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Cutaneous squamous cell carcinoma (cSCC) of the head and neck region is the second
most prevalent skin cancer, with metastases to regional lymph nodes occurring in 2%–5%
of cases. To further our understanding of the molecular events characterizing cSCC
invasion and metastasis, we conducted targeted cancer progression gene expression
and pathway analysis in non-metastasizing (PRI-) and metastasizing primary (PRI+) cSCC
tumors of the head and neck region, cognate lymph node metastases (MET), and
matched sun-exposed skin (SES). The highest differentially expressed genes in
metastatic (MET and PRI+) versus non-metastatic tumors (PRI-) and SES included
PLAU, PLAUR, MMP1, MMP10, MMP13, ITGA5, VEGFA, and various inflammatory
cytokine genes. Pathway enrichment analyses implicated these genes in cellular pathways
and functions promoting matrix remodeling, cell survival and migration, and epithelial to
mesenchymal transition, which were all significantly activated in metastatic compared to
non-metastatic tumors (PRI-) and SES. We validated the overexpression of urokinase
plasminogen activator receptor (uPAR, encoded by PLAUR) in an extended patient cohort
by demonstrating higher uPAR staining intensity in metastasizing tumors. As pathway
analyses identified epidermal growth factor (EGF) as a potential upstream regulator of
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PLAUR, the effect of EGF on uPAR expression levels and cell motility was functionally
validated in human metastatic cSCC cells. In conclusion, we propose that uPAR is an
important driver of metastasis in cSCC and represents a potential therapeutic target in
this disease.
Keywords: cutaneous squamous cell carcinoma (cSSC), urokinase plasminogen activator receptor (uPAR),
urokinase plasminogen activator (uPA), metastasis, matrix metalloproteinase (MMP), extracellular matrix (ECM),
tumor stroma, transcriptomics
1 INTRODUCTION

Cutaneous squamous cell carcinoma (cSCC) is a prevalent non-
melanoma skin cancer worldwide (1). As principally a disease of
the sun-exposed skin, most notably in the head and neck, cSCC is
particularly prevalent in regions with intensive sun exposure
such as Australasia where it represents a significant health
burden (2, 3). Metastasis to regional lymph nodes in the head
neck occurs in <5% of cases but imparts significant morbidity
and mortality (4). Notwithstanding conventional systemic
treatment options such as chemotherapy and, more recently,
epidermal growth factor receptor inhibitors or immunotherapy,
for a substantial proportion of advanced cSCC patients there are
still no valid second-line therapies (5), indicating a need for
alternate targeted therapy options and strategies.

Conventional clinicopathologic prognostic markers in cSCC
are unreliable predictors of lymph node metastasis (6–8). Recent
studies assessing the genomic and transcriptomic landscape of
cSCC have revealed heterogeneity of cellular subtypes in these
cancers; however, tumor cell populations harboring potentially
clinically useful gene signatures and/or therapeutic targets of
metastatic risk in primary cSCC are evident (1, 9–16). These
biomarkers or molecular signatures of invasion and metastasis
are overwhelmingly related to cancer progression pathways
encompassing extracellular matrix (ECM) interactions and
remodeling, epithelial to mesenchymal transition (EMT),
cellular motility, and survival.

Altered proteolysis and EMT programs are required for ECM
remodeling and tumor cell escape (17–19). In particular,
overexpression of the urokinase plasminogen activator (uPA,
encoded by PLAU) and its cognate cell surface receptor (uPAR,
encoded by PLAUR) (including downstream effector and
upstream regulator molecules) is associated with EMT (20)
and correlates with increased metastasis and/or poorer patient
survival in many solid tumor types (21–23) including mucosal
squamous cell carcinoma of the oral cavity (24–30).

These genes and their proteins are also overexpressed in
advanced and metastatic cSCC (15, 31, 32) with uPAR mRNA
shown to be localized to a subpopulation of invasive cells in primary
cSCCs (33). Upon binding to uPAR, uPA efficiently activates
co-localized plasminogen to the potent broad-spectrum protease
plasmin, which initiates a cascade of pericellular proteolysis
that directly and indirectly (through the activation of
pro-metalloproteinases, pro-MMPs) degrades integral ECM
molecules including fibronectin, laminins, elastins, and collagens,
thus enabling tumor cell invasion and dissemination (18, 22).
2

Plasmin and MMPs are also responsible for the release and
activation of latent growth/angiogenic factors (such as EGF and
VEGF) and chemokines from the ECM, which promotes cellular
proliferation, survival, and motility (18, 22). Activated receptor
tyrosine kinase pathways have also been shown to enhance uPA
system expression in cancer (23).

While others have either specifically or coincidently explored
the expression of the uPA system, MMPs, and ECM interactors
in cSCC (summarized in Table S1), few have focused exclusively
on the uPA system in UV-induced cSCC of the head and neck
encompassing the spectrum of disease states. To this end, we
performed gene expression analyses using a curated cancer
progression-targeted gene set in non-metastasizing and
metastasizing head and neck cSCC primary tumors, lymph
node metastases, and matched sun-exposed skin (SES). This
was then used for gene enrichment and pathway analyses. An
integrated gene expression was also performed on relevant gene
expression omnibus (GEO) datasets to strengthen our findings.
Recognizing the PLAUR gene as an important mediator of
proteolytic networks in the tumor microenvironment, we
further investigated uPAR protein levels and association with
metastatic disease. Finally, the predicted activating effects of EGF
was assessed in vitro on EGFR-expressing human metastatic
cSCC cell lines.
2 MATERIAL AND METHODS

2.1 Study Population and
Sample Collection
The project was approved by the University of Wollongong
Health and Medical Human Research Ethics Committee
(Wollongong NSW, Australia, UOW/ISLHD HREC 14/397).
Head and neck cSCC specimens from a total of 50 patients
who underwent surgery with curative intent were retrieved from
the Department of Tissue Pathology and Diagnostic Oncology at
Royal Prince Alfred Hospital, Sydney NSW, Australia. Formalin-
fixed paraffin-embedded (FFPE) specimens were derived from
the head and neck region of 21 patients with primary tumors
with no evidence of metastasis (PRI-), 14 patients with primary
tumors that had metastasized (PRI+) (13 of which had available
concurrent metastases), and an additional 15 patients with
lymph node metastases, but with no available primary tumor.
FFPE cores from SES were taken from the peripheral negative
margins where available. The specimens used are summarized in
Supplementary Data Sheet 1. High-risk disease was defined as
April 2022 | Volume 12 | Article 835929
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per criteria of the 7th edition of the American Joint Commission
on Cancer Staging Manual (34). Patients in the non-metastatic
group had to meet one or more of the following criteria: absence
of metastases at the >24-month follow-up after resection of the
primary; negative sentinel lymph node biopsy at the time of
resection of the primary; or histologically negative prophylactic
neck dissection. Clinical features, treatment, and follow-up were
obtained from the Sydney Head and Neck Cancer Institute
database. For comparisons between the cohorts, the Mann–
Whitney-U test was applied for non-parametric continuous
data, the Fisher’s exact for categorical data in 2 × 2
contingency tables, and c2 test for larger contingency tables.

2.2 RNA Extraction
Specimens underwent histopathological review to select areas
with high neoplastic content (>30%) and exclude areas
containing necrosis, hemorrhage, high keratin content, or
significant inflammation. Three to six tissue cores (2 mm
diameter) were then obtained from FFPE blocks of these
specimens for deparaffinization and homogenization prior to
RNA extraction. Tumor nucleic acids from specimens were
extracted using AllPrep DNA/RNA FFPE Kit (80234, Qiagen,
Hilden, Germany) according to the manufacturer’s instructions.
RNA samples that met initial QC measures including high A260/
280 (<1.8–2) and acceptable integrity (Invitrogen Qubit RNA IQ
Assay, Thermo Fisher Scientific, Waltham, MA, USA) were
utilized in gene expression assays.

2.3 Gene Expression Assays and
Data Analysis
Up to 150 ng of purified RNA was run on the nCounter Sprint
(NanoString Technologies, Seattle, WA, USA) platform using the
nCounter PanCancer Progression Panel (NanoString; 740 target
genes, 30 housekeeping genes) as per the manufacturer’s
instructions. nSolver Analysis Software 4.0 (NanoString) was
used to remove specimens with low binding density or other
technical QC flags. The raw data from the remaining specimens
was then processed using the iterative RUVSeq normalization
pipeline for QC, normalization, and data visualization/validation
using NanoNormIter R package (35). After technical quality
control steps, specimens SESP3, SESP29, and PRI+P7 were
excluded from further analysis because of very low geometric
mean of housekeeping gene expression. Housekeeping genes
associated with phenotype were also excluded using the glm.nb
function (Negative Binomial Generalized Linear Model) as
specified in the RUVseq-based pipeline [refer to (35)]. The
normalization step of all possible combinations of pairwise
analyses was tested using different values of k (RUVg) and the
different normalized expression datasets visualized using
principal component analysis (PCA) and RLE plots to detect
problematic samples for assessment of removal from further
analysis. By this method, METP16 was flagged, assessed, and
discarded. The final list of included specimens that underwent
NanoString analyses are shown in Supplementary Data Sheet 1.
After RUVg normalization of final specimens, differential
expression analyses were performed using DESeq2. The top
Frontiers in Oncology | www.frontiersin.org 3
differentially expressed genes (DEGs) were selected based on
both log2fold change between the compared groups and the p-
values adjusted for multiple testing using the Benjamini–
Hochberg method (36). Supplementary Data Sheet 2 contains
differential gene expression data for all cohort comparisons.

Where indicated, raw data from the retained specimens that
passed these QC steps were also analyzed using the global
significance score function within the nCounter Advanced
Analysis 2.0 software (NanoString) which is derived using the
most DEGs in gene sets representative of a particular cancer
progression annotation.

2.4 Functional Enrichment Analysis
Ingenuity Pathway Analysis (IPA; Qiagen Inc., https://www.
qiagenbioinformatics.com/products/ingenuitypathway-analysis)
software was used to generate networks and functional analyses of
gene expression datasets (37). IPA core analysis default settings were
used, limited to the human knowledge base. We applied a global
molecular network developed from information contained in the
Ingenuity Pathways Knowledge Base incorporating DEGs from our
study with log2 fold change (logFC) <-0.58, >0.58 (p-value < 0.05)
for each comparison. Networks of these gene lists were then
generated algorithmically based on their interrelationships. The
significance of the association between lists of DEGs and the
Diseases and Functions were assessed using (1) the ratio of DEGs
(molecules) from the dataset that map to a specific cellular and
molecular function category (in relation to the total number of
molecules included in the particular disease and function) and (2)
Fischer’s exact test (to determine the likelihood of association
between the molecules in the dataset and the disease and function).

IPA uses the activation z-score algorithm to make a prediction
of activation or inhibition (or no prediction) as well as to reduce
the chance that random data will generate significant predictions.
Causal Network and Upstream Regulator analyses were used to
identify regulators with a probability of being responsible for the
changes in gene expression observed, by calculating an overlap
p-value with Fisher’s exact test and an activation z-score. Causal
Networks are small hierarchical networks of regulators that
control the expression of the dataset targets.

2.5 Integrative Gene Expression
Meta-Analysis Using the Robust Rank
Aggregation Approach
An expression meta-analysis study was performed on all available
cSCC datasets in Gene Expression Omnibus (GEO) (38)
containing normal skin from sun-exposed areas and cSCC cases
classified as invasive or metastatic for comparison to our PRI+ vs.
SES analyses. Using the detailed filtering criteria described in
Table S2, only three datasets comprising 18 SES and 25 cSCC
samples matched these criteria. In the first step, three separate
differential expression analyses for each dataset was performed
using the Limma (39) and GEOquery (40) packages. A universal
threshold of p-value < 0.01 and logFC <-0.58, >0.58 was used for
the collection of significantly DEG lists for each comparison.
RankerGUI (41) ranked the DEG lists based on the logFC
values, which were then used for a differential meta-analysis
April 2022 | Volume 12 | Article 835929
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using the Robust Rank Aggregation (RRA) method (42).
Significant DEG lists of the meta-analysis were extracted using a
p-value cutoff < 0.05. In addition, Reactome (43) functional
enrichment analysis of significantly DEG was carried out using
Bioconductor package-ReactomePA (44).

2.6 Immunohistochemistry
Immunohistochemical staining for uPAR was performed using
FFPE tissues from primary and metastatic cSCC specimens (listed
in Supplementary Data Sheet 1). Briefly, 4-µm sections were
deparaffinized and uPAR detected (after antigen retrieval at 100°C
in pH 9.0 solution) with anti-uPAR at either 1:100 dilution (clone
R4; Dako, Glostrup, Denmark) or 1:500 (10925-T30; Sino
Biological, Chesterbrook, PA, USA) using the Ventana
BenchMark Ultra Automated Immunohistochemistry (IHC)/ISH
slide staining system with diaminobenzidine (DAB) as chromogen,
followed by counterstaining with hematoxylin. The confounder
effect of using the two different sources of anti-uPAR in this study
was not significant (data not shown). Slides containing neutrophils
and macrophages as internal and external positive controls,
respectively, accompanied all staining runs. The proportion of
tumor cells demonstrating complete membranous staining with
uPAR was initially recorded as a proportion of the total number of
tumor cells at the advancing edge of the tumor. Complete
membranous staining of any intensity of the tumor cells was then
scored and used for statistical analyses in this study. Scores were
analyzed in GraphPad Prism 8.4.3.

2.7 miRNA Analysis
Small RNA-Seq was performed using the Illumina HiSeq
platform at the Australian Genome Research Facility Ltd.,
Westmead, NSW, Australia. The quality test of raw reads was
assessed using the FastQC tool v0.11.9 (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Poor-quality
reads were trimmed using Cutadapt (version 2.8). Trimmed
fastq sequences were mapped and annotated using sRNAbench
(45). Next, a differential expression analysis based on negative
binomial distribution was performed using the sRNAde tool
(46), which integrates Deseq2 (47) and EdgeR (48). Further,
significantly differentially expressed miRNAs were extracted
based on log2FC ≥ ± 1 and p-values adjusted for multiple
testing using the Benjamini–Hochberg method (36). In
downstream analyses, miRDB (49, 50) was used to obtain
putative targeted genes of statistically significant miRNAs.
miRDB provides a collection of miRNA and mRNA
interactions predicted by the Machine Learning Tool
(MirTarget), which utilizes features related to miRNA binding
and downregulated targets. miRNA–mRNA interactions having
a score >75 were considered for further analysis. Finally,
experimentally validated miRNA–mRNA interactions for
PLAUR from the miRtarbase database (51) were explored.
Two-tailed Spearman correlation coefficient between uPAR
IHC and miRNA was calculated using GraphPad Prism 9.0.2.

2.8 Cell-Based Assays
The effect of EGF on cell migration was assessed in a scratch-
wound assay using the IncuCyte® Zoom Kinetic Imaging System
Frontiers in Oncology | www.frontiersin.org 4
(Essen BioScience, Ann Arbor, MI, USA). Patient-derived
metastatic cSCC cell line UW-CSCC2 [described in detail in
(52)] was seeded onto collagen 1-coated 96-well ImageLock
plates (Essen). After 24 h incubation in low serum containing
media (DMEM supplemented with 1% FCS, no EGF), the cells
were scratched according to manufacturer’s instructions using the
96-pin Essen Woundmaker™. The cells were subsequently
washed with serum-free media, then incubated with 0, 5, 10, or
20 ng/ml human EGF ± 1 µM gefitinib in low serum media at 37°
C, 5% CO2, and imaged over 24 h at ×10 objective to track cell
motility and wound width. IncuCyte™ ZOOM software was used
to analyze wound width reduction over time. Data were analyzed
using GraphPad Prism 9.0.2.

For determination of uPAR levels, UW-CSCC2 cells were treated
as above except that cells were lysed for total protein extraction and
Western blotting 24 h after EGF ± 1 µM gefitinib treatment. Blots
were incubated with anti-human uPAR rabbit polyclonal antibody
(1:2,000; ab103791, Abcam) or anti-GAPDH mouse monoclonal
antibody (1:5,000; G8795, Sigma-Aldrich, St. Louis, MO, USA) and
detected using horseradish peroxidase-conjugated anti-rabbit IgG
(7074S, Cell Signaling, Danvers, MA, USA) or anti-mouse IgG
(ab205719, Abcam, Cambridge, MA, USA) both at 1:5,000
dilution. Chemiluminescence was generated using Pierce ECL
Western Blotting Substrate (Thermo Fisher Scientific, Waltham,
MA, USA) and visualized using a ChemiDoc MP Imaging System
(Bio-Rad Laboratories). Densitometry was conducted using ImageJ
(v1.53e, NIH,USA) and values normalized against the housekeeping
protein GAPDH as protein loading control.

For detection of EGFR, cells were seeded into ibidi chamber
slides (ibidi GmbH, Gräfelfing, Germany) and grown under
regular culture conditions prior to staining with human anti-
EGFR monoclonal antibody (1:1,000; MAB1095-100—R&D
Systems, Minneapolis, MN, USA) followed by Alexa Fluor®

555-conjugated donkey anti-mouse IgG H&L (1:2,000;
ab150106, Abcam). The cells were then counterstained with
ActinRed 555 ready probes (Thermo Fisher) and RedDot2 Far-
Red Nuclear Stain (Biotium, Inc., Fremont, CA, USA), and then
imaged with a ×20 oil immersion objective and a TCS SP5
confocal microscope (Leica, Wetzlar, Germany).
3 RESULTS

3.1 Clinical and
Demographic Characteristics
Clinical and demographic data are shown in Table 1. While the sex
distribution was similar, patients suffering frommetastasizing cSCC
(PRI+ and/orMET) were significantly older than patients with non-
metastasizing cSCC (PRI-; p = 0.034). This age difference may be
subject to bias, since in patients withMETwhere the primary tumor
was not known, the age was recorded at the time of treatment of the
lymph node metastasis, which is at a later point of the course of the
disease. The two groups differed significantly in TNM tumor stage
at the time of surgery, which was expected since the presence of
lymph node metastasis is the determinant of the N-stage (p < 0.001)
and reflects in higher overall stage (p < 0.001). The validity of the
April 2022 | Volume 12 | Article 835929
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difference in the T-stage is limited, since the primary was no longer
present at the time of surgery in 12 MET samples and could not be
retrospectively determined. Although not statistically significant,
lympho-vascular infiltration (LVI) was more commonly seen in the
metastatic cohort, which could be expected since LVI is a crucial
step in the development of lymph node metastasis. The rate of
perineural infiltration and histopathological grading did not
significantly differ between the two groups. Full clinico-
pathological data for each sample are listed in Supplementary
Data Sheet 1.
Frontiers in Oncology | www.frontiersin.org 5
3.2 Cancer Progression Pathways
Involving ECM Remodeling and Cell
Movement are Upregulated in a Stepwise
Manner From SES to Non-Metastatic to
Metastatic cSCC
3.2.1 Gene Expression Analyses in Tumors
Versus SES
A principal component analysis (PCA) plot based on all the
normalized data of all cohort comparisons clearly separate the
TABLE 1 | Demographic and clinical data of the cohort of 50 patients with cSCC with (cohorts PRI+, MET) or without lymph node metastasis (PRI-).

Variable PRI+/MET (metastasizing tumors), n = 29 PRI- (locally confined tumors), n = 21 Total (n = 50) p-value

Mean age, years (range) 74.8 (32 to 93) 68.2 (39 to 92) 72.1 (32 to 93) 0.034c

Sex, n (%)
Female 2 (7) 4 (19) 6 (12) 0.22d

Male 27 (93) 17 (81) 44 (88)
Site of primary tumor, n (%)
Scalp 4 (14) 5 (24) 9 (18) 0.99ee

Ear and temple 5 (17) 7 (33) 12 (24)
Nose and midface 3 (10) 5 (24) 8 (16)
Lip 2 (7) 2 (10) 4 (8)
Neck 1 (3) 2 (10) 3 (6)
Unknown 14 (48) 0 14 (28)

Recurrent tumor, n (%)a

No 15 (52) 15 (71) 30 (60) 0.24d

Yes 14 (48) 6 (29) 20 (40)
T-stage at surgery, n (%)b

0 or unknown 12 (41) 1 (5) 13 (26) 0.039e

1 3 (10) 3 (14) 6 (12)
2 6 (21) 4 (19) 10 (20)
3 6 (21) 11 (52) 17 (34)
4 2 (7) 2 (10) 4 (8)

N-stage at surgery, n (%)b

0 5 (17) 21 (100) 26 (52) <0.001e

1 5 (17) 0 5 (10)
2 4 (14) 0 4 (8)
3 13 (45) 0 13 (26)
Unknown 2 (7) 0 2 (4)

Overall stage (AJCC 7th edition)b

I 1 (3) 3 (14) 4 (8) <0.001e

II 2 (7) 4 (19) 6 (12)
III 5 (17) 11 (52) 16 (32)
IV 20 (69) 2 (10) 22 (44)
Unknown 1 (3) 1 (3) 2 (4)

Histopathological grading, n (%)b

1 (well differentiated) 2 (7) 2 (10) 4 (8) 0.13e

2 (moderately differentiated) 13 (45) 14 (67) 27 (54)
3 (poorly differentiated) 14 (48) 4 (19) 18 (36)
Unknown 0 1 (5) 1 (2)

Lymph-vascular infiltration (LVI), n (%)b

No 18 (62) 18 (86) 36 (72) 0.11d

Yes 10 (34) 3 (14) 13 (26)
Unknown 1 (3) 0 1 (2)

Perineural invasion (PNI), n (%)b

No 11 (38) 11 (52) 22 (44) 0.56d

Yes 15 (52) 10 (48) 25 (50)
Unknown 3 (10) 0 3 (6)
April 2022
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aRecurrent tumors at surgery. Recurrences after last surgery are not included.
bWhen multiple samples of a single patient from the primary (PRI+) and lymph node metastasis (MET) were analyzed, the index tumor (PRI+) was prioritized.
cMann–Whitney U test.
dFisher exact test.
eChi-square test.
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tumor cohorts (MET, PRI+, and PRI-) from SES (Figure 1A), with
significant differential gene expression (log2FC ≥1 or ≤-1; adjp-
value < 0.05) between all tumor cohorts and SES (Figures 1B–D).
This included 229 DEGs in MET tumors vs. SES (147 up- and 82
downregulated), 214 in PRI+ (metastasizing primary tumors) vs.
SES (133 up- and 81 downregulated), and 213 in PRI- (non-
metastasizing primary tumors) vs. SES (124 up- and 89
downregulated) (refer to Supplementary Data Sheet 2 for gene
list). This highlights the striking differential gene expression in cSCC
compared to SES despite the high mutational burden reported in
SES (53). Fifty percent (148/295) of the DEGs between the three
comparisons (i.e., between MET or PRI+ or PRI- vs. SES) were
shared (Figure 1E; Supplementary Data Sheet 2). Of the top 20
upregulated shared DEGs (Supplementary Data Sheet 2), 12 are
associated with MMP remodeling, cell motility, and ECM receptor
interaction annotations (Supplementary Image 1A), indicating that
these pathways are already dysregulated in non-metastasizing
primary tumors. However, key MMP remodeling-associated genes
PLAU and MMP10 and basal cell marker KRT19 were uniquely
shared upregulated genes in metastatic tumors (MET and PRI+)
(Supplementary Image 1A). Of the top 20 downregulated DEGs,
10 genes with varied functions such as keratinocyte differentiation
(KRT1) and dysregulated tumor–microenvironment interactions
were shared between all tumor cohorts and SES (Supplementary
Image 1B). Four genes with disparate functions were among the top
20 downregulated genes uniquely shared by metastatic tumors
compared to SES (Supplementary Image 1B). These unique
shared up- and downregulated genes clustered the MET/PRI+
cohort together away from the PRI- cohort, which showed
Frontiers in Oncology | www.frontiersin.org 6
intermediate behavior between the metastatic tumors and SES
(Supplementary Image 1C).

3.2.2 Pathway Analyses of Gene Expression Profiles
in Tumors Versus SES
A gene set analysis of the differential gene expression profiles of
tumor cohorts compared to SES confirmed that MMP remodeling
followed by cell motility, collagen family, and ECM receptor
interaction was the most differentially expressed cancer
progression pathway (Figure 2A). Stepwise increases in
expression from SES to PRI- to PRI+ and MET were most
evident for MMP remodeling (Figure 2B) and cell motility
(Figure 2C) annotations.

Ingenuity pathway analysis was then used to categorize the
DEGs from the MET vs. SES, PRI+ vs. SES and PRI- vs. SES
comparisons into canonical pathways. Significantly enriched
canonical pathways [-log(p-value) >1.3, absolute value
z-score >2, <-2] and the DEGs in each pathway are listed in
Supplementary Data Sheet 3. In all tumor cohorts vs. SES,
tumor microenvironment, leukocyte extravasation, hepatic
fibrosis signaling pathway, and HIF1a signaling were among
the top significantly activated CPs (Figures 2D–F). Significantly
inhibited pathways included PTEN signaling (MET/PRI+ vs. SES
only) and inhibition of matrix metalloproteinase (MET vs. SES
only) (Figure 2F). Activation of leukocyte extravasation, which is
the movement of leukocytes from the circulatory system toward
a tumor [63], is in line with upregulated cell motility in tumors
vs. SES found in our gene set analyses (Figure 2C). In line with
other reports comparing cSCC vs. normal sun-exposed skin [64],
A

B

D E

C

FIGURE 1 | Cancer progression gene expression patterns of sun-exposed skin (SES) and non-metastatic (PRI-) and metastatic (PRI+ and MET) cSCC. (A) Principle
component plot of tumor cohorts and SES normalized gene expression data. The first and second principal components are plotted on the x- and y-axis,
respectively. Batch ID symbols indicate different NanoString runs and show lack of batch effect. (B–D) Volcano plots illustrating gene expression differences (x-axis)
and significance (y-axis) (dotted horizontal lines) of (B) MET vs. SES, (C) PRI+ vs. SES, and (D) PRI- vs. SES. Each dot represents a gene. (E) Venn diagram
depicting DEGs with log2 fold changes of ≥1 or ≤-1 between MET vs. SES, PRI+ vs. SES, and PRI- vs. SES and adjusted p-value ≤ 0.05. The number of DEGs for
each pairwise comparison is indicated in the circles of the Venn diagram. The overlap between the circles shows DEGs that occur in more than one comparison.
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ECM receptor interaction and interleukin signaling and PI3K/
AKT/mTOR signaling were also significantly activated canonical
pathways in our analyses (Figures 2D–F).

Integrative gene expression meta-analysis of publicly available
invasive/metastatic cSCC (n = 25) vs. normal skin from
sun-exposed area (n = 18) array data on the GEO platform
(see Table S2 for detailed sample filtering criteria) revealed a
total of 127 upregulated and 59 downregulated significant DEGs
(Supplementary Data Sheet 4). Comparison of these significantly
DEGs with our PRI+ vs. SES dataset found 33 DEGs genes in
common (Supplementary Image 2A). Reactome pathway analysis
using these shared genes again highlight enrichment of activated
pathways affecting extracellular matrix interactions, organization or
degradation, collagen family, and interleukin/chemokine signaling
(Supplementary Image 2B) as per our independent analyses using
nSolver and IPA.

3.3 Differential Gene Expression and
Pathway Analysis Between Metastatic and
Non-Metastatic cSCCs Identifies VEGFA,
EGF, and IL1RN as Key Upstream
Regulators of Metastasis
3.3.1 Gene Expression Analyses in Metastatic Versus
Non-Metastatic Tumors
A progressive decrease in the number of significantly DEGs was
found between the metastatic (PRI+) compared to non-
Frontiers in Oncology | www.frontiersin.org 7
metastatic (PRI-) tumors vs. MET (Figure 3A). The MET vs.
PRI+ comparison revealed 8 significant DEGs while MET vs.
PRI- revealed 58 significant DEGs (Figure 3A; Supplementary
Data Sheet 2). At these stringent cutoffs, only 3 DEGs were
found in the PRI+ vs. PRI- comparison (Supplementary Data
Sheet 2) likely due to small sample size and bulk sampling
(discussed further below). Using a less stringent cutoff for PRI+
vs. PRI- (p < 0.01 instead of adjp < 0.05), there were 16 significant
DEGs (Figure 3A, gray circle). That there were few significant
cancer progression gene expression differences between
metastatic primaries and metastases suggested that the PRI+
tumors had acquired many of the activated pathways necessary
for metastasis. In further support of this, pathway analysis of the
six available patients’ specimens with matched MET, PRI+, and
SES samples showed that the tumor pairs by and large clustered
together and away from SES (Supplementary Image 3).

Of the 8 significantly DEGs between MET and PRI+, only one
(TIMP1) was not shared with the MET vs. PRI- grouped cohort
comparison (Figure 3A). Although TIMP1 encodes an inhibitor of
MMPs, elevated expression of TIMP1 has been reported in head
and neck SCCs (54–60) and has been shown to stimulate cell
proliferation and prevent apoptosis (61). A PCA loading plot using
these 8 significant DEGs (Figure 3B) indicates that ANGPTL4
(encodes angiopoietin) and TFPI2 (encodes tissue factor
inhibitor 2) exert the largest effects on PC1 and PC2 (followed
by VEGFA, ITGA5, TIMP1, and RHOA). These genes are involved
A

B

D

E

F
C

FIGURE 2 | Pathway analyses of tumors vs. SES. (A) Heatmap of global significance scores of cancer progression gene annotations generated using nSolver
Advanced Analysis software 2.0 (orange denotes gene sets whose genes exhibit extensive differential expression with the covariate (SES), blue denotes less
differential expression). (B, C) Boxplots showing pathway scores (y-axis; fit using the first principal component of each gene set’s data) for two of the top differentially
expressed cancer pathways specified in the heatmap. (D–F) Top 20 activated and inhibited canonical pathways (refer to Supplementary Data File 3) for (D) MET
vs. SES, (E) PRI+ vs. SES, and (F) PRI- vs. SES showing significance level (-log (p-value)) along the x-axis and absolute activation z-score (<-2, >2) along the y-axis.
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in various functions that promote either angiogenesis, cell
adhesions or motility, protection from anoikis, matrix
remodeling, or epithelial–mesenchymal transition (EMT) and
are known to play important roles in the metastatic process in
several cancers (62). Interestingly, ITGA5, which is also a classic
EMT marker enriched on tumor-specific keratinocyte (TSK)
subsets of metastatic cSCC (9) and upregulated in various
cancers (63), showed a stepwise increase in expression from SES
to PRI, to PRI+ to MET (Supplementary Image 4).

Although the MET and PRI- cohorts could be separated using
the 58 significant DEGs from the MET vs. PRI- comparison, a
few PRI- specimens (P22 and P31 in particular) clustered with
the MET cohort (Figure 3C). A closer examination of the
clinicopathological characteristics of these specimens found
these to be from patients with high-risk features such as either
recurrences or PNI. PCA loadings show that the genes exerting
the largest effects includeMMP1 andMMP10, KRT7, and KRT19
(Figure 3C), high levels of which in other cancers have been
associated with unfavorable prognosis (64). Another example is
SPP1, which encodes a stromal cell ligand shown to interact with
integrin receptors encoded by ITGB1 and ITGA5, which are both
enriched on TSKs (9).

Of the 16 significant DEGs between PRI+ vs. PRI-, the
majority were shared with the MET vs. PRI- comparison
(Figure 3A). These genes feature MMPs (MMP10), cell
differentiation and adhesion markers (KRT19, CEACAM5), and
Frontiers in Oncology | www.frontiersin.org 8
cell polarity and signal transducers (CLND7). While these genes
exerted the largest effects on PRI+ as assessed by PCA loadings
(Figure 3D), these cohorts were not distinguishable, possibly due
to intra-tumoral heterogeneity and/or the particular area of
primary tumor sampled.

3.3.2 Pathway and Functional Analyses in Metastatic
Versus Non-Metastatic Tumors
To further investigate the molecular mechanisms underlying
cSCC progression, the IPA downstream effect analysis function
was used to identify diseases and function activation status, given
the observed differential gene expression data described above. A
relatively small number of significantly activated functions (p-
value > 9.89E-10, z-score > 2) were evident in MET vs. PRI+, and
these were broadly associated with cellular movement
(Supplementary Image 5A; Supplementary Data Sheet 5).
Notably, functions associated with cell death and survival were
either significantly decreased or inactivated (e.g., apoptosis/
anoikis of tumor cell lines) or activated (e.g., cell viability). A
larger number of significantly activated functions were found in
MET vs. PRI- (Supplementary Image 5B; Supplementary Data
Sheet 5) with top-scoring functional categories most strongly
associated with cellular movement (inclusive of invasion/
migration of cells, leucocyte migration, chemotaxis) and cell-
to-cell signaling and interaction. Cellular movement was the
main functional category predicted to be activated in the PRI+ vs.
A B

DC

FIGURE 3 | Cancer progression gene panel differential expression analysis between tumor cohorts. (A) Venn diagram depicting DEGs with log2 fold change ≥1 or ≤-1
between MET vs. PRI+ and MET vs. PRI- (adjusted p-values <0.05), and PRI+ vs. PRI- (p-values <0.01). Upregulated (red) and downregulated (green) DEGs for each
pairwise comparison are indicated. The overlap between the circles show DEGs genes that occur in more than one comparison. (B–D) PCA loading plots based on
significant DEGs between (B) MET and PRI+ (8), (C) MET and PRI- (54), and (D) PRI+ and PRI (16). Each symbol corresponds to one sample. Ellipses represent the
region where the majority of samples are expected to fall. Non-overlapping ellipses imply that gene expression profiles cluster groups apart based on their distinct
principal component scores. Batch ID symbols indicate samples analyzed in different NanoString runs and show lack of batch effect.
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PRI- comparison (inclusive of migration of keratinocytes and
fibroblasts); however, functions related to inflammatory response
was the top activated category (Figure 5C; Supplementary Data
Sheet 5).

We then used the Upstream Analysis and Causal Network
module of IPA to understand how the abovementioned functions
might be regulated in our dataset by activated or inhibited
upstream regulators. Supplementary Data Sheet 6 lists all the
predicted activated or inhibited master regulators (z-score >2, <-2)
which are hypothesized to control the expression of our dataset
molecules either directly or indirectly through other regulators. Of
these, IL1RN (interleukin 1 receptor antagonist) is predicted to be a
significantly inhibited master regulator contributing to the gene
expression changes seen in MET vs. primary (PRI+ or PRI)
tumors. IL1RN acts indirectly on downstream targets
distinguishing MET from PRI+ by mediating the activity of
intermediary regulators including TGFB1 (an important TSK/
EMT marker) and the inflammatory cytokines TNF, IFNG, and
IL1 (with high confidence of activation) (Figure 4A). This then
leads to the upregulation of VEGFA, TIMP1, SPP1, ITGA5, and
CEACAM5, all known to be associated with increased invasiveness
(9, 56, 65), and downregulation of various genes including the
tumor-suppressor APC (APC regulator of WNT signaling
pathway). Altogether, this is predicted to increase the neoplasia
of tumor cells, migration of tumor and leukocytes, and decrease
apoptosis of tumor cell lines (Figure 4A). In MET vs. PRI-, IL1RN
Frontiers in Oncology | www.frontiersin.org 9
acts directly on downstream targets such as VEGFA, TIMP1, SPP1,
and MMP1 and the stem cell gene CD44 (Supplementary Data
Sheet 6).

VEGFA (vascular endothelial growth factor A) and EGF
(epidermal growth factor) are predicted to be significantly
activated master regulators driving differential gene expression
in MET vs. PRI- (Supplementary Data Sheet 6). Both growth
factors are known stimulators of uPAR mRNA expression (23).
Figure 4B demonstrates the VEGFA-mediated upregulation of
genes involved in ECM interaction and MMP remodeling (also
TSK-specific genes (9)) such asMMP1,MMP10,MMP12, PLAU,
and CXCL10 in MET, as well as FLT1 (encodes VEGFA
receptor), which in turn promote metastatic functions such as
angiogenesis, growth, migration and invasion, and evasion of
apoptosis. Figure 4C demonstrates the EGF-mediated
upregulation of genes of an overlapping subset of genes as well
as PLAUR, VEGFA, and KRT19 and a variety of transcription
factors in MET. EGFRmRNA levels were high in all cohorts, and
there was no significant differential expression in any of the
tumor comparison or in tumor vs. SES (Supplementary Data
Sheet 2).

In PRI+ vs. PRI- analysis, JAG1 (encodes Jagged Canonical
Notch Ligand 1) appeared as one of the main activated master
regulators (z-score = 2.668, p = 6.43E-10) predicted to act through
AKT, EGFR, ERK1/2, NOTCH1, and TCF7L2 leading to the
expression of matrix remodeling genes MMP1, MMP10,
A

B C

FIGURE 4 | IPA causal network analysis depicting the interactions between upstream regulators, downstream genes, and physiological functions in cSCC.
(A) MET vs. PRI+ comparison showing effect of predicted master regulator IL1RN (depth: 2). (B, C) MET vs. PRI- comparison showing predicted master regulators
VEGFA (depth: 1) and EGF (depth: 1). Master regulators were predicted based on the causal paths known to influence the expression of their target genes leading to
the physiological functions shown. Regulators with depth of 2 influence the expression of target genes via other regulators. Figure legend indicates whether genes
were upregulated or downregulated in MET relative to PRI tumors; the predicted activation state of the upstream regulators, and the predicted relationships between
these and downstream genes and functions.
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ICAM1, and PLAUR (Supplementary Data Sheet 6), possibly
from TSKs sampled from the leading edge of PRI+ tumors.

3.4 uPAR Protein Levels Are Significantly
Increased in Metastatic cSCC and
Correlates With Downregulation of
hsa-miR-340-5p and hsa-miR-377-3p
Given the upregulation of the genes for uPA and its receptor uPAR
in metastatic tumors compared to PRI- and SES (see also
Supplementary Image 4) and their contribution to tumor
progression through different pathways and functions, we
examined spatially localized uPAR protein levels in an extended
cohort of cSCC tumors of the head and neck. Figure 5A shows an
example of membranous staining typically found in MET
specimens (from lymph node deposits). Interestingly, a positively
stained tumor embolus was captured in-transit in a lymphatic vessel
(Figure 5B), highlighting the upregulation of uPAR on invasive and
metastatic tumor cells. uPARwas found to be highly tumor-specific,
with increased staining in the tumor compartment, particularly at
the leading edge of tumors, with absence of staining in SES
(Supplementary Image 6). Analysis of the staining scores (Table
S3) found significantly increased uPAR staining in MET tissues
Frontiers in Oncology | www.frontiersin.org 10
compared to PRI+ and PRI- (p = 0.0255 and <0.0001, respectively)
(Figure 5C). The staining intensity was generally higher in PRI+
than in PRI-, but this was not statistically significant (Figure 5C)
potentially due to the effects of an outlier in the PRI- group with
high uPAR staining (Patient 37, Table S3). This specimen was
characterized to be a highly invasive 160-mm-diameter × 70-mm-
thick exophytic primary tumor in the scalp as opposed to other
PRI- tumors with less than 20-mm depth of invasion (Figure 5C).

To assess the potential regulation of PLAUR expression by
miRNAs in cSCC, we extracted PLAUR targeting miRNAs from
the miRDB based on the target prediction score of >75 (high
confidence; Table S4) and then from a list of experimentally
confirmed miRNA-PLAUR interactions compiled from
miRTARBASE (Table S5). Of these lists, only hsa-miR-340-5p
and hsa-miR-377-3p from the miRDB list showed a statistically
significant differential expression betweenMET and combined PRI
tumor cohorts with both miRNAs being significantly
downregulated in MET (Table S6). By computing two-tailed
Pearson correlation coefficients, the strongest significant negative
correlation was found between miR-340-5p and uPAR staining
intensity for our dataset (Figure 5D). No significant correlation
was found between miR-340-5p and PLAUR mRNA expression
A

B D

C

FIGURE 5 | uPAR protein expression is increased on metastatic tumors and correlates with miRNA-340-5p expression. Representative photomicrographs showing
uPAR staining in (A) a metastatic deposit in the lymph node of Patient 2 and (B) a positively stained embolus as well as staining in the subcapsular tumor deposit from
the lymphatic of patient 2. (C) Scatter plot of uPAR IHC scores of all patient specimens stained (n = 58 total) showing cohort median values (blue line) with interquartile
ranges (refer to Table S3 for individual patient values). p-values shown were derived using a Kruskal–Wallis test for multiple comparisons with uncorrected Dunn’s
posttest. Arrowhead denotes patient 37 who had a 160 mm diameter × 70 mm thick PRI-. Bracket denotes PRI- tumors with >50-mm diameter and PNI. (D) Scatter
plot showing relationship between uPAR staining scores and hsa-miR-340-5p normalized gene count (n = 20 pairs; refer to Table S6) and show Rho (Spearman’s)
correlation, p-value, and interquartile range for the correlation.
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(data not shown). Interestingly, the expression of both miRNAs
and uPAR protein was much higher and lower, respectively, in
MET04 than the remainder of the cohort (Table S6). In contrast,
PRI+02, with 100% positivity for uPAR staining, expressed much
lower levels of both miRNAs than the other primary tumors.

3.5 EGF Enhances cSCC Cell Motility and
uPAR Expression
Given that uPAR levels were increased on metastatic vs. non
metastatic tumors and that EGF was identified as a master
regulator leading to PLAUR upregulation, we sought to
confirm this relationship in vitro using a metastatic cSCC cell
line derived from a lymph node deposit, UW-CSCC2 (Patient 40,
Table S3) (52). These cells constitutively express EGFR
(Figure 6A) (but did not harbor EGFR mutations or copy
number variations, data not shown) and responded to
exogenous 5–20 ng/ml EGF with increased cell migration
(Figure 6B) and uPAR protein levels (Figure 6C) compared to
untreated cells. Treatment with the EGFR tyrosine kinase
inhibitor gefitinib, even in the presence of 20 ng/ml EGF,
significantly inhibited wound closure with respect to both
control and EGF-treated cells (Figure 6B). uPAR expression
levels were also significantly decreased (Figure 6C). A second
metastatic cSCC cell line (UW-CSCC1; Patient 17, Table S3) was
found to be similarly affected by EGF/R stimulation and
inhibition (data not shown).
4 DISCUSSION

Dysregulated activation of extracellular proteolytic networks is
strongly linked to mechanisms that enable tumor invasion and
metastasis. Our cSCC cohort gene expression and pathway
enrichment analyses using various methodologies strongly
implicate ECM remodeling and interactions allowing cell
Frontiers in Oncology | www.frontiersin.org 11
motility as among the most significant activated pathways and
functions, with stepwise increases in activation from SES to
metastatic cSCC. Further, we identified the growth factors EGF
and VEGF-A as potential master regulators that concordantly
upregulate the expression of ECM remodeling genes encoding
uPA/R and MMPs—well-recognized metastasis driver proteases
in many cancer types. Figure 7 summarizes the key molecular
alterations we found in MET/PRI+ compared to PRI-/SES which
center on the urokinase plasminogen activation system.

The upregulation of plasminogen activation family members
and MMPs has been reported in previous studies using squamous
cell carcinomas, including those of the skin (33, 35, 51, 54, 57, 66–
69) (Table S1). It was thus not surprising that PLAU and MMP
genes were among the highest DEGs in all tumors vs. SES
comparisons in our cSCC cohort. However, the quantifiable
stepwise increase in expression from SES to PRI- to PRI+/MET
has not been previously reported in cSCC derived exclusively from
the head and neck. Correspondingly, uPAR protein levels were
significantly increased in metastases and this was corroborated by
our identification of a significant negative correlation (correlation
coefficient <-0.60) between hsa-miR-340-5p and uPAR staining,
suggesting that this miRNA plays a role in silencing PLAUR at a
posttranscriptional level. While several miRNAs have been
reported to modulate uPAR expression in a variety of diseases
(Tables S4, S5), this particular miRNA–target interaction is a
novel finding in cSCC and should be functionally validated in
future studies. Interestingly, SERPINE1 (encodes plasminogen
activator inhibitor type 1, a potent inhibitor of uPAR-bound
uPA) was also upregulated in all our tumor cohorts (refer to
Supplementary Data Sheet 2). This is of note because combined
upregulated PLAU and SERPINE1 expression is strongly
associated with poor cancer outcomes in various other cancers
via mechanisms that affect cell adhesion, ECM remodeling, and
signaling pathways leading to increased cell survival, migration,
invasion, and angiogenesis (21, 23, 70–73).
A B C

FIGURE 6 | EGF upregulation of cSCC cell line motility and uPAR expression. (A) Immunocytochemical image of UW-CSCC2 cells stained with anti-EGFR antibody
(green) or anti-mouse IgG negative control (inset) and counterstained with RedDot (blue) and ActinRed 555 (red). (B) Representative in vitro scratch wound healing
assay showing effect of EGF E ± EGFR inhibitor gefitinib G on simple migration of UW-CSCC2 cells. Values shown are mean ± SEM, n = 5; all treatment groups
were significantly different from untreated controls p-value < 0.05, all gefitinib treatment groups significantly different to EGF only treatment groups p-value < 0.001;
ordinary one-way ANOVA with Dunnett’s post-test. (C) Representative Western blot (right panel) demonstrating UW-CSCC2 uPAR levels in response to 24-h
pretreatment with EGF ± gefitinib, at concentrations shown. Panel below: densitometry analysis showing the ratios of uPAR/GAPDH (used as a total protein loading
control) for each treatment relative to no EGF control. Significance values are shown with *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001.
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In a study by Ji et al., single-cell RNA sequencing with spatial
transcriptomics identified four subpopulations of keratinocytes
within primary cSCCs with a specific TSK subpopulation localized
to the leading edge (9). The gene signature of the TSKs is uniquely
linked to EMT, cellular movement, and extracellular matrix
disassembly, suggestive of invasive behavior and that these cells
are responsible for metastasis (9). The presence of these
subpopulations may explain why our bulk tumor analysis of
DEG in PRI+ vs. PRI- could not effectively distinguish the two
groups, despite sampling from areas of high tumor cellularity at
the leading edge. While bulk tumor analysis represents a limitation
of our study, nonetheless we identified significant upregulation of
key TSK signature genes, in particular PLAU,MMP1 andMMP10,
ITGA5 in MET vs. PRI- and PRI+ vs. PRI-. Interestingly, of these
important TSK genes only MMP10 is included in a 40-gene
expression profile test that was recently shown to identify cSCC
patients’ risk of metastasis (74). Nevertheless, these genes together
with many other genes that were upregulated in MET/PRI+ vs.
PRI- have known functions in ECM adhesion and remodeling
(e.g., PLAUR, SPP1,MMP12) and/or cell proliferation andmotility
Frontiers in Oncology | www.frontiersin.org 12
(e.g., STAT1 and CXCL10). In concordance with the primary
cytokine activation signature observed in our Reactome
enrichment analyses, Ji et al. (9) and others (75) also identified
elevated expression of key components of the JAK-STAT pathway
(e.g., STAT1) and various inflammatory cytokine genes in invasive
cSCC. We also identified upregulation of genes encoding the
macrophage and CAF ligands, secreted phosphoprotein 1
(SPP1), and fibronectin (FN1) which have been shown to
interact with the TSK receptors integrin subunit beta 1 (ITGB1)
and subunit alpha 3 or 5 (ITGA3, ITGA5), respectively, in cSCC
(9). This likely reflects the presence of stromal cells in our samples
and aberrant tumor–stroma interactions. Notably, a high
expression of ITGB1 and PLAU has been shown to be associated
with reduced progression-free survival in clinical trials of anti-PD-
1 in lung and head and neck mucosal SCC (9, 76). As both genes
were upregulated in metastatic cSCC, this suggests that a similar
association may occur in cSCC.

We also found that the matrix metalloproteinase inhibitor
genes, TIMP1 and TIMP4, were differentially expressed in
metastatic versus non-metastatic/SES tissues. Many studies
FIGURE 7 | Summary and schematic illustration of key pathways and regulators identified as up- or downregulated in metastatic versus non-metastatic tumors or
SES in this study. The urokinase plasminogen activator system (uPAS) plays a central role in remodeling the extracellular matrix (ECM) promoting metastasis. The
uPAS exerts its activity by enhanced uPA-mediated conversion of co-localized plasminogen to plasmin and subsequent activation of matrix metalloproteases (MMP).
PAI-1 (SERPINE1) can inhibit uPA activity but is also upregulated and contributes to cell signaling. MMPs and plasmin cleave and remodel the ECM leading to the
release of latent growth factors (GFs) such as EGF, VEGF-A, TGF-b, and HGF (hepatocyte growth factor). By binding to their cognate receptors, EGFR and VEGFR
(encoded by FLT1), and c-MET, these growth factors in turn act as important upregulators of the uPAS (via uPAR) and other downstream effectors, which induce
large-scale cellular changes that further promote ECM remodeling, cellular migration, and invasion and, ultimately, metastasis. A few of these growth factor receptors
are themselves overexpressed (i.e., MET, FLT1) and can drive invasion and metastasis regardless of growth factor activation. Aberrant miRNA expression, such as
downregulated has-miR-340-5p, is also associated with upregulated uPAR expression. Direct and indirect downstream effectors of the uPAS include vitronectin,
focal adhesions via integrins and focal adhesion kinase (FAK), the proliferation, and survival pathways MAPK/ERK PI3K/Akt/mTOR and VEGF-A, which facilitate
increased protection against apoptosis/anoikis, increased cell proliferation, and EMT and angiogenesis; these are also important for invasion and metastasis. Created
with BioRender.com.
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have reported on the elevated expression of TIMP1 in non-
cutaneous head and neck SCC (54–60), but only one of these (56)
included any cSCC among their samples. While TIMP4 has been
previously reported to be downregulated in non-cutaneous head
and neck SCCs (77), we are the first to report the downregulation
of TIMP4 in MET and PRI+ compared to SES in cSCC. Further,
our finding of a positive and negative association with TIMP1
and TIMP4 expression, respectively, is in line with a previous
study comparing their mRNA and protein expression in normal
human brain and malignant gliomas (78). Silencing of TIMP4
via hypermethylation of its promoter has been reported in other
human cancers (79), with reduced TIMP4 associated with
increased angiogenesis (55, 80–82). Epigenetic regulation of
TIMP4 might also possibly explain TIMP4 downregulation in
metastatic cSCC and should be further explored in future studies.

The activating effects of EGF andVEGF-A on downstream genes
including PLAU/R highlights the potential for anti-EGFR- and/or
anti-VEGF- with anti-uPA/uPAR-targeting approaches for
metastatic cSCC. EGFR inhibition as monotherapy for metastatic
cSCC has had moderate success (5), even though EGFR is often
overexpressed in cSCC, with one study showing an association with
EGFR levels and lymph node progression and tumor cell
proliferation (83). In our study, EGFR mRNA counts were
generally equally high across all tumor cohorts and SES suggesting
norelationshipwith tumor status (datanot shown)but rather that the
presenceofhigh levelsof activeEGF(andVEGF-A) in thepericellular
space of metastatic tumors may be responsible for enhanced
stimulation of EGFR-mediated signaling pathways (Figure 7). This
would contribute to EGFR drug resistance mechanisms through
stimulation of compensatory signaling pathways (5) in metastatic
cSCC and drive overexpression of downstream targets, including
PLAU/R and MMP genes, promoting functions linked to cell
invasion such as cell motility. The latter was functionally validated
in our EGFR-expressing cell line models. Notably, gefitinib
significantly inhibited uPAR expression and cell migration, further
supporting EGFR tyrosine kinase activation as a mechanism driving
uPARoverexpression. Further, asPLAURoverexpressionwas shown
to induce gefitinib resistance through the EGFR/p-AKT/surviving
signaling pathway in cell models of human lung adenocarcinoma
(84), strategies that downregulate PLAUR could also be explored
to avoid EGFR-targeted resistance mechanisms.

In conclusion, our integrated analysis of the mRNA, miRNA,
and uPAR protein expression in a well-characterized spectrum of
disease states provides a comprehensive evaluation of the
pathways that promote metastasis in cSCC of the head and
neck (Figure 7). The central role of uPA/R as a biomarker of
cSCC metastasis should be further explored using larger cohort
studies and with functional studies using metastasis models of
cSCC in vivo. Combinations of drugs targeting uPA/R and EGFR
and/or angiogenesis could be novel therapeutic strategies for
metastatic cSCC.
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