in the draining lymph node (M) (54)
Downregulation of CD80, CD86, MHC-I, MHC-II expression on DC combined with an increased IL-10 production (M) (80)
Decrease of IL10, IL6, and VEGF (M) (79)
Decrease of the accumulation of peripheral myeloid cells (M) (81)
Depletion of MDSC in tumor-draining lymph node (M) (82)
Tumor-derived MDSC downregulated Gr1 expression and upregulated CD40 phenotype (M) (82)
Reduction of Breg frequency and decrease of adenosine production in HNSCC (H) (83)
Decrease of PD-L1 and PD-L2 expression in DC (H) (84)
Increased expression of MHC-I and PD-L1 (M, H) (85–87)

(88)
Upregulation of PD-L1 expression in HNSCC cell line (H) (89, 90)
Increased expression of CD70, CD80, and CD86 on antigen presenting cells (APC) (M) (91)
Induction of MHC-I expression in colon cell line (H) (92)
Upregulation of MICA/B expression at protein level in NSCLC (H) (93)
Upregulation of MHC-I and PD-L1 (M) (85)

Oxaliplatin Increase of CD4 and CD8+ T-cell infiltrate in the spleen and increase of activated T-cells and TNFa expression (M) (94)
Depletion of splenic B cells (M) (94)
Increased number of PD1+ CD8+ T-cells in blood circulation (M) (95)
Increased expression of T-cell chemoattractant CXCL9, CXCL10, and CCL5 in tumor cells (M) (95)
Increased immune cell infiltration in tumor including CD8 T-cells (M) (96)

(Continued)
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drug treatment schedule, and tolerability profile are not clearly
understood yet and are also crucial to achieving clinical success.

3.2.2 Dose Regimen: Standard or Metronomic?
Conventional chemotherapeutic agents are commonly used at the
maximum tolerated dose (MTD)which represents the highest dose
of the drug acceptable for the patient in terms of toxicity. By their
mechanism of action, these treatments exert strong cytotoxicity on
proliferating hematopoietic cells, including immune cells, resulting
in profound myelosuppression and a risk of infections. These
Frontiers in Oncology | www.frontiersin.org 5
toxicities require administration interspersed with drug-free
periods to restore hematopoiesis, periods during which
chemoresistant clones may emerge. In contrast, metronomic
doses of chemotherapy, i.e., administration of chemotherapeutic
agents at low dose but frequently, could bypass deleterious effects
(130) of conventional chemotherapy with higher efficacy to control
the disease (131).

The antitumor effects of the metronomic vs. standard dose of
chemotherapy were assessed in several PDAC mouse models
especially for cyclophosphamide and gemcitabine agents
TABLE 1 | Continued

Chemotherapy
class

Molecule Immune-related effects References

Induction of CD8 T-cell (not CD4) recruitment into tumors (M) (97)
Decreased frequency of ICOS+ CD4 and CD8 T-cells in lymph node (M) (54)
Decrease in IFN-g+ CD8 T-cells in the tumor (M) (54)
Increased number of CD4 and CD8 T-cells in the tumor (M) (98)
Decreased frequency of ICOS+ CD4 or CD8 T-cells in draining lymph node (M) (54)
Increased Treg infiltration in the spleen (M) (94)
Decrease of macrophages and DC numbers in lymph node (M) (99)
Increased infiltration of IgA+ PD-L1+ IL10+ plasma cells in the tumor (M) (96)
Depletion of MDSC in the tumor and promotion of their differentiation into mature cells such as macrophages or DC (M) (98)
Decrease of Treg in the tumor (M) (98)
Decrease of PD-L1 and PD-L2 expression in DC (H) (84)
Increased expression of MHC-I and PD-L1 (M, H) (85)
High level of PD1 and TIM3 expression on CD8 in the tumor (M) (95)
Upregulation of PD-L1 expression on tumor cells (M) (95)

Carboplatin Increase of CD4 and CD8 T-cells in the tumor (M) (100)
Increase of CD8 T-cell infiltrate in the tumor (M) (101)
Increase in IFN-g+ CD8 T-cells in the tumor (M) (54)
Differentiation of MDSC and activation of the IL13/33 axis (M) (102)
Decrease of Treg and MDSC in the tumor (M) (100)
Promotion of Treg accumulation via IL10 secreted by MDSC in the tumor (M) (102)
Upregulation of CD47, CD73, and PDL1 at mRNA level (H, M) (72)
Increased PD-L1 expression on tumor cells in ovarian cancer (H) (103)
Decreased PD-L1 and PD-L2 expression in DC (H) (84)

Taxanes Docetaxel Upregulation of CXCL11 and enhancement of CD8 T-cell recruitment (104)
Promotion of M1 polarization (H) and activation (105)
Induction of IL-8 and IL-1b secretion by monocytes (H) (105)
Accumulation of TAM (M) (106)
Decrease of MDSC proportion in the spleen and induction MDSC polarization towards an M1 like phenotype (M) (107)
Inhibition of PBMC proliferation and apoptosis of activated PBMC (H) (108)
Treg depletion after several doses (H) (109)
Decreased PD-1 expression on T cells (110)
Upregulation of PD-L1 expression in cells (M) (111)

Paclitaxel Increase of CD8 T-cell infiltrate in ovarian tumor (M, H) (74)
Increase of the priming of CD8 T cells (M) (112)
Induction of M1 phenotype (M, H) (113, 114)
Induction of IL12 production by macrophages (M) (115)
Upregulation of maturation markers (MHC-II, CD86) on DC (M) (43)
Induction of GM-CSF mRNA production in cells (116)
Decreased MDSC infiltrate associated with an inhibition of TNF and S100A9 expression in the tumor (M) (117)
Decrease of Treg numbers in the tumor (M) (112)
Upregulation of CD47, CD73, and PDL1 at mRNA level (H, M) (72)
Increased MHC-I expression on tumor cells in ovarian cancer (M, H) (74)
Upregulation of PD-L1 expression on tumor cells (M,H) (51, 74, 103)

(111)
Upregulation of PD-L1 and MHC-I on tumor cells (M) (118)

Topoisomerase I
inhibitor

Irinotecan Increase of CD8 T-cells in tumor (M) (119)
Decrease of Treg (M) in the tumor and lymph node (M) (119, 120)
Increased PDL1 and MHC-I expression on tumor cells (M) (119, 120)
Increased MHC-I expression on tumor cells (H) (121)
May 2022 | Volume 12 |
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(132–134). The studies showed that the reduction in tumor
growth was equivalent in both regimens (132, 133), but a
metronomic administration of gemcitabine induces anti-
angiogenic effects as observed by the induction of
thrombospodin-1 (TSP-1), an angiogenic inhibitor factor
(132). Similarly, Cham et al. demonstrated the decrease of pro-
angiogenic factors such as such EGF, IL-1a, IL-8, ICAM-1, and
VCAM-1 in the tumor after a metronomic dose of gemcitabine
as well as decreased hypoxia (133, 134). In addition to this anti-
angiogenic activity, a low dose of gemcitabine could also impact
the immune cell content. In an orthotopic model of PDAC, low-
dose gemcitabine depletes Treg, thus inducing a concomitant
increase of conventional T-cell percentages but have no impact
on the frequency of MDSC (56).

A metronomic dose of chemotherapy is also effective for
PDAC patients while being less toxic. Indeed, the combination of
a low dose of nab-paclitaxel (60 mg/m²) + oxaliplatin (50 mg/m²)
plus a continuous infusion of 5-FU and bevacizumab (anti-
VEGF) was effective with an ORR of 49% and a disease control
rate (DCR) of 81%. Surprisingly, 82% of patients were still alive
beyond 1 year (135).

Thisbeneficial effect at ametronomic dosemight bemediatedby
depletion of immunosuppressive populations such as Treg (136,
137), promotion of DC maturation, enhancement of T-cell-
mediated antitumor immunity (138) and/or anti-angiogenic
properties as initially described with cyclophosphamide (139,
140). However, although there is a certain amount of preclinical
evidence demonstrating the positive impact of low-dose
chemotherapy on the TME, this benefit is not well documented in
clinic. Indeed, few ongoing clinical trials ongoing clinical trials in
combinationwith an ICP inhibitor use this dose regimen (Table 2).

3.2.3 The Administration Schedule : Concomitant or
Sequenced Regimen?
To date, several clinical trials investigating the efficacy and safety
of concomitant chemoimmunotherapy are ongoing. However,
Frontiers in Oncology | www.frontiersin.org 6
according to the scientific rationale, the best treatment sequence
would be the administration of chemotherapy first, which
sensitizes the TME by releasing neoantigens and promoting T-
cell priming, followed by ICP inhibitor therapy which may
sustain T-cell-mediated antitumor activity.

However, in a preclinical pancreatic model, the concomitant
administration of chemotherapy and PD-L1 blockade results in
complete responses compared to the sequenced administration
of chemotherapy followed by an anti-PD-L1 therapy (15). The
same result was reported in a mesothelioma mouse model where
the synergistic effect of the combination was only observed when
both drugs were administered simultaneously (141). Conversely,
in a phase 2 study, the efficacy of sequential administration
versus concomitant administration of chemoimmunotherapy
combination has been tested for the treatment of metastatic
melanoma. In this case, the sequential use of ipilimumab
followed by chemotherapy confers a PFS benefit (142). This
effect was not seen in PDAC, where sequential administration of
chemotherapy and immunotherapy is not associated with an
improved OS (143). As with current clinical guidelines, most
clinical trials ongoing in PDAC (Table 2) deliver chemotherapy
concomitantly with immunotherapy, but data are lacking to
support the current treatment schedule suggesting a window
for improvement. These findings demonstrate that a scheduled
regimen may require to be adapted according to the tumor type
and therapeutic agents.
4 CONCLUSION

Pancreatic ductal adenocarcinoma is one of themost aggressive and
deadly cancers. With the lowest 5-year survival rate among solid
tumors, the medical need is high and requires a great deal of effort
from researchers to find therapeutic strategies that are more
effective than current chemotherapies. Unfortunately, despite the
arrival of breakthrough ICP inhibitor therapy, survival for PDAC
A B

FIGURE 1 | The tumor microenvironment of pancreatic ductal adenocarcinoma and impact of the chemo-immunotherapy. (A) The tumor microenvironment of the
pancreas is highly infiltrated by immunosuppressive cells (MDSC, Treg, M2 macrophages). (B) Chemotherapy promotes T cells recruitment and their priming which
could counterbalance the ratio immunosuppressive / effector cells within the TME while ICP inhibitor reinvigorates exhausted T cells. Moreover, an upregulation of
PD-L1 expression has been observed and may increase the sensitivity to PD-(L)1 inhibitors.
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patients has not improved significantly. The study of the
microenvironment has highlighted that low immunogenicity of
PDAC tumors limits the effectiveness of current treatments. One
strategy to circumvent these barriers is the use of chemotherapy to
sensitize this permissive microenvironment in combination with
ICP inhibitors. The efficacy of this combinatorial strategy has been
reported in multiple tumor types including PDAC. However, the
observed clinical benefit of these combinations is not universal and
seems to be dependent on several parameters. In this review, we
have shown that some chemotherapeutic agents have pro- and
antitumor effects. However, the molecular characteristics of the
Frontiers in Oncology | www.frontiersin.org 7
modulations induced by these treatments are not sufficiently
established and could be informative to designing more efficient
combination strategies. These immunological effects can be
modulated by the type, the dose regimen and the administration
schedule. Accumulating evidence has demonstrated equivalent
antitumor effects between low-dose chemotherapy and standard
dose chemotherapy; these studies reported additional activities of
low-dose chemotherapy such as inhibiting hypoxia and reducing
angiogenesis. Despite this rationale, few combinations under
investigation in clinical trials use. This dose regimen which could
improve combination tolerability. Regarding the administration
TABLE 2 | Ongoing clinical trials in PDAC using chemotherapy in combination with immune checkpoint with associated doses and schedules.

Clinical trials ICP Agents Phase Final Chemotherapy
dose

Treatment schedule

NCT04827953 CTLA-4 (zalifrelimab) Nab-paclitaxel
Gemcitabine
Hedgehog pathway
inhibitor

I/II June 2023 Standard NR

NCT03496662 PD-1 (nivolumab) Nab-paclitaxel
Gemcitabine
CCR2/5 inhibitor

I/II Oct 2024 Standard Concomitant

NCT04753879 PD-1
(pembrolizumab)

Nab-paclitaxel
Gemcitabine
Cisplatin
Irinotecan
Capecitabine
Olaparib

II Dec 2029 Low dose Chemotherapy followed
by ICP inhibitor

NCT04581343 PD-1 (spartalizumab) Nab-paclitaxel
Gemcitabine
Anti-ILb (canakinumab)

IB June 2022 Standard Concomitant

NCT04390763 PD-1 (spartalizumab) Nab-paclitaxel
Gemcitabine
Anti-TGFb

II May 2025 Standard NR

NCT04083599 PD-1
(pembrolizumab)

Nab-paclitaxel
Gemcitabine
CD40×4-1BB agonistic Ab

I/II Sept 2025 NR Concomitant followed by
ICP inhibitor + agonistic
antibody

NCT03611556 PD-L1 (durvalumab) Nab-paclitaxel
Gemcitabine
mFOLFOX
(oxaliplatin, leucovorin,
5-FU)
Anti-CD73

I/II Dec 2022 NR NR

NCT03193190 PD-L1 (atezolizumab) Nab-paclitaxel
Gemcitabine
Anticancer agents

I/II June 2024 Standard Concomitant

NCT02754726 PD-1 (nivolumab) Nab-paclitaxel
Gemcitabine
Cisplatin
Paricalcitol

II June 2023 Standard Concomitant

NCT05031494
NCT04481009

PD-1 (toripalimab) Nab-paclitaxel
Gemcitabine
YH003

II Dec 2023
March 2023

NR NR

NCT04247165 PD-1 (nivolumab)
CTLA-4 (ipilimumab)

Nab-paclitaxel
Gemcitabine
Radiation

I/II Feb 2024 Low dose Concomitant

NCT04787991 PD-1 (nivolumab)
CTLA-4 (Ipilimumab)

Nab-paclitaxel
Gemcitabine
Hydroxychloroquine

I Oct 2023 Standard NR

NCT04543071 PD-1 (cemiplimab) Nab-paclitaxel
Gemcitabine
Motixafortide

II August
2025

Standard NR
May 2022 | V
NR, non reported.
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schedule regimen, to date,manyclinical trials are testing the efficacy
of chemotherapy administered concomitantly with ICP inhibitor
therapy, mainly at MTD levels. Preclinical and clinical data
obtained in studying the impact of this parameter on antitumor
response are quite confusing. This administration schedule is likely
to depend on the dose as well as the therapeutic agent chosen.
Currently, data obtained in studying the combination of these
parameters are lacking. Future research should therefore explore
the impact of these treatment modalities on preclinical models and
subsequently in clinical trials to guide the development of
appropriate synergistic combinations.

Finally, the heterogeneity of PDAC patients is also a crucial
parameter to consider. Some of PDAC subtypes are more
immunogenic with a greater chance to response to ICP
Frontiers in Oncology | www.frontiersin.org 8
inhibitor therapy, while others are an immune desert. As 80%
of PDAC tumors are unresectable at diagnosis, which hinders
knowledge of the disease, the development of omic?
Technologies will help leverage and collect as much biomarker
data as possible from tumor samples in the clinic to gain a deeper
understanding of the TME and monitor pharmacodynamic
biomarkers to optimize combination parameters.
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