
Frontiers in Oncology | www.frontiersin.org

Edited by:
Mariana Segovia,

National Autonomous University of
Mexico, Mexico

Reviewed by:
Yutian Zou,

Sun Yat-sen University Cancer Center
(SYSUCC), China
Zuhal Hamurcu,

Erciyes University, Turkey

*Correspondence:
Xinmei Kang

kangxm28@xmu.edu.cn
Zhiliang Ji

appo@xmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Breast Cancer,
a section of the journal
Frontiers in Oncology

Received: 15 December 2021
Accepted: 14 February 2022
Published: 11 March 2022

Citation:
Zhou J, Wu L, Xu P, Li Y, Ji Z

and Kang X (2022) Filamin A Is a
Potential Driver of Breast Cancer

Metastasis via Regulation of MMP-1.
Front. Oncol. 12:836126.

doi: 10.3389/fonc.2022.836126

ORIGINAL RESEARCH
published: 11 March 2022

doi: 10.3389/fonc.2022.836126
Filamin A Is a Potential Driver
of Breast Cancer Metastasis
via Regulation of MMP-1
Jie Zhou1†, Lvying Wu2†, Pengyan Xu3, Yue Li1, Zhiliang Ji2* and Xinmei Kang1*

1 Department of Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China,
2 State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China,
3 Department of Surgical Research, Universitätsklinikum Erlangen, Erlangen, Germany

Recurrent metastasis is a major fatal cause of breast cancer. Regretfully, the driving force
and the molecular beneath have not been fully illustrated yet. In this study, a cohort of
breast cancer patients with locoregional metastasis was recruited. For them, we collected
the matched samples of the primary tumor andmetastatic tumor, and then we determined
the mutation profiles with whole-exome sequencing (WES). On basis of the profiles, we
identified a list of deleterious variants in eight susceptible genes. Of them, filamin A (FLNA)
was considered a potential driver gene of metastasis, and its low expression could
enhance 5 years’ relapse survival rate by 15%. To prove the finding, we constructed a
stable FLNA knockout tumor cell line, which manifested that the cell abilities of
proliferation, migration, and invasion were significantly weakened in response to the
gene knockout. Subsequently, xenograft mouse experiments further proved that FLNA
knockout could inhibit local or distal metastasis. Putting all the results together, we
consolidated that FLNA could be a potential driver gene to metastasis of breast cancer, in
particular triple-negative breast cancer. Additional experiments also suggested that FLNA
might intervene in metastasis via the regulation of MMP-1 expression. In summary, this
study demonstrates that FLNA may play as a positive regulator in cancer proliferation and
recurrence. It provides new insight into breast cancer metastasis and suggests a potential
new therapeutic target for breast cancer therapy.

Keywords: breast cancer, metastasis, FLNA, MMP-1, EMT
INTRODUCTION

Breast cancer has become the most common cancer and the main cause of cancer death in women. In
2020, there are an estimated 2.3million new cases of breast cancers worldwide (11.7%), surpassing lung
cancer (11.4%) in number for the first time (1). The global incidence rate and mortality rate of breast
cancer are still increasing annually, and the increase in the lower sociodemographic index (SDI)
countries is larger than that of higher SDI countries (2). The yearly-increasing cancer cases not only put
heavy psychological pressure on patients but also raise great economic burdens to society and the
country. In thenew era of cancer therapy, breast cancers can be classified into four types according to the
expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor
receptor 2 (HER2), andKi-67 (3): LuminalA [ER+ and/or PR+,HER2−, Ki-67 < 14%], Luminal B [ER+
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and/or PR+, HER2+; ER+ and/or PR+, HER2−, Ki-67 > 14%],
HER2 positive (HER2+) [ER−, PR−, HER2+], and triple-negative
breast cancer (TNBC) [ER−, PR−, HER2−]. The patients of specific
cancer will receive individual therapy regimens to achieve the best
therapeutic effect.

However, the tumor has the characteristics of heterogeneity,
easymutationof the genome, and strong adaptability to the external
environment changes, which make it insensitive or resistant to
various drug treatments and vulnerable to local recurrence or distal
migration. Previous studies showed that over 25% of early breast
cancer patients had metastases at the time of initial diagnosis (4),
and about 30% of them would develop metastatic breast cancer in
the future (5). The clinical outcome of breast cancer depends on the
biology, extent, and location of metastasis. The luminal breast
cancer has a higher propensity to develop bone metastases, while
TNBC tends to metastasize to the lungs and brain (6, 7). Although
the 5-year survival rate of breast cancer is increasing year by year,
drug resistance, recurrence, andmetastasis are still urgent problems
in the treatment of cancer.

The occurrence and development of breast cancer are the results
of the interaction of genes and environment, and the effect of the
environment can also be manifested through genetic or epigenetic
changes (8).Mark et al. found thatBRCA plays an important role in
breast cancer metastasis. PALB2, a key partner of BRCA1/BRCA2,
was involved in DNA damage repair and tumor suppression
activity; thus, its mutation can lead to increased susceptibility to
breast cancer (9). In addition, theMax teamfound that loss ofp53 in
cancer cells promoted Wnt secretion and triggered neutrophil
inflammation through stimulating tumor-associated
macrophages to produce IL-1b (10). There is a causal relationship
between neutrophils and metastasis, in which the high neutrophil-
to-lymphocyte ratio could promote the metastasis of breast cancer
and reduce the survival rate of patients (11).What ismore,PTEN is
a tumor suppressor gene (12) related to a variety of human cancers
and a major negative regulator of the PI3K/Akt signaling pathway
(13). Abdullah et al. found that inhibition ofPTEN can promote the
activation of the PI3K/Akt pathway and further control the
proliferation and development of breast cancer stem cells (CSCs)
(14). Although many valuable efforts have been made, the genetic
driving force underlying the recurrence and distal metastasis of
breast cancers largely remains unexplored.

In this study, we collected nine pairs of primary and recurrent
tumors of breast cancer patients, determined the mutation
profiles with whole-exome sequencing (WES), identified
potential driver genes, and further validated them with both
cells and animal experiments. We intended to provide new
insights into breast cancer metastasis and suggest potential
new therapeutic targets for precise breast cancer therapy.
RESULTS

Identification of Potential Driver Genes to
Breast Metastasis
The WES of nine cohort patients (18 tissue samples) yielded a
total of 47,407 high-quality and non-redundant somatic variants,
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including 27,845 single-nucleotide variants (SNVs), 16,679
insertions and deletions (indels), and 1,461 stopgain and
stoploss mutations. To identify potential metastatic driver
genes to breast cancers, we performed serial bioinformatics
analyses (Figure 1A). The analyses were made based on an
open assumption of the following: 1) the cohort patients may
have different genetic backgrounds of metastasis (Table 1), 2) the
metastatic driver gene mutations could be harmful (deleterious)
to the cells, and 3) the deleteriousness of gene mutations would
be a benefit to metastasis. Accordingly, we first narrowed down
the whole mutation profiles to the harmful ones by integrating
deleterious prediction results of multiple bioinformatics tools. A
list of 2,755 deleterious mutations was obtained in the primary
cancer samples consistently, including one synonymous SNV,
2,166 non-synonymous SNVs, 304 non-frameshift indels, 224
frameshift indels, 45 stopgain mutations, and 15 stoploss
mutations. These deleterious mutations were distributed on all
chromosomes except the Y chromosome, and the majority of
them occurred in protein-coding regions (Figure 1B). Similarly,
we obtained 2,533 deleterious mutations in the metastatic cancer
samples consistently, including 2,068 non-synonymous SNVs,
233 non-frameshift indels, 196 frameshift indels, 24 stopgain,
and 12 stoploss mutations. These mutations had similar
chromosome distribution as those of primary cancer samples
and were also located mainly at protein-coding regions
(Figure 1C). These results manifest that primary tumors and
metastatic tumors in this study have no genetic difference in
general. Furthermore, we extracted the susceptible genes that
have deleterious mutations in at least two samples of either
primary tumor or metastatic tumor. The criteria eventually
identified eight susceptible genes shared by primary/metastatic
tumors; they were COMP, FLNA, FOXO3, HSPA2, ITPR3,
PIK3R2 , NF1 , and TP53 (Figures 1D, E). Literature
surveillance manifested that these genes played multiple roles
in cancers, such as cell growth, cell apoptosis, cell migration, and
cell invasion (15–22).

To further connect these genes with metastasis, we performed a
progression-free survival (PFS) analysis on the deleterious mutants
within the nine-member cohort (Figure 2A). Of the eight
susceptible genes, only one gene (FLNA) exhibited significant
change (two-tail unpaired Wilcoxon rank-sum test, p < 0.1) of
PFS when the deleterious mutation occurred in primary cancer,
which extended the PFS. In particular, the patients with deleterious
mutations in FLNA in primary tumors had an average PFS value
(n = 5, average PFS = 56months) of about 2.5 times larger than that
of those without themutations (n = 4, average PFS = 23.3 months).
Manyof the deleteriousmutations are located at thefirst few repeats
of the immunoglobulin (Ig) domain (Table 2), causing the
dysfunction of FLNA protein. In addition, we performed the
survival analysis on basis of 392 TNBC patients from 55
independent experiments to examine the gene expression level of
susceptible genes on metastasis, assuming that deleterious
mutations would reduce the corresponding gene expressions. The
result manifested that low expression of FLNA would significantly
enhance 5 years’ relapse-free survival rate by 15% compared to that
high expression group (Figure 2B). Putting all the data together, we
March 2022 | Volume 12 | Article 836126
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speculate that FLNA could be one of the positive factors to breast
cancermetastasis. Deleteriousmutation of FLNAgene, particularly
at its first few Ig repeats, would reduce its expression and thus
resist metastasis.

Cellular Consequence of Defected FLNA
via Knockout Experiments
We examined the protein level of FLNA in breast mammary
epithelial cells (MCF-10A) and different breast cancer cell lines
mentioned in the Material and Methods with Western blotting.
Frontiers in Oncology | www.frontiersin.org 3
Comparatively, FLNA is highly expressed in MDA-MB-231
(Figure 3A). Hence, we constructed knockout cells of MDA-
MB-231. Subsequent Western blotting validated the successful
knockout of FLNA in different target cells (Figure 3B).
Accordingly, we chose two knockout cell lines of MDA-MB-231,
target 1 and target 2, namely, FLNA/KO-1 and FLNA/KO-2,
respectively, for cell proliferation and migration assays. The results
showed that knockout of FLNA caused a decrease of proliferation
for 76.35% in FLNA/KO-1 and 75.61% in FLNA/KO-2 cells at
72 h (Figure 3C), and the wound healing capability of cells
A

B
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F

C

FIGURE 1 | (A) Overview of study design. (B) The deleterious mutations in primary cancer. (C) The deleterious mutations in metastatic cancer. (D) Genes with
deleterious mutations in at least two samples of primary cancer. (E) Genes with deleterious mutations in at least two samples of metastatic cancer. (F) The structure
of human filamin A.
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dropped 43.95% and 43.84% at 48 h, respectively (Figures 3D, E).
Besides, the migration and invasion ability of FLNA/KO-1 cells
decreased 91.17% and 87.06%, and the FLNA/KO-2 cells
decreased 76.43% and 75.48%, respectively (Figures 3F, G).
Frontiers in Oncology | www.frontiersin.org 4
Comparatively, the negative control (NC) showed no significant
difference from the wild-type MDA-MB-231 in all aspects of cell
proliferation, wound healing, migration, and invasion. These
results confirm that knockout of FLNA is not fatal to cancer
TABLE 1 | Detailed information of 9 breast cancer patients.

Sample ID Age TNM of initial diagnosis ER PR HER2 DFS (months)

Patient1 56 T2N2M0 ++ ++ − 62
Patient2 56 T2N0M0 + − − 80
Patient3 46 T3N2M0 ++ ++ − 28
Patient4 44 T1N0M0 ++ ++ − 72
Patient5 68 T1N0M0 +++ − ++~++ 22
Patient6 N.A. T1N0M0 − + ++ 38
Patient7 N.A. T1N0M0 − − +++ 42
Patient8 58 T2N0M0 ++ + − 24
Patient9 30 T1N0M0 − + − 5
Marc
h 2022 | Volume 12 |
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2; DFS, disease-free survival.
N.A., Not Available.
A

B

FIGURE 2 | Exploring the relationship between eight susceptible genes and prognosis of breast cancer patients. (A) A progression-free survival (PFS) analysis on
the deleterious mutants within the nine-member cohort. (B) The survival analysis was on basis of 392 triple-negative breast cancer (TNBC) patients from 55
independent experiments.
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cells; however, it can repress cell proliferation, migration, and
invasion. Immunofluorescence (IF) assay showed that FLNA was
mainly distributed in the cytoplasm and nucleus (Figure 3H).
Compared with wild-type andNC group cells, FLNA/KO cells had
smaller sizes and poor cytoskeleton development (Figure 3H).

Knockout of FLNA Decreases Xenograft
Tumor Growth and Metastasis
To further study the functional role of FLNA, we used wild-type
MDA-MB-231, FLNA/NC, FLNA/KO-1, and FLNA/KO-2
stably transfected cell lines to establish xenograft models.
Each model had five repeated cases. We monitored the
expression of FLNA in mouse in situ tumors and found that
FLNA/KO groups decreased by 46.25% and 46.91%
(Figure 4A). Compared to wild type and NC, the FLNA/KO
mice had significantly slower tumor growth rate and smaller
tumor volume (declined 61.72% and 68.30%, respectively) by
28 days (Figure 4B). The tumor volume of two cases with
ipsilateral chest wall metastasis was recorded in Figure 4E.
H&E stain of the xenograft tumor showed that there may exist
two morphologies of cancer cells in the orthotropic tumor
(Figure 4C): the cancer cells near the margin of in situ tumor
were large, with obvious atypia large nucleus, common mitosis,
and basophilic cytoplasm (indicated by yellow arrows). In
contrast, the cancer cells in the center of in situ tumor were
small or medium-sized, more consistent in shape, mostly round
or oval, and loosely arranged and had fewer mitosis (indicated
by black arrows). This phenomenon may be owing to the tumor
growth exceeding the growth rate of the blood vessels providing
nutrition, resulting in tissue necrosis or even liquefaction of
some central tissues due to insufficient energy supply. We also
observed that the morphology of lung metastatic cancer cells
had large cells, rich chromatin, and common mitotic images.
The liver metastasis cells from breast cancer were small and
round, and the cell size and shape were consistent.

In addition, we demonstrated the immunohistochemistry
(IHC) assay to monitor metastasis with the marker GATA3,
which is often used for detecting urothelial or breast origin
tumor. As GATA3 was positively related to ER and PR status
(23), the nucleus of the MDA-MB-231 cell xenograft appeared
to be light brown (Figure 4D). In summary, no local or distal
metastasis was observed in the FLNA/KO groups. In contrast,
Frontiers in Oncology | www.frontiersin.org 5
one case of liver metastasis, four cases of lung metastases, and
one case of ipsilateral chest wall metastasis were found in the
wild-type MDA-MB-231 group; and one case of liver
metastasis, three cases of lung metastases, and one case of
ipsilateral chest wall metastasis were observed in the FLNA/
NC group. H&E and IHC of chest wall metastasis and
peritoneal metastasis are shown in Figure 4F. Similar to the
H&E results of in situ tumors, the marginal cells of metastatic
tumors were large, and nuclear atypia was obvious (which is
indicated by yellow arrows). However, the central cells were
small and loosely arranged. GATA3 colored the nucleus light
brown, indicating that the tumor was of breast origin.
Furthermore, we also detected the expression of Ki-67 in
tumors in situ and metastases. The result manifested that
Ki-67 is expressed low in the FLNA/KO groups and high in the
other groups, suggesting a strong ability of cell proliferation
(Figures 4G, H).

FLNA Regulated the Expression of MMP-1
Previous studies have shown that tumor metastasis is closely
related to epithelial-to-mesenchymal transition (EMT) (24) and
extracellular matrix (ECM) (25), and they were recognized as
critical factors in governing metastatic colonization. In the
process of EMT, the cells showed decreased adhesion and
increased motility, which led to metastasis of malignant tumor
cells (26). ZO-1 is indispensable for tight junction formation and
function (27), in which mutation can induce EMT (28). Slug is a
widely expressed transcriptional repressor protein that, when
combined with the integrin promoter, inhibits integrin
expression and leads to decreased cell adhesion (29). b-Catenin
can activate slug, which is related to tumorigenesis (30).
Vimentin is highly expressed in a variety of tumors, which is
closely related to promoting tumor growth, invasion, and poor
prognosis (31). Therefore, we first detected the expression of
EMT-related proteins and found that FLNA/KO had no
significant effect on EMT (Figure 5A). Therefore, we
concluded that FLNA may not affect the metastasis of breast
cancer through the EMT pathway, and there may exist other
ways. After that, we determined the mRNA levels of several
conventional ECM components such as MMP-1, MMP-2, and
MMP-9 in response to FLNA knockout with RT-qPCR.
Interestingly, of these major ECM components, only MMP-1
TABLE 2 | The deleterious mutations in FLNA of all samples.

Sample Start End Ref Alt Type AAchange FLN repeat

Patient1-M 154360534 154360570 GCGGGCGGGGGAGCCCGCACTGCCTCCCTGCAGCCCC – Frameshift deletion P1075fs 9
154362486 154362491 TGTCAT – Non-frameshift deletion 831_833del 6

Patient2-M 154359888 154359891 TGGC – Frameshift deletion A1274fs 11
Patient6-M 154362486 154362491 TGTCAT – Non-frameshift deletion 831_833del 6
Patient8-M 154362486 154362491 TGTCAT – Non-frameshift deletion 831_833del 6
Patient1-P 154361680 154361687 GCCAGACA – Frameshift deletion V976fs 8
Patient2-P 154362486 154362491 TGTCAT – Non-frameshift deletion 831_833del 6
Patient4-P 154366374 154366374 C T Non-synonymous SNV G388S 2
Patient7-P 154354220 154354220 C T Non-synonymous SNV V1822M 16
Patient8-P 154352600 154352600 G A Non-synonymous SNV S2144L 20
March 2022 |
 Volume 12 | A
SNV, single-nucleotide variant.
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decreased after FLNA knockout (Figure 5B). This result was
further confirmed in protein level (Figure 5C). We detected the
expression of MMP-1 in situ and metastatic tumors of breast
cancer xenograft in mice, and we found that MMP-1 decreased
Frontiers in Oncology | www.frontiersin.org 6
by 44.23% and 47.23% in FLNA/KO-1 and FLNA/KO-2 groups,
respectively (Figures 5D, E). These results indicated that FLNA
could affect the metastasis of breast cancer cells by regulating the
expression of MMP-1.
A B
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C

FIGURE 3 | (A) The expression of FLNA in different breast cancer cell lines, followed by the quantitative and statistical analysis results of proteins in Western
blotting. (B) FLNA knockout efficiency of MDA-MB-231 cells and the quantitative and statistical analysis results. (C) Cell Counting Kit-8 (CCK-8) assay presents the
proliferation of different groups. (D) Wound‐healing assays (scale bar, 200 mm) were used to detect the migration abilities of the cells. (E) The wound‐healing
percentage of different groups. (F) Transwell and invasion assays present the migration (scale bar, 50 mm) and invasion abilities of the cells. (G) The number of
invaded MDA-MB-231 cells, FLNA/NC, and FLNA/KO cells. (H) Breast cancer cells (scale bar, 50 mm) with/without FLNA knockout were stained with fluorescein-
phalloidin (pink) to visualize F-actin. DAPI was used for nuclear staining (blue). FLNA was stained in green. Data are presented as mean ± SD. The data shown are
representative results of three independent experiments. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns, no significance.
March 2022 | Volume 12 | Article 836126
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FIGURE 4 | (A) Representative immunohistochemistry (IHC) images (scale bar, 100 mm) of tissue sections of in situ tumor from the four groups. FLNA was
stained brown in cytoplasm and nucleus. Representative IHC images (scale bar, 100 mm) of tissue sections of in situ tumor from the four groups. FLNA was
stained brown in cytoplasm and nucleus. Beside it is the average optical density (AOD) value of FLNA in situ tumor tissues. (B) The volume (mm3) of in situ
tumor in each group was recorded every 3 days. (C) Representative H&E (scale bar, 100 mm) staining of tissue sections of different organs from the four groups
(n = 5). The cells near the margin of in situ tumor are indicated by yellow arrows, and the center cancer cells were indicated by black arrows. (D) Representative
IHC images (scale bar, 50 mm) of tissue sections of different organs from the four groups (n = 5). GATA3 was stained light brown in the nucleus, which was
mainly expressed in the nucleus and often used for detecting the breast origin tumor. (E) The volume (mm3) of ipsilateral chest wall metastatic tumors of two
mice in MDA-MB-231 and FLNA/KO groups. (F) Pictures of ipsilateral chest wall metastasis and peritoneal metastasis in nude mice in MDA-MB-231 and FLNA/
NC groups. Black arrows indicate tumor location. In the H&E (scale bar, 100 mm) staining results, the marginal cells of metastatic tumor are indicated by yellow
arrows, and the central cells are indicated by black arrows. GATA3 (scale bar, 50 mm) colored the nucleus light brown. (G) The expression level of Ki-67 in
different tissues (scale bar, 100 mm). Ki-67 colored the nucleus brown. (H) The Ki-67 AOD value of different tumor tissues. Data are presented as mean ± SD.
*p < 0.05, ***p < 0.001, ****p < 0.0001, ns, no significance.
Frontiers in Oncology | www.frontiersin.org March 2022 | Volume 12 | Article 8361267
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FIGURE 5 | (A) Epithelial-to-mesenchymal transition (EMT)-related pathway protein expression level and the relative density normalized to GAPDH. (B) The mRNA
expression level of MMP-1, MMP-2, and MMP-9 in different group cells. (C) The protein expression level of MMP-1, MMP-2, and MMP-9 in different group cells and
the quantitative and statistical analysis results of proteins. (D) Expression of MMP-1 in different tissues (scale bar, 100 mm). (E) The MMP-1 AOD value of in situ
tumor tissues in four groups. ****p < 0.0001, ns, no significance.
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Overexpression of MMP-1 Promotes Cell
Growth and Migration
We overexpressed MMP-1 in two FLNA knockout stably
transfected cell lines, FLNA/KO-1 and FLNA/KO-2, in an
attempt to explore whether MMP-1 can reverse the antitumor
effect. We used PCR and Western blotting to monitor the
transfection efficiency and expression level of MMP-1. PCR
results showed that the overexpression efficiency of KO-1/P1
and KO-2/P1 was 13.3 times and 38.85 times higher than that of
KO-1/NC and KO-2/NC, respectively (Figure 6A). Western
blotting showed that the expression levels of MMP-1 in KO-1/
P1 and KO-2/P1 were respectively 23.55 and 11.67 times higher
than those in the NC (Figure 6B). Overexpression of MMP-1
could promote the proliferation of FLNA/KO cell lines, which
increased by about 1.24 times at 72 h (Figure 6C). The wound
healing capability of the two cell lines increased by 3.17 and 5.89
times at 48 h, respectively (Figures 6D, E). In addition, we also
Frontiers in Oncology | www.frontiersin.org 9
observed changes in migration and invasion. Transwell
experiment showed that the number of cell migration of KO-1/
P1 and KO-2/P1 was respectively 3.23 and 3.08 times higher than
that of NC groups (Figures 6F, G), and the invasion ability was
increased by 2.6 and 2.75 times (Figures 6F, H), respectively.
These results suggest that overexpression of MMP-1 can reverse
the antitumor effect of FLNA knockout to a certain extent.
DISCUSSIONS

Early studies reported that the genetic variants in TP53 (32),
BRCA1 (33), and EGFR (34) could intervene in tumorigenesis
and tumor development. Regretfully, none of these mutations
were observed in this study. Instead, this study identified several
novel deleterious variants likely associated with the recurrence of
breast cancers in a small cohort. Of them, filamin A (FLNA)
A B
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C

FIGURE 6 | (A) The mRNA expression level of MMP-1 after transfection. (B) The protein expression level of MMP-1 after transfection. (C) Cell Counting Kit-8 (CCK-8)
assay presents the proliferation of different groups. (D) Wound‐healing assays (scale bar, 100 mm) were used to detect the migration abilities of the cells. (E) The
wound‐healing percentage of different groups. (F) Transwell assays present the migration and invasion abilities of the cells (scale bar, 50 mm). (G) The number of
migration cells in different groups. (H) The number of invasion cells in different groups. *p < 0.05, ****p < 0.0001, ns, no significance.
March 2022 | Volume 12 | Article 836126
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showed the most potential in regulating breast cancer metastasis
and PFS, in particular in TNBCs. FLNA is a 280-kDa protein that
can be cleaved into two fragments of 170 kDa (ABD + Rep.1–15)
and 110 kDa (Rep.16–24). The latter one is near the C-terminal
region, which can be further cleaved into a 90-kDa fragment
(Rep.16–23, FLNA-C) (35). Previous studies had demonstrated
FLNA could intervene in cancer development via promoting or
inhibiting the expression of some genes. For instance, a metadata
analysis on basis of 392 TNBC samples from 55 separate
experiments suggested that low expression of FLNA could
significantly enhance the 5-year relapse survival rate compared
to that of high expression. A large-scale clinical study revealed
that the overphosphorylation of FLNA Ser2152 was associated
with a poor prognosis of hepatoma, which may be a potential
prognostic biomarker of primary liver cancer (36). Bojan et al.
found that microRNA-200c could reduce FLNA by inhibiting the
transcription factors c-Jun and MRTF/SRF and thereby affect the
polarization of breast cancer cells, resulting in the cell
morphology changes and decreased motor ability (37).
Another study showed that ADP ribosylation factors like 4C
(Arl4C) could interact with FLNA rep.22 in a GTP-dependent
manner to induce filopodium formation and promote cell
migration (38). Therefore, we speculate that FLNA plays an
important role in tumor metastasis. Although FLNA was
reported to be highly expressed in cancers (39–41), its
connection with breast cancer metastasis has not been well
investigated previously.

In this study, we proposed that FLNA could be a positive
factor in breast cancer metastases for the first time. The in vitro
cell assays confirmed the fundamental function of FLNA as a
scaffold in constructing the actin cytoskeleton. Knockout of
FLNA did not sacrifice cells; however, it impaired cell
cytoskeleton and largely reshaped the cells to a smaller size.
Thereby, the proliferation, migration, and invasion of cancer
cells were significantly weakened. The in vivo xenograft mouse
model further consolidated that knockout of FLNA largely
repressed the local and distal metastases of transfected tumors.
All shreds of evidence strongly support that FLNA is a positive
driver gene of breast cancer metastasis.

In addition, we conducted preliminary research to investigate
the possible mechanism underlying FLNA-regulated metastasis.
We monitored the expression changes of four common EMT
markers vimentin, b-catenin, Slug, and ZO-1 proteins after FLNA
knockout. Previously, vimentin was reported to promote tumor
metastasis through positive regulation of Axl (AXL Receptor
Tyrosine Kinase) in breast cancer (42). However, we did not
find any significant changes in these EMT phenotypic proteins
after FLNA knockout. We considered that there might exist an
alternative route like ECM, to promote tumor metastasis other
than the EMT. Matrix metalloproteinases (MMPs) are a group of
calcium-dependent zinc-containing endopeptidases, whichmainly
function in degrading ECM. MMP-1 is a ubiquitously expressed
collagenase in ECM that can degrade type I, II, and III collagen
(43). In this study, we found that knockout of FLNA significantly
reduced the expression of MMP-1 but did not affect the other two
ECM members MMP-2 and MMP-9. However, how FLNA
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regulates MMP-1 has not been fully elucidated. Bandaru et al.
found that FLNA-C can be cleaved off by calpain to stimulate
adaptive angiogenesis by transporting multiple transcription
factors into the nucleus (44). Here, we found FLNA expressed in
both the nucleus and cytoplasm of TNBC cell MDA-MB-231.
Therefore, we speculated that FLNA-Cmight act as a transcription
factor and directly or indirectly promote the expression of MMP-1
mRNA. Alternatively, prior works also found that FLNA could
physically interact with integrin beta-1 (ITGB1) (45). ITGB1 can
bind to various ECM components, which participate in multiple
extracellular effects such as adhesion, ECM degradation, and cell
invasion (46). Rizwan et al. found that stimulation of ITGB1
resulted in higher MMP activities in metastatic cancer cells (47).
Accordingly, we monitored the expression of MMP-1, MMP-2,
and MMP-9 in response to FLNA knockouts. The results
manifested that only MMP-1 was significantly repressed in
FLNA knockout cells. Previously, several works have suggested
MMP-1 as a promoter of metastasis. For instance, overexpression
of MMP-1 could promote the growth of xenograft tumors and the
formation of brain metastasis (48). MMP-1 combined with
ADAMTS1 can activate osteoclast differentiation by modulating
the bone microenvironment in favor of osteoclastogenesis, to
promote breast cancer bone metastasis (49). In summary, we
speculate that FLNA likely promotes breast cancer metastasis in
two different ways (Figure 7). FLNA-C interferes with the nucleo-
cytoplasmic transportation of transcription factors to regulate
MMP-1 expression, or FLNA regulates MMP-1 activities via
interacting with the ITGB1-mediated signaling. To validate the
mechanisms, extensive studies are desired in the future.
MATERIAL AND METHODS

Patients and Specimens
In this study, a cohort of nine breast cancer patients was
recruited from the Cancer Hospital of Harbin Medical
University. The study was approved by the Ethics Committee
of Cancer Hospital of Harbin Medical University and Xiang’an
Hospital of Xiamen University (XAHLL2020013) and abided by
the Declaration of Helsinki principles. All patients were
confirmed with recurrence of breast cancer, and the recurrent
tumors were locoregional metastases (chest wall). The medical
information of patients was briefly summarized in Table 1, and
the individual information was replaced by anonymous digital
codes. For every member in the cohort, paired tissue samples of
the primary tumor and recurrent tumor were collected by
surgery operation. The tumor tissues were then routinely
formalin-fixed and paraffin-embedded (FFPE).

DNA Extraction and Whole-Exome
Sequencing
For each tissue sample, 3–5 µg of genomic DNA was applied for
quality control, and its integrity was checked by the agarose
electrophoresis. The whole exome was captured using the
MGIEasy Exome Library Prep Kit (BGI, Shenzhen, China),
and the library for sequencing was prepared according to the
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manufacturer’s instructions. The WES was performed by the
Beijing Genome Institute (BGI, Shenzhen, China) using the
BGIseq-500 platform in a 100-base pair (bp) paired-end mode.

Exome Data Preprocessing, Variant
Calling, and Variant Annotation
Before variant calling, the quality control of the exome data was
conducted by FastQC (v.0.11.9, https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) and Trimmomatic (v.0.39;
parameters: LEADING = 5, TRAILING = 5, SLIDING
WINDOW:5:20, MINLEN = 50) (50) to remove adapter
sequences and discard low-quality reads. The clean reads were
mapped to the human reference genome (GRCh38.p13) using the
Burrows–Wheeler Aligner (BWA, v.0.7.17; parameters: mem -t 4
-M -R) (51). The Genome Analysis Toolkit (GATK, v.4.1.2.0) (52)
and Samtools (v.1.9) (53) were used for basic processing, duplicate
marking, and base quality score recalibration (BQSR). Calling of
somatic mutations was conducted with GATK Mutect2 (default
parameters). The variants were further annotated with
ANNOVAR (v2019sep29) (54). The datasets produced by this
study were available in the Genome Variation Map portal
repository at the following URL: https://ngdc.cncb.ac.cn/gvm/
(accession number: GVM000287).

Determination of Deleterious Variants
The deleterious variants for recurrent tumors were determined
by satisfying several criteria: 1) the variant genotype was
supported by a sequencing depth of >10. 2) Only four types of
non-synonymous mutations at the exon region were involved in
this study, including SNV, frameshift indel, non-frameshift indel,
and stopgain and stoploss. 3) The occurrence of mutation in the
Eastern Asian population was ≤1% as recorded in the
ExAC_EAS database (55). 4) The variant was deleterious to
protein. The deleteriousness of these non-synonymous variants
was evaluated with multiple tools by different variant types. For
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SNVs, 15 tools were used to quantify the deleteriousness,
including SIFT (56), Polyphen-2 HDIV (57), Polyphen-2
HVAR (57), LRT (58), MutationTaster (59), MutationAssessor
(60), FATHMM (61), PROVEAN (62), VEST3 (63), MetaSVM
(64), MetaLR (64), M_CAP (65), CADD (66), FATHMM-MKL
(67), and fitCons (68). The variants were taken as deleterious
variants if they were predicted pathogenic by more than twelve
tools. For variants of frameshift Indel and stopgain, the
deleteriousness was mainly assessed by checking the
haploinsufficiency in the clinGen database (69). In addition,
VEST-Indel (70) was also adopted to evaluate the
deleteriousness of frameshift Indel and non-frameshift Indel
mutations. The mutations with VEST Score ≥0.85 and VEST
p-value ≤0.01 were considered as deleterious mutations. All
stoploss variants were retained, as they were obviously harmful
by adding part of a protein sequence.

Survival Analysis
The survival analysis was conducted based on the database (71),
which included 7,830 unique samples from 55 Gene Expression
Omnibus (GEO) independent datasets to assess the impact of
gene expression on breast cancer metastasis. Accordingly, overall
392 TNBC samples were involved in this analysis. The survival
analysis was performed with the Kaplan–Meier Plotter web
server (71).

Cell Culture
All cell lines (including the normal breast mammary epithelial
cell line MCF-10A, luminal A breast cancer cell lines MCF-7 and
T-47D, luminal B breast cancer cell line BT-474, TNBC cell lines
MDA-MB-231 and BT-549, and HER2+ cell line SK-BR-3) were
purchased from the Type Culture Collection of the Chinese
Academy of Sciences (Shanghai, China). MCF-10A were grown
in MEGM kit (Lonza/Clonetics, CC-3150) with cholera toxin
(Sigma, St. Louis, MO, USA; C8052) of 100 ng/ml. MCF-7 were
FIGURE 7 | Two hypotheses are that FLNA promotes breast cancer metastasis via MMP-1. On the one hand, FLNA can affect the expression of MMP-1 by affecting
the transport of transcription factors. On the other hand, FLNA can affect the activity and content of MMPs via the signaling route of ITGB1-MMPs.
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grown in MEM (GIBCO, Grand Island, NY, USA; 41500034)
with NaHCO3 1.5 g/L, sodium pyruvate 0.11 g/L, and 0.01 mg/ml
of bovine insulin. T47D and SK-BR-3 were grown in DMEM
(GIBCO by Life Technologies, C11995500BT). BT474 was grown
in Roswell Park Memorial Institute (RPMI) 1640 (GIBCO by Life
Technologies, C11875500BT). MDA-MB-231 and MDA-MB-
549 were grown in DMEM. All cell culture media were
supplemented with 10% fetal bovine serum (FBS; GIBCO,
42A0378K) and 1% penicillin/streptomycin (GIBCO,
15140122). All cells were grown at 37°C and 5% CO2.

Gene Knockout With CRISPR/Cas9
Technology
CRISPR/cas9 plasmid was synthesized by the Jikai Gene Company
(Shanghai, China). TheGV392CRISPR-Cas9 vector had three gene-
specific regions of the guide RNA (gRNA) sequences. The three
gRNA sequences for FLNA were as follows: target 1: 5′-CAC
CGGCCCGTTACCAATGCGCGAG-3′, target 2: 5′-CACCG
CGAGGTGACGGGGACTCATA-3′, and target 3: 5′-CACCGG
AAGCGGGCAGAGTTCACTG-3′. The sequence 5′-CGCTTCC
GCGGCCCGTTCAA-3′ of empty plasmid was used for NC
(FLNA/NC). Transfection experiments were carried out in six-well
plates.When the cell confluence reached 30%~40%, the transfection
solution was added (V = MOI × Cell number/Virus concentration).
After 24 h, stable FLNA knockout of MDA-MB-231 cells was
obtained with 1 mg/ml of puromycin selection. FLNA knockout
efficiency was evaluated by Western blot.

The overexpression MMP-1 plasmid was synthesized by the
Jikai Gene Company (Shanghai, China), and it was anti-
Blasticidin S. The sequencing results after successful plasmid
construction are been shown in Supplementary Materials 3.
After 24 h of infection, 5 ng/ml of Blasticidin S (Solarbio, Beijing,
China; B9300) was added to select the overexpressing MMP-1
cells. The overexpression efficiency was verified by RT-qPCR and
Western blot.

Western Blot Analysis and Antibodies
The cells were fully lysed with RIPA (Lablead, Beijing, China;
R1090), and the protein concentration was detected by
bicinchoninic acid (BCA) kit (YEASEN, Shanghai, China;
20201ES76). The supernatant was then treated with 1/4
volume of 5× SDS-PAGE (YEASEN, 20315ES05), and cooked
at 100°C for 10 min. Because the FLNA protein was large in
molecular weight (280 kDa), gels were transferred onto
polyvinylidene difluoride (PVDF) membranes (Millipore,
Billerica, MA, USA; R1DB96261) at 250 mA for 3 h. The other
protein transfer conditions were 80 V, 1.5 h. The primary
antibody was incubated at 4°C overnight, and the secondary
antibody was incubated at room temperature for 1 h. The details
of antibodies are presented in Supplementary Table 1. To
analyze the pictures, ImageJ was chosen.

Quantitative Real-Time PCR (RT-qPCR)
The cells were fully lysed with TRIzol (ambion, Austin, TX, USA;
210805) to extract total RNA. Genomic DNA was removed, and
the mRNAs were reverse transcribed into cDNA using Takara
reverse transcription kit (Takara, Mountain View, CA, USA;
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RR047A). The PCR was conducted in a 20-ml system, including
2 ml of cDNAs, along with 0.4 ml of forward and reverse primers,
10 ml of SYBR (YEASEN, 11201ES03), and 7.2 ml of water. The
specific primers for target RNA detection are given in
Supplementary Table 2. Relative expression of each target
gene was normalized to GAPDH mRNA level and calculated
with the 2−DDCt method (72).

Cell Proliferation
Cells were seeded onto 96-well (3 × 103 cells/well) plates. Before
measuring the optical density (OD), the cells were incubated
with 10 ml/well of Cell Counting Kit-8 (CCK-8) (APEXBIO,
Houston, TX, USA; K1018320180830) for 2 h. The OD value was
measured at 450-nm spectrum by intervals of 0, 24, 48, and 72 h.
The cell growth curve was drawn according to the OD value. Cell
growth rate = (control group OD − experimental group OD)/
control group OD × 100%.

Cell Movement, Migration, and Invasion
Wound-Healing Assay
The wound-healing assay was initiated with 1 × 106 cells/well in
the six-well plate. When the cell conference was greater than 95%
or just full, a straight line was drawn in the hole. Then the cells
were continuously cultured in the serum-free medium to reduce
the effect of cell proliferation on wound healing. The scratch
changes were recorded by taking photos at 0, 12, 24, 36, and 48 h.
The scratch area at each time point is defined with ImageJ by
setting the parameter of Wound-healing percentage = (Initial
area − each time point area)/Initial area × 100%.

Migration Assay
The cells were starved with the serum-free medium for 8 h and
inoculated into transwell chambers. Each upper chamber was
seeded with 2 × 104 cells in 100 ml of serum-free medium (3.5 ×
104 cells of overexpressing MMP-1 were seeded into the upper
chamber). A total of 800 ml of complete medium containing 10%
FBSwas added to the lower chamber. After 24 h, the cells were fixed
with 4% paraformaldehyde (PFA; Biosharp, anhui, China,
71041800) and stained with crystal violet (Solarbio, G1063), and
the upper cells were carefully wiped off with a cotton swab. Three
visual fieldswere randomly selected to take photos and count under
the microscope.

Invasion Assay
Cells were starved for 8 h before planking. Matrix glue measuring 90
ml (300ng/ml)was to theupperchamberbeforeplating3×104cells in
each upper chamber (4.5 × 104 cells of overexpressing MMP-1 were
seeded into the upper chamber). All the upper chambers were added
with 100 ml of serum-free medium, whereas the lower chamber was
added with amedium containing 10% FBS. After 24 h, the cells were
fixed and stained, and three visual fields were randomly selected
under the microscope for photographing and counting.

Immunofluorescence
The cells were fixed with 4% PFA for 30 min, permeabilized with
0.5% Triton (Beyotime, Shanghai, China; ST795) for 10 min,
blocked with 5% bovine serum albumin (BSA; YEASEN,
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36101ES25) for 30 min (slow shaking), and incubated with
primary FLNA antibody at 4°C overnight and secondary
antibody (FITC-AffiniPure Goat Anti-Rabbit IgG) at room
temperature for 1 h. The antibodies and their corresponding
dilution are given in Supplementary Table 2. One milliliter of 1×
phalloidin (YEASEN, 40734ES75) into each culture dish and
dyed at room temperature for 60 min, especially avoiding light.
Subsequently, 3–4 drops of DAPI (YEASEN, 40728ES10) were
added to each dish and incubated at room temperature for 5 min.
The localization of FLNA and cell morphology were observed
under the microscope and photographed. Phalloidin was used
for F-actin staining as pink. FLNA was stained green with
fluorescently conjugated secondary antibody. DAPI stained the
nucleus blue.

Xenograft Model
All procedures of the mouse model were approved by the
Xiamen University (AP: XMULAC20200119) and conformed
to the guidelines for the care and maintenance of laboratory
animals. Breast cancer cells (5 × 106 cells/mouse) were injected
into the fourth pair of mammary glands on the right side of 6-
week-old female Balb/c nude mice according to the above groups
(73, 74). There were 5 mice in each group. The length and width
of the tumor in situ were monitored with a vernier caliper. The
calculation formula of tumor volume in athymic nude mice is
V = 0.5 * Length * Width2 (mm3) (W, smaller diameter; L, larger
diameter) as described previously (75). After 4 weeks, the mice
were sacrificed, and the liver, kidney, lung, and brain of mice
were collected to evaluate the metastatic state.

H&E Stain and Immunohistochemistry
The tissue sections were dewaxed in xylene and hydrated in
alcohol. The nucleus and cytoplasm were stained by hematoxylin
(Beyotime, C0105S) and eosin, respectively. The stained tissues
were dehydrated and sealed, and they were observed and image-
captured under a microscope.

The immunohistochemical assay was performed on FFPE
sections of xenograft mouse tissues. Tumor sections measuring 5
mm were incubated with primary antibody at 4°C overnight and
secondary antibody at room temperature for 2 h. Subsequently, all
fields were observed under light microscopy. ImageJ was used to
calculate the integrated OD (IOD), the distribution area of IHC
staining images, and the average OD (AOD). AOD = IOD/Area.

Statistical Analysis
GraphPad Prism 8.0.1 software was used for statistical analyses.
All data were presented as mean ± SD of at least three
independent experiments. One-way ANOVA was selected for
Frontiers in Oncology | www.frontiersin.org 13
more than two groups. *p < 0.05, **p < 0.01, or ****p < 0.0001
was labeled for statistical significance.
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